
17-May-06 CS210CS703 1

Announcements/Reminders

• Progress report due: Tuesday, May 23

• Final Project due: Friday, June 2

• Classes this week:
– today (only)

• Classes next week:
– Wednesday

– Friday 

Computer Science 703

Advance Computer Architecture
2006 Semester 1

Lecture Notes
17May06

Executing Out-of-order

James Goodman

17-May-06 CS210CS703 3

Sources for this lecture

R.M. Tomasulo, "An efficient algorithm for exploiting 
multiple arithmetic units," IBM Journal, January 
1967, pp. 25-33.

Hennessy/Patterson, Section 3.2-3.3, pp. 181-196.

17-May-06 CS210CS703 4

Out-of-Order (OoO) Execution

• Dataflow: each instruction (procedure, method, code segment) 
depends on certain operands.

– These operands have been assigned values sometime previously.

– If they have been assigned, the instruction can be “issued“

• Instructions can be issued even if previous instructions have not 
been issued.

• Instructions are retired (committed) in-order
– Necessary for handling exceptions

– Memory ordering is easier

• Registers are loaded from main memory, or stored as output of 
instructions

– If a register value is needed before it is available, this is a hazard.



17-May-06 CS210CS703 5

Simple OoO Scheme: Busy Bits

How do we know if a register is available?

• Associate “busy bit” for each register
– Set bit when issuing instruction with register as target

– Clear bit when value is entered into register

– Issue instruction only if busy bit is not set

– Instruction can only be issued if source registers are not busy 
(available)

17-May-06 CS210CS703 6

Handling Hazards

• 3 kinds of hazards:
– RAW (True dependence)

• Handled by busy bits

– WAR (Anti-dependence)
• Not handled by busy bits

– WAW (Output dependence)
• Not handled by busy bits

• Why would this happen?

17-May-06 CS210CS703 7

Handling WAR & WAW Hazards

• What if instruction has been issued with target register 4 and 
another instruction wants to target register 4?

– May be pending source register instructions (WAR) or not (WAW)

– Recognize that the register actually has two values assigned to it!

• Single assignment concept: a “virtual register” is assigned a 
value once

– The virtual register is “live” until it has been read for the last time

– Last time can be detected only when register is written

• Rename registers (reassigning registers through a level of 
indirection):

– Each time register is targeted, if outstanding writes, assign a new 
register and remap the registers

– Issue logic must remember which register 4 to use (trivial if in-
order)

17-May-06 CS210CS703 8



17-May-06 CS210CS703 9




