
Computer Science 703
Advance Computer Architecture

2006 Semester 1

Lecture Notes
29Mar06

Distributed Shared Memory

James Goodman

3/29/2006 CS703 2

Example of Protocol Choice

• When data is modified and a read miss occurs, two
possibilities:
1. Supply the data as shared, keep a shared copy, and update

memory.

2. Supply the data as modified, invalidate copy, and possibly
update memory.

• Which is better?
– If data is about to be written (migratory sharing), modified

copy should be supplied

– If data is written occasionally, shared by many, shared copy
should be supplied

3/29/2006 CS703 3

Protocol Choice Example

• Observation: if modified copy is always supplied,
shared state will never be achieved, even if data is
widely shared!

• Solution: Remember whether data was locally
modified or received modified.
– Locally modified: migratory data—send modified and purge

– Locally unmodified: likely shared—send shared copy

3/29/2006 CS703 4

Limits to Snooping

• Buses have poor electrical properties, cannot be
clocked at high speed

• Snooping depends on broadcast, so every cache must
observe every operation intended for memory

• Observations
– Caches don’t have to observe data, just address

– Data take up most of bandwidth

• Idea 1: Allocate single bus for address, use separate
network to transmit data

3/29/2006 CS703 5

Limits to Snooping

• Observation: Different addresses can be sent over
different buses

• Idea 2: Split address space into pieces and build
multiple independent (interleaved) snooping systems

• Observation: all requests must be seen in some order,
but limits of physical bus can be overcome by
utilizing multiple physical buses

• Idea 3: Send all requests to a single point where they
are serialized and broadcast on multiple physical
buses, then collect the results and return them to the
appropriate requestor

3/29/2006 CS703 6

Distributed Shared Memory

References
• Hennessy & Patterson, Computer Architecture: A Quantitative

Approach (3rd Ed.), 2003, Morgan Kaufmann, San Francisco, CA,
USA. Section 6.5: Distributed Shared-Memory Architectures, pp.
576-584.

• L.M. Censier & P. Feautrier, “A new solution to coherence
problems in multicache systems,” IEEE Transactions on
Computers 27(12), pp. 1112-1118, Dec. 1978.

• D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J.
Hennessy, M. Horowitz, & M.S. Lam, “The Stanford Dash
multiprocessor,” IEEE Computer, 25(3), pp. 63-79, 1992.

• J. Laudon & D. Lenoski, “The SGI Origin: a ccNUMA highly
scalable server,” Proceedings, 24th Annual International
Symposium on Computer Architecture, Denver, CO, USA, pp. 241-
251, 1997.

3/29/2006 CS703 7

Directory-based Multiprocessing

Hennessy & Patterson, Computer Architecture: A Quantitative Approach (3rd Ed.), p. 578.

3/29/2006 CS703 8

Basic Protocol

Similar to three states of
MESI protocol

– Don’t need to distinguish
between M & E

Hennessy & Patterson, Computer Architecture: A Quantitative Approach (3rd Ed.), p. 581.

3/29/2006 CS703 9

Basic Messages

Hennessy & Patterson, Computer Architecture: A Quantitative Approach (3rd Ed.), p. 580.

3/29/2006 CS703 10

Cache Line is Uncached

When a block is in the uncached state the copy in
memory is the current value, so the only possible
requests for that block are

• Read miss—The requesting processor is sent the
requested data from memory and the requestor is
made the only sharing node. The state of the block is
made shared.

• Write miss—The requesting processor is sent the
value and becomes the Sharing node. The block is
made exclusive to indicate that the only valid copy is
cached. Sharers indicates the identity of the owner.

Hennessy & Patterson, Computer Architecture: A Quantitative Approach (3rd Ed.), p. 583.

3/29/2006 CS703 11

Cache Line is Shared

When the block is in the shared state the memory value
is up-to-date, so the same two requests can occur:

• Read miss—The requesting processor is sent the
requested data from memory and the requesting
processor is added to the sharing set.

• Write miss—The requesting processor is sent the
value. All processors in the set Sharers are sent
invalidate messages, and the Sharers set is to contain
the identity of the requesting processor. The state of
the block is made exclusive.

Hennessy & Patterson, Computer Architecture: A Quantitative Approach (3rd Ed.), p. 583.

3/29/2006 CS703 12

Cache Line is Exclusive
When the block is in the exclusive state the current value of the block is held in the

cache of the processor identified by the set sharers (the owner), so there are
three possible directory requests:

• Read miss—The owner processor is sent a data fetch message, which causes the
state of the block in the owner’s cache to transition to shared and causes the
owner to send the data to the directory, where it is written to memory and sent
back to the requesting processor. The identity of the requesting processor is
added to the set sharers, which still contains the identity of the processor that
was the owner (since it still has a readable copy). Note data could also be sent
as modified.

• Data write-back—The owner processor is replacing the block and therefore
must write it back. This write-back makes the memory copy up to date (the
home directory essentially becomes the owner), the block is now uncached, and
the sharer set is empty.

• Write miss—The block has a new owner. A message is sent to the old owner
causing the cache to invalidate the block and send the value to the directory,
from which it is sent to the requesting processor, which becomes the new owner.
Sharers is set to the identity of the new owner, and the state of the block remains
exclusive.

Hennessy & Patterson, Computer Architecture: A Quantitative Approach (3rd Ed.), p. 583.

3/29/2006 CS703 13

How to Maintain a Sharing List

• A bit vector requires one bit for each processor that
might share
– Is this scalable?

• A list of variable size—each element stores a
processor number.
– Store a small maximum number, then broadcast

– Allocate space dynamically and build linked list

3/29/2006 CS703 14

When is a Write Completed?

When all valid copies have been made unreadable

• Invalidations may be sent serially

• Generally requires acknowledgement to be sure

• Acknowledgements sent to directory? Requestor?

3/29/2006 CS703 15

Races

Message requests can be delayed or delivered out of
order

• What happens if a read request arrives while another
cache holding a modified cache line is writing it back
to memory?

• What happens if two processors attempt to write the
same cache line at the same time?

3/29/2006 CS703 16

Other Possibilities

• Observation: number of cached lines is limited by
total size of (combined) caches
– Size of all combined sharing lists is small

– Can “cache” sharing lists

• List of sharers can be distributed among sharing
nodes
– If cache has a shared copy, it must also supply a pointer to

another copy

– A distributed, linked-list is maintained

– Directory need only keep track of head of list.

– Implemented in Scalable Coherent Interface (SCI)

3/29/2006 CS703 17

Comparing Snooping and DSM

• Snooping is inherently non-scalable
– Serial requirement limits growth as more processors are

added

• DSM can scale (but note problems with sharing list)
– But a simple cache miss results in at least 3 serial

transmissions

– Write operations can be very slow

3/29/2006 CS703 18

Hybrid Models

• DASH used DSM to extend snooping clusters

• Point-to-point links can be much faster
– Use point-to-point links to broadcast like snooping

– Use protocol messages to
• assure proper serialization of operations

• detect and resolve conflicts

