
Computer Science 703

Advance Computer Architecture
2006 Semester 2

Lecture Notes
25May06

VLIW & EPIC Architectures

James Goodman

5/26/2006 CS703 3

Background

Sources for this lecture:
– Intel Itanium Architecture Software Developer's Manual
– Mark Smotherman, “Understanding EPIC architectures and

implementations”, from ACM Southeast Conference, 2002

• Itanium Architecture (IPF : Itanium Processor
Family)

• HP: Explicitly Parallel Instruction Computing (EPIC)

• History: came through HP: 2 separate histories
– Bob Rau/Mike Schlanskar: Cydrome
– Josh Fisher: Multiflow

5/26/2006 CS703 4

VLIW, 1982

Josh Fisher, Yale University, Multiflow
• Want to group multiple instructions into a single

“long instruction” that is executed on different
functional units in parallel.

• Effect is very similar to a very long pipeline: branches
(and cache misses) are deadly

• Ignored cache misses by ignoring caches
• Greatest innovation: Trace scheduling–capturing

larger blocks of parallelism by predicting most likely
path through multiple basic blocks, then adding fixup
code where wrong branch was predicted.

5/26/2006 CS703 7

Three steps for capturing ILP

1. Check dependencies between instructions to
determine which instructions can be grouped
together for parallel execution

2. Assign instructions to the functional units on the
hardware

3. Determine when instruction begins execution

5/26/2006 CS703 8

Tasks for ILP Execution

Each of these tasks can be performed at least
partially at compile time

1. Compiler indicates which instructions can be
executed concurrently (or hardware infers it from the
order).

2. Compiler designates a functional unit for each
instruction (or the hardware dynamically assigns a
free one).

3. Compiler indicates exactly which instructions should
be initiated in each cycle (or hardware assures that
resources are/will be free and issues when ready).

5/26/2006 CS703 9

Four Classes of Architecture

• VLIW : Compiler determines which instructions are assigned to
which FU (a very long instruction word)

– Highly restricted; implementation is architecture (# of functional
units determines code!)

• Dynamic VLIW : Compiler does grouping, FU assignment;
hardware determines execution time

– Can respond to events that cannot be anticipated by compiler (like
data caches)

• EPIC Compiler does grouping; FU assignment, initiation
determined by hardware

– Functional units dynamically scheduled, so architecture not tied to
implementation

– Still major benefit of compiling to specific implementation.

• Superscalar processors : all three done in hardware

5/26/2006 CS703 10

Four Levels of Compiler
Contribution

Mark Smotherman, “Understanding EPIC architectures and
implemntations,” Southeast ACM Conference 2002

5/26/2006 CS703 11

Four Architectural Models

Mark Smotherman, “Understanding EPIC architectures and
implemntations,” Southeast ACM Conference 2002

5/26/2006 CS703 12

• Example sequence: C = A + B

Load R1, A
Load R2, B
Add R3, R1, R2
Store C, R3

• Instructions 1 & 2 can be executed concurrently; 3
depends on 1 & 2; 4 depends on 3

5/26/2006 CS703 13

VLIW Bundles

Ld/St unit 0 Ld/St unit 1 integer ALU branch unit
Load R1, A Load R2, B nop nop
nop nop nop nop
nop nop Add R3, R1, R2 nop
Store C, R3 nop nop nop

• Multiflow improved instruction size by compressing
instructions to save space

5/26/2006 CS703 14

EPIC Specification of Bundles

(2) Load R1, A
(1) Load R2, B
(1) Add R3, R1, R2
(.) Store C, R3

• Tag indicates distance to first dependent instruction

• Allows hardware to do FU assignment

5/26/2006 CS703 15

IPF Format

127 86 45 4 0
Instruction 2 Instruction 1 Instruction 0 Template

Instructions are one of six types:
1. integer alu
2. non-alu integer
3. memory
4. floating-point
5. branch
6. extended

• Template tells which type is in which field (not all
combinations allowed)

5/26/2006 CS703 16

Five other features of EPIC Architectures

1. Predicated execution

2. Unbundled branches

3. Compiler control of the memory hierarchy

4. Control speculation

5. Data speculation

5/26/2006 CS703 17

Predicated execution

• 64 Predicate registers indicate true or false

• Instruction execution is predicated on value

• Efficient implementation of short if-then-else without
branches

5/26/2006 CS703 18

Unbundled branches

• Branches consist of 3 parts:
1. Branch decision

2. Provide target address

3. Transfer of control (PC)

• Within a bundle, multiple branch
instructions can specify parallel tests, with
multiple branch targets

5/26/2006 CS703 19

Compiler hints to memory hierarchy

• Compiler can predict temporal locality quite
well

• Provides hints:
– Indicate temporal locality at L1

– Indicate no temporal locality at L1

– No temporal locality at L2

– No temporal locality at all levels

5/26/2006 CS703 20

Control speculation

• Hoist loads ahead of branches: if you didn't need it,
not much lost

• Problem: what if load causes an exception?

• Solution: explicitly speculative load
– Load causing exception returns tagged result (NaT: not a

Thing or NaTVal: not a Thing Value for FP)

– Speculation check instruction raises exception if NaT still
around

5/26/2006 CS703 21

Data speculation

• Hoist load instructions earlier

• Problem: aliasing: compiler often can't disambiguate
pointers: how to avoid passing a store?

• Solution: Explicitly speculative load
– Advanced Load Address Table (ALAT) has addresses

– Followed by data-verifying load instruction

– If store has occurred, data-verifying load re-executes load
instruction

5/26/2006 CS703 22

Two Variations of Check

Case 1: Check occurs before loaded value is used (ld.c)

• Load is repeated and execution continues

Case 2: Check occurs after loaded value has been used to
generate other values (chk.a)

• If unsuccessful, chk.a branches to compiler-generated
recovery code.

5/26/2006 CS703 23

ALAT

4.4.5.1 Data Speculation Concepts
An ambiguous memory dependency is said to exist between a store
(or any operation that may update memory state) and a load when
it cannot be statically determined whether the load and store might
access overlapping regions of memory. For convenience, a store
that cannot be statically disambiguated relative to a particular load
is said to be ambiguous relative to that load. In such cases, the
compiler cannot change the order in which the load and store
instructions were originally specified in the program. To overcome
this scheduling limitation, a special kind of load instruction called
an advanced load can be scheduled to execute earlier than one or
more stores that are ambiguous relative to that load.

