Computer Science 703
Advance Computer Architecture

2006 Semester 1
Lecture Notes
29Mar06
Distributed Shared Memory

James Goodman

'§

Department
Computer Science

Example of Protocol Choice

« When data is modified and a read miss occurs, two
possibilities:
1. Supply the data as shared, keep a shared copy, and update
memory.
2. Supply the data as modified, invalidate copy, and possibly
update memory.
* Which is better?

— If data is about to be written (migratory sharing), modified
copy should be supplied

— If data is written occasionally, shared by many, shared copy
should be supplied

3/20/2006 cs703

312012006

Protocol Choice Example

« Observation: if modified copy is always supplied,
shared state will never be achieved, even if data is
widely shared!

« Solution: Remember whether data was locally
modified or received modified.

— Locally modified: migratory data—send modified and purge
— Locally unmodified: likely shared—send shared copy

cs703

/2012006

Limits to Snooping

« Buses have poor electrical properties, cannot be
clocked at high speed

* Snooping depends on broadcast, so every cache must
observe every operation intended for memory

« Observations
— Caches don’t have to observe data, just address
— Data take up most of bandwidth

« ldea 1: Allocate single bus for address, use separate
network to transmit data

cs703

Limits to Snooping

* Observation: Different addresses can be sent over
different buses

« ldea 2: Split address space into pieces and build
multiple independent (interleaved) snooping systems

« Observation: all requests must be seen in some order,
but limits of physical bus can be overcome by
utilizing multiple physical buses

« ldea 3: Send all requests to a single point where they
are serialized and broadcast on multiple physical
buses, then collect the results and return them to the
appropriate requestor

3/20/2006 cs703

312012006

Distributed Shared Memory

References

* Hennessy & Patterson, Computer Architecture: A Quantitative
Approach (3rd Ed.), 2003, Morgan Kaufmann, San Francisco, CA,
USA. Section 6.5: Distributed Shared-Memory Architectures, pp.
576-584.

« L.M. Censier & P. Feautrier, “A new solution to coherence
problems in multicache systems,” IEEE Transactions on
Computers 27(12), pp. 1112-1118, Dec. 1978.

« D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J.
Hennessy, M. Horowitz, & M.S. Lam, “The Stanford Dash
multiprocessor,” IEEE Computer, 25(3), pp. 63-79, 1992.

« J.Laudon & D. Lenoski, “The SGI Origin: a ccNUMA highly
scalable server,” Proceedings, 24t Annual International
Symposium on Computer Architecture, Denver, CO, USA, pp. 241-
251, 1997.

cs703

/2012006

Directory-based Multiprocessing

FIGURE 637 & directory Is ndded 1o sach 5ode 0 Implement cachs cohsrence in o

E: enches

i b tha mamery sbiase of B [ron of marsry i th resde. The diectiry may
»

0 et gt by oy oy b art of o cental sl conober thecach which
Inimanods and imemeds. ricatons pass.

Hennessy & Patterson, Computer Architecture: A Quantitative Approach (3rd Ed.), p. 578.

cs703

Basic Protocol

Similar to three states of
MESI protocol

— Don't need to distinguish
between M & E

FIGURE .39 Siats Sraniion diagram for an ineidusd ¢acks block b 8 diectory-

vy e
e b s ey sk gl 8 Pcalbabe 7] et o b el e g B
arta mana o b

Hennessy & Patterson, Computer Architecture: A Quantitative Approach (3rd Ed.), p. 581.

3/20/2006 cs703

3/20/2006

Basic Messages

Mrssage
Mewage ypr Soree Dobinathon oombewhs Fasclion of ihh mocage
Read e Loval st Home FoA Provesor Pl a pad o al adiness A
direcvory reguest daes nd make P 5 resd shaser.
Wiie mixs Localcache Home FoA Proccwor P s write mbs ot sddecss A —
dimvctory secgurd ata arxd make P it exchoive e
e Home ermctn cache A Tivalkdate 3 sliared copry of data ol e A
directory
Fexch Homse Remote cache A Fetch ehe block at sckiress A i seod 1w ity
diseitery tome decctory. changr the siate of A in the
remmke cache W akared
Tekcinvalatite Home A Tolch Ehe Bk al address A aind seaed 1110 s
dinectory Bt daechory: dnvalidale e bk in B
cact.
Daa valuc eply Home Local cache o Roetum a dats vakse from the Bose mcrsory.
directory
[F PR — Homs A D Wil back 2 data valee fer addima A
cac dircviory
MGURE 438 The et I mairtain coby shamn with the scurce and
the contents (whers numbss). and Dudata con-
oritnh, wnd Bes RuncBon of T ot by 3
L 3
Dt e g Dk S0 14 Do PRS<ne: Wik 0 Bhck o ored st [
mamory. and ako In reply 0 Kch of fetchinwabaate Mmessagea 110 Tes homs. WG bad the dat wiss whenove! fa
ek gl " i

Heck i ahmays medatie in P bome memory
Hennessy & Patterson, Computer Architecture: A Quantitative Approach (3rd Ed.), p. 580,

cs703

/2012006

Cache Line is Uncached

When a block is in the uncached state the copy in
memory is the current value, so the only possible
requests for that block are

* Read miss—The requesting processor is sent the
requested data from memory and the requestor is
made the only sharing node. The state of the block is
made shared.

« Write miss—The requesting processor is sent the
value and becomes the Sharing node. The block is
made exclusive to indicate that the only valid copy is
cached. Sharers indicates the identity of the owner.

Hennessy & Patterson, Computer Architecture: A Quantitative Approach (3rd Ed.), p. 583

cs703

Cache Line is Shared

When the block is in the shared state the memory value
is up-to-date, so the same two requests can occur:

* Read miss—The requesting processor is sent the
requested data from memory and the requesting
processor is added to the sharing set.

« Write miss—The requesting processor is sent the
value. All processors in the set Sharers are sent
invalidate messages, and the Sharers set is to contain
the identity of the requesting processor. The state of
the block is made exclusive.

Hennessy & Patterson, Computer Architecture: A Quantitative Approach (3rd Ed.), p. 583.

3/20/2006 cs703

312012006

Cache Line is Exclusive

When the block is in the exclusive state the current value of the block is held in the

cache of the processor identified by the set sharers (the owner), so there are
three possible directory requests:

* Read miss—The owner processor is sent a data fetch message, which causes the

state of the block in the owner’s cache to transition to shared and causes the
owner to send the data to the directory, where it is written to memory and sent
back to the requesting processor. The identity of the requesting processor is
added to the set sharers, which still contains the identity of the processor that
was the owner (since it still has a readable copy). Note data could also be sent
as modified.

« Data write-back—The owner processor is replacing the block and therefore
must write it back. This write-back makes the memory copy up to date (the
home directory essentially becomes the owner), the block is now uncached, and
the sharer set is empty.

* Write miss—The block has a new owner. A message is sent to the old owner
causing the cache to invalidate the block and send the value to the directory,
from which it is sent to the requesting processor, which becomes the new owner.
Sharers is set to the identity of the new owner, and the state of the block remains
exclusive.

Hennessy & Patterson, Computer Architecture: A Quantitative Approach (3rd Ed.), p. 583

cs703 12

/2012006

How to Maintain a Sharing List

« A bit vector requires one bit for each processor that
might share
— Is this scalable?
« Alist of variable size—each element stores a
processor number.
— Store a small maximum number, then broadcast
— Allocate space dynamically and build linked list

cs703

When is a Write Completed?

When all valid copies have been made unreadable

¢ Invalidations may be sent serially

« Generally requires acknowledgement to be sure

« Acknowledgements sent to directory? Requestor?

3/20/2006 cs703

312012006

Races

Message requests can be delayed or delivered out of
order

* What happens if a read request arrives while another
cache holding a modified cache line is writing it back
to memory?

* What happens if two processors attempt to write the
same cache line at the same time?

cs703 15

/2012006

Other Possibilities

* Observation: number of cached lines is limited by
total size of (combined) caches
— Size of all combined sharing lists is small
— Can “cache” sharing lists
« List of sharers can be distributed among sharing
nodes
— If cache has a shared copy, it must also supply a pointer to
another copy
— Adistributed, linked-list is maintained
— Directory need only keep track of head of list.
— Implemented in Scalable Coherent Interface (SCI)

cs703

Comparing Snooping and DSM

« Snooping is inherently non-scalable
— Serial requirement limits growth as more processors are
added
« DSM can scale (but note problems with sharing list)

— But asimple cache miss results in at least 3 serial
transmissions

— Write operations can be very slow

3/20/2006 cs703

312012006

Hybrid Models

* DASH used DSM to extend snooping clusters
« Point-to-point links can be much faster
— Use point-to-point links to broadcast like snooping
— Use protocol messages to
 assure proper serialization of operations
« detect and resolve conflicts

cs703 18

