Computer Science 703
Advance Computer Architecture

2004 Semester 2

Lecture Notes
10May06
The Importance of Compilers

James Goodman

N

Department

of
Computer Science

12-May-06

“Compilers and Computer
Architecture”

William A. Wulf, “Compilers and computer
architecture,” IEEE Computer, July 1981, pp. 41-47.

CS210CS703

Compilers & Computer Architecture

Six costs to be considered:

» Designing (writing) compilers (one-time cost)

e Designing the architecture (one-time cost, long life)

» Designing the implementation (one-time cost, short life)
» Manufacturing the hardware (only major cost reduction)
» Executing the compiler

« Executing the compiled program

12-May-06 CS210CS703

12-May-06

ISA Desiderata

* Regularity
— If something is dones in one way in one place, it ought to be

done the same way everywhere: “The law of least
astonishment.”

» Orthogonality

— Should be possible to divide machine definition into separate
concerns and define each in isolation

e Composability

— Follows from first two: should be possible to compose
orthogonal, regular notions in arbitrary ways

CS210CS703




One vs. all

There should be precisely one way to do
something, or all ways should be possible

12-May-06 CS210CS703

12-May-06

Primitives, not Solutions

It is far better to provide good primitives
from which solutions to code generation
problems can be synthesized than to provide
the solutions themselves

CS210CS703

RISC vs. CISC

The Reduced Instruction Set Computer proposed by
Patterson & Ditzel

Argued for
— Single-cycle operations
Load/store design
Hardwired control
Relatively few instructions and addressing modes
Fixed instructions format with consistent definition
More compile-time effort
Register Windows

12-May-06 CS210CS703

12-May-06

Summary of the Controversy

What was really happening was the discovery of pipelining and
the recognition that microprogramming was not readily
compatible with pipelining.

Complexity is not inherently bad. Pipelining is more
complicated to understand, but pays off big.

Simple instructions are easier to pipeline, but complex
instructions can be "cracked."

The "Semantic Gap" is the gap between a high-level concept and
assembly language instructions to implement it. It had been
argued that this gap should be closed. The VAX attempted to
close it by implementing single-instruction, microcoded
sequences for procedure call, loop control, and interrupt
handling.

The instruction set should focus on performance, and not try to
implement language-specific concepts.

CS210CS703




“Good" RISC ideas

» Fixed length instructions (or at the least, a small
number of lengths)

e Fixed instruction format with consistent use

e Primary use of Load/Store instructions for accessing
memory

» Hardwired control (except for compatibility
constraints)

e Depending on the compiler to close the semantic gap

12-May-06 CS210CS703

“Bad"” RISC ideas

 Instructions should be simple

e Small number of instructions

e Small number of addressing modes
« Single-cycle operation

« Multiple register sets: windows

12-May-06 CS210CS703

“Good" CISC ideas

e Multiple sets of registers
» Architecture independent of implementation

12-May-06 CS210CS703

“Bad" CISC ideas

» "Bad" CISC ideas
— complex, language-dependent instructions
— many, but not all, addressing modes

12-May-06 CS210CS703




