Announcements/Reminders

Progress report due: Tuesday, May 23
Final Project due: Friday, June 2

Classes this week:
— today (only)
Classes next week:
— Wednesday

— Friday

CS210CS703

Computer Science 703
Advance Computer Architecture

2006 Semester 1

Lecture Notes
17 May06
Executing Out-of-order

James Goodman

N

Department

of
Computer Science

Sources for this lecture

R.M. Tomasulo, "An efficient algorithm for exploiting
multiple arithmetic units,” IBM Journal, January
1967, pp. 25-33.

Hennessy/Patterson, Section 3.2-3.3, pp. 181-196.

CS210CS703

17-May-06

Out-of-Order (0O00O) Execution

Dataflow: each instruction (procedure, method, code segment)
depends on certain operands.

— These operands have been assigned values sometime previously.

— If they have been assigned, the instruction can be “issued”
Instructions can be issued even if previous instructions have not
been issued.

Instructions are retired (committed) in-order

— Necessary for handling exceptions

— Memory ordering is easier
Registers are loaded from main memory, or stored as output of
instructions

— If aregister value is needed before it is available, this is a hazard.

CS210CS703

Simple O0O Scheme: Busy Bits

How do we know if a register is available?

» Associate “busy bit” for each register
— Set bit when issuing instruction with register as target
— Clear bit when value is entered into register
— lIssue instruction only if busy bit is not set
— Instruction can only be issued if source registers are not busy

Handling Hazards

» 3 kinds of hazards:
— RAW (True dependence)
» Handled by busy bits
— WAR (Anti-dependence)
» Not handled by busy bits
— WAW (Output dependence)
* Not handled by busy bits

(available) -
* Why would this happen?
17-May-06 CS210CS703 17-May-06 CS210CS703
Handling WAR & WAW Hazards
l -
» What if instruction has been issued with target register 4 and — e) i

another instruction wants to target register 4? et 2 conteor — e [N

— May be pending source register instructions (WAR) or not (WAW) — -] MR [rersrens f"“T;

— Recognize that the register actually has two values assigned to it!
« Single assignment concept: a “virtual register” is assigned a
value once
— The virtual register is “live” until it has been read for the last time
— Last time can be detected only when register is written
« Rename registers (reassigning registers through a level of
indirection):
— Each time register is targeted, if outstanding writes, assign a new
register and remap the registers
— Issue logic must remember which register 4 to use (trivial if in-
order)

17-May-06 CS210CS703

; DECODER 3]

STORE 3|
CONTROL | DATA 2|

BUFFERS (SD8) 1

FLOATING-POINT FLOATING-POINT
BUFFER REGISTER
(FLB) BUS (FLR) BUS

SINK SOURCE

MULTIPLY/DIVIDE

SINK SOURCE [CTRL

ADDER

TO STORAGE

RESULT BUS

Figure 1 Data registers and transfer paths without CDB.

17-May-06 CS210CS703

STORAGE BUS

|

INSTRUCTION UNIT

6 FLOATING-
FLOATING-POINT 5 POINT l I
BUFFERS (FLE)} 4 foL OPERAND 8
3| SO STACK (FLOS) BUSY | 12 FLOATING-POINT 4
AGS — -
2 BITS REGISTERS (FLR} 2
] 0
. [: : ! ——e b + s
A]
' L= »| DECODER | i 1
STORE 3
CONTROL | TAGS | DATA BUFFERS 2
(308 1
FLB BUS
] FLR BUS '
i (o]}]
T 3 L4 y y r y | J
TAG | SINK TAG | SOURCE |CTRL TAG | SINK TAG | SOURCE |CTRL
TAG | sSINK | TAG | SOURCE |[cTRL TAG | SINK | TAG | SOURCE |CTRL
TAG | sk | Tag ! soumrce |oTRL
ADDER MULTIPLY/DIVIDE
RESULT RESULT
r
—t— COMMON DATA BUS {CDB) N

Figure 4 Data registers and transfer paths, including CDB and reservation stations.

17-May-06

CS210CS703

