
Computer Science 703

Advance Computer Architecture
2006 Semester 1

Lecture Notes
12May06

ILP Overview, Branching

James Goodman

12-May-06 CS210CS703 3

Compile-time vs. Runtime

• Basic question: the trade-off between compiler work and
runtime work

– Compilers can do a better job because they can analyze, look into
the future

– Compilers don't have run-time information; must schedule code
conservatively for correctness

• First experiments with out-of-order execution (CDC 6600, IBM
S/360 Model 91) demonstrated the ability to speed up execution
by reordering instructions.

• Cray then demonstrated with Cray-I that, if the timing of all
instructions is known precisely, there is little or no benefit to
out-of-order execution: instructions can be re-ordered at
compile time.

– Cray exploited the fact that his applications were highly structured
programs (oblivious)

– All loads could in theory be scheduled sufficiently far in advance so
that latency didn't matter

12-May-06 CS210CS703 4

Q: What can be done at compile time?

A: Lots, or little.

12-May-06 CS210CS703 5

Three steps for capturing ILP

1. Check dependencies between instructions to
determine which instructions can be grouped
together for parallel execution

2. Assign instructions to the functional units on the
hardware

3. Determine when instruction begins execution

12-May-06 CS210CS703 6

Tasks for ILP Execution

Each of these tasks can be performed at least
partially at compile time

1. Compiler indicates which instructions can be
executed concurrently (or hardware infers it from the
order).

2. Compiler designates a functional unit for each
instruction (or the hardware dynamically assigns a
free one).

3. Compiler indicates exactly which instructions should
be initiated in each cycle (or hardware assures that
resources are/will be free and issues when ready).

12-May-06 CS210CS703 7

Instruction-Level Parallelism (ILP)

Overview of selected aspects

• Branch prediction
– Cost of branches

– Difficulty of prediction

– Techniques for prediction

• Out-of-Order (OoO) execution
– Dataflow

– Hazard detection

– Handling exceptions

– Register renaming

• Speculative execution
– Why speculate?

– Benefits

12-May-06 CS210CS703 8

Reducing Branch Costs

• Hennessy & Patterson, Section 3.4

12-May-06 CS210CS703 9

Branch Prediction

When we decode a branch, we have already fetched future
instructions

• To execute instructions after a branch we must know
– whether it is taken (if it is conditional)

– what the target address is

• In the best case, taken branches are problematic. If the branch
is taken, or if the address has not yet been computed, we cannot
proceed.

– We can issue instructions speculatively

– But which path?

• Issuing on both paths is always expensive and wasteful
– wastes memory bandwidth, issue bandwidth, functional units, et

– may do more harm than good

12-May-06 CS210CS703 10

Ideas for Dealing with Branches

• Make branch decision early (no complex
comparisons)

• Delayed branch: execute instructions regardless of
branch decision

• Predict correct branch decision if possible

• Turn control dependence into data dependence:
conditional instruction (predicated execution)

12-May-06 CS210CS703 11

Importance of Good Prediction

• Predicting wrong path is no better than doing nothing
(possibly worse)
– multiple cycles lost

– getting worse
• If (expression) is not true don't execute the next X instructions

• Goal: predict with high probability but assess
confidence
– Low confidence prediction: be cautious (maybe do nothing)

12-May-06 CS210CS703 12

Predicting Branches statically

• Assume always taken (or not taken)

• Branch backwards vs. branch forwards

• Based on instruction type (loop vs. if-then-else)
– Give compiler the opportunity to tell what it knows

