
Computer Science 703

Advance Computer Architecture
2004 Semester 2

Lecture Notes
10May06

The Importance of Compilers

James Goodman

12-May-06 CS210CS703 4

“Compilers and Computer
Architecture”

William A. Wulf, “Compilers and computer
architecture,” IEEE Computer, July 1981, pp. 41-47.

12-May-06 CS210CS703 5

Compilers & Computer Architecture

Six costs to be considered:

• Designing (writing) compilers (one-time cost)

• Designing the architecture (one-time cost, long life)

• Designing the implementation (one-time cost, short life)

• Manufacturing the hardware (only major cost reduction)

• Executing the compiler

• Executing the compiled program

12-May-06 CS210CS703 6

ISA Desiderata

• Regularity
– If something is dones in one way in one place, it ought to be

done the same way everywhere: “The law of least
astonishment.”

• Orthogonality
– Should be possible to divide machine definition into separate

concerns and define each in isolation

• Composability
– Follows from first two: should be possible to compose

orthogonal, regular notions in arbitrary ways

12-May-06 CS210CS703 7

One vs. all

There should be precisely one way to do
something, or all ways should be possible

12-May-06 CS210CS703 8

Primitives, not Solutions

It is far better to provide good primitives
from which solutions to code generation
problems can be synthesized than to provide
the solutions themselves

12-May-06 CS210CS703 9

RISC vs. CISC

The Reduced Instruction Set Computer proposed by
Patterson & Ditzel

Argued for
– Single-cycle operations

– Load/store design

– Hardwired control

– Relatively few instructions and addressing modes

– Fixed instructions format with consistent definition

– More compile-time effort

– Register Windows

12-May-06 CS210CS703 10

Summary of the Controversy

• What was really happening was the discovery of pipelining and
the recognition that microprogramming was not readily
compatible with pipelining.

• Complexity is not inherently bad. Pipelining is more
complicated to understand, but pays off big.

• Simple instructions are easier to pipeline, but complex
instructions can be "cracked."

• The "Semantic Gap" is the gap between a high-level concept and
assembly language instructions to implement it. It had been
argued that this gap should be closed. The VAX attempted to
close it by implementing single-instruction, microcoded
sequences for procedure call, loop control, and interrupt
handling.

• The instruction set should focus on performance, and not try to
implement language-specific concepts.

12-May-06 CS210CS703 11

“Good” RISC ideas

• Fixed length instructions (or at the least, a small
number of lengths)

• Fixed instruction format with consistent use

• Primary use of Load/Store instructions for accessing
memory

• Hardwired control (except for compatibility
constraints)

• Depending on the compiler to close the semantic gap

12-May-06 CS210CS703 12

“Bad” RISC ideas

• Instructions should be simple

• Small number of instructions

• Small number of addressing modes

• Single-cycle operation

• Multiple register sets: windows

12-May-06 CS210CS703 13

“Good” CISC ideas

• Multiple sets of registers

• Architecture independent of implementation

12-May-06 CS210CS703 14

“Bad” CISC ideas

• "Bad" CISC ideas
– complex, language-dependent instructions

– many, but not all, addressing modes

