
Understanding EPIC Architectures and Implementations

Mark Smotherman
Dept. of Computer Science

Clemson University
Clemson, SC, 29634

mark@cs.clemson.edu

Abstract- HP and Intel have recently introduced a new style
of instruction set architecture called EPIC (Explicitly
Parallel Instruction Computing), and a specific architecture
called the IPF (Itanium Processor Family). This paper seeks
to illustrate the differences between EPIC architectures and
former styles of instruction set architectures such as
superscalar and VLIW. Several aspects of EPIC
architectures have already appeared in computer designs,
and these precedents are noted. Opportunities for traditional
instruction sets to take advantage of EPIC-like
implementations are also examined.

1. Introduction

Instruction level parallelism (ILP) is the initiation and
execution within a single processor of multiple machine
instructions in parallel. ILP is becoming an increasingly
more important factor in computer performance. It was first
used in the supercomputers of the 1960s, such as the CDC
6600 [34], IBM S/360 M91 [36], and IBM ACS [31], but
such efforts were for the most part dropped in the 1970s due
to the an apparent lack of parallelism in programs generated
by then-existing compilers [35] and due to the less attractive
performance / implementation-complexity tradeoffs
necessary for ILP as compared to simpler cache-based
processors, such as the IBM S/360 M85, and as compared to
multiprocessor systems.
 By the 1980s and 1990s, instruction level parallelism
once again became an important approach to computer
performance. Alan Charlesworth, Josh Fisher, and Bob Rau
were leaders in experimenting with VLIW (very long
instruction word) architectures, in which sophisticated
compilers uncovered independent instructions within a
program and statically scheduled these as multiple
concurrent operations in a single wide instruction word.
Charlesworth led efforts at FPS (Floating Point Systems) for
attached array processors programmed in VLIW style [4].

 Fisher led efforts at Yale on a VLIW machine called
the ELI-512 and later helped found Multiflow, which
produced the Multiflow Trace line of computers [6]. Rau led
efforts at TRW on the Polycyclic Processor and later helped
found Cydrome, which produced the Cydra-5 computer
[25]. Other early VLIW efforts include iWarp and CHoPP.
 In contrast to these VLIW-based efforts, other
companies were exploring techniques similar to those used
in the 1960s where extra hardware would dynamically
uncover and schedule independent operations. This
approach was called “superscalar” (the term was coined by
Tilak Agerwala and John Cocke of IBM) to distinguish it
from both traditional scalar pipelined computers and vector
supercomputers. In 1989, Intel introduced the first
superscalar microprocessor, the i960CA [21], and IBM
introduced the first superscalar workstation, the RS/6000
[33]. In 1993 Intel introduced the superscalar Pentium, and
since the mid-1990s the AMD or Intel processor in your
desktop or laptop has relied on both clock rate and the
superscalar approach for performance.
 After a few years of operation, Cydrome and Multiflow
both closed their doors after failing to establish a large
enough market presence in the crowded minisupercomputer
market of the 1980s. HP hired Bob Rau and Mike
Schlansker of Cydrome, and they began the FAST (Fine-
grained Architecture and Software Technologies) research
project at HP in 1989; this work later developed into HP’s
PlayDoh architecture. In 1990 Bill Worley at HP started the
PA-Wide Word project (PA-WW, also known as SWS,
SuperWorkStation). Josh Fisher, also hired by HP, made
contributions to these projects [28].
 In 1992, Worley recommended that HP seek a
manufacturing partner for PA-WW, and in December 1993
HP approached Intel [8,28]. Cooperation between the two
companies was announced in June 1994, and the companies
made a joint presentation of their plans at the
Microprocessor Forum in October 1997. The term EPIC
(Explicitly Parallel Instruction Computing) was coined to
describe the design philosophy and architecture style
envisioned by HP, and the specific jointly designed
instruction set architecture was named IA-64. More
recently, Intel has preferred to use IPF (Itanium Processor
Family) as the name of the instruction set architecture.
Itanium is the name of the first implementation (it was
previously called by the project codename Merced) [29],

and currently Itanium-based systems can be purchased from
HP, Dell, and Compaq, with many other system
manufacturers committed to selling Itanium-based systems.

2. Three Major Tasks for ILP Execution

Processing instructions in parallel requires three major
tasks: (1) checking dependencies between instructions to
determine which instructions can be grouped together for
parallel execution; (2) assigning instructions to the
functional units on the hardware; and, (3) determining when
instructions are initiated (i.e., start execution) [27]. (Note:
This departs from the earlier Rau and Fisher paper [24]; the
three tasks identified there are: determine dependencies,
determine independencies, and bind resources.) Four major
classes of ILP architectures can be differentiated by whether
these tasks are performed by the hardware or the compiler.

Table 1. Four Major Categories of ILP Architectures.

 Table 1 identifies the four classes of ILP architectures
that result from performing the three tasks either in
hardware or the compiler. A superscalar processor is one
with a traditional, sequential instruction set in which the
semantics (i.e., meaning) of a program is based on a
sequential machine model. That is, a program’s results
should be the same as if the instructions were individually
processed on a sequential machine where one instruction
must be completed before the next one is examined. A
superscalar processor includes the necessary hardware to
speed up program execution by fetching, decoding, issuing,
executing, and completing multiple instructions each cycle,
but yet in such a way that the meaning of the program is
preserved. The decoding and issuing of multiple
instructions requires dependency-checking hardware for
instruction grouping, decoding and routing hardware for
assignment of instructions to function units, and register
scoreboard hardware for timing the initiation of instruction
execution. The dependency-checking hardware does not
scale well (O(n²)) and has been seen as a limit to the width
of multiple instruction issue in superscalars.
 At the opposite extreme is VLIW. The three
responsibilities for ILP are each assigned to the compiler.
The implementation of a VLIW computer uses long

instruction words that provide a separate operation for each
function unit on each cycle (similar to horizontal
microprogramming). The width of the instruction word
depends on the number of function units; e.g., Multiflow
produced machines with long instruction words up to 28
operations wide. Groups of independent operations are
placed together into a single VLIW, and the operations are
assigned to function units by position in the given fields
within the long instruction word (“slotting”). The initiation
timing is bound by the instruction word in which an
operation appears; all operations in a VLIW start execution
in parallel.
 A sequence of long instruction words thus defines the
plan of execution for a particular program on a particular
implementation, the plan being specified by the sequence of
VLIW instructions cycle by cycle [28]. It is the
responsibility of the compiler to determine which operations
can be grouped together and where they must be placed in
this sequence of long instruction words. However, this also
represents the Achilles heel of VLIW architectures: the
problem of compatibility between implementations. Code
compiled for one implementation with a certain set of
function units with certain latencies will not execute
correctly on a different implementation with a different set
of function units and/or different latencies (although there
have been studies directed at providing compatibility, e.g.,
see [7]). In contrast, compatibility is not a problem with
superscalars, and this is a major reason for their popularity.
 Table 1 suggests intermediate architectures between
superscalars and VLIWs with varying amounts of compiler
responsibility (see also [27]). If the compiler determines the
grouping of independent instructions and communicates this
via explicit information in the instruction set, we have what
Fisher and Rau termed an “independence architecture” [24]
or what is now known as the EPIC architecture style [28].
EPIC retains compatibility across different implementations
as do superscalars but does not require the dependency
checking hardware of superscalars. In this manner, EPIC
can be said to combine the best of both superscalar and
VLIW architectures. The first EPIC architecture appears to
be Burton Smith’s Horizon (in 1988), which provided an
explicit lookahead count field of the distance to the next
dependent instruction [19], although Lee Higbie sketched an
EPIC-like approach some ten years earlier (in 1978) in
which concurrency control bits are added to the instruction
format and set by the compiler or programmer [13].
 Another category of ILP architecture is one in which
the grouping and function unit assignment is done by the
compiler, but the initiation timing of the operations is done
by hardware scheduling. This style is called dynamic
VLIW [26], and it has some advantage over traditional
VLIW since it can respond to events at run time that cannot
be handled by the compiler at compile time. For example,
early VLIW designs did not include data caches, since a
cache miss would disrupt the sequence of long instruction
words by invalidating the compiler’s assumption of latency

 Grouping Fn unit asgn Initiation

Superscalar Hardware Hardware Hardware

EPIC Compiler Hardware Hardware

Dynamic
VLIW

Compiler Compiler Hardware

VLIW Compiler Compiler Compiler

for load instructions. Thus in a simple dynamic VLIW
approach, we can add load-miss interlock to otherwise bare
hardware and stall the entire machine on a data cache miss.
 Along these lines, Rau paid special attention to
memory latency in the Cydra 5 design by use of a “memory
collating buffer” which handled the early, and possibly out-
of-order, arrival of values loaded from memory so as to
preserve the static memory access latency assumptions made
by the compiler; late arrivals delayed the entire machine
[25,26]. (See also the discussion of LEQ semantics in [27].)
 A more complicated architecture handles run-time
events not by merely delaying the initiation of the next
group, but by adding what is essentially dynamic scheduling
hardware for the individual operations within each VLIW.
(Although called dynamic VLIW by Rudd [26] and others,
because of the complexity of the hardware this approach
might actually be considered as a fifth category.)
Instruction execution is split into two (or three) phases, with
the first phase statically scheduled to read the registers,
compute a result, and write the result to a temporary results
buffer. The second phase will move results from the buffer
into the register file. (Note the extra hardware and
buffering, similar to what is found in a superscalar
processor.) Rudd’s simulations suggest that there is little
performance to be gained from introducing this level of
complexity [26].
 Figure 1 is a revision of Figure 2 from Rau and Fisher
[24] using the responsibilities identified above, and shows
the three responsibilities as performed by the compiler or by
the hardware. The horizontal lines demonstrate the four
levels at which information about the program can be given
to the hardware. At the top level, a traditional instruction set
is used and the hardware must perform the three tasks.

There is no information in the instruction set to convey
independent instruction groups, function unit assignment, or
instruction timing.
 The dashed lines within the compiler box indicate that
for best performance, the compiler may go ahead and do all
three tasks as required for best performance on a particular
implementation, but supply the instructions in a less
semantically-rich instruction set. In such a case, the
hardware has to rediscover the independent groups among
the instructions that the compiler has already arranged
within the instruction stream, and it has to repeat the
function unit assignment and instruction initiation timing.
 As an example of the benefit of scheduling even for a
superscalar processor, consider the HP PA-8000. It will run
code generated for any PA-RISC 1.1 or 2.0 processor, but
Holler reports that SPECint95 benchmarks ran 38% faster
and SPECfp95 benchmarks ran 53% faster when specifically
compiled for the PA-8000 as compared to running those
same benchmarks but as compiled for the previous
generation PA-7200 [14].
 The other levels in Figure 1 at which programs can be
conveyed to the hardware add more information to the
instruction set and thus require less hardware. For example,
let us assume a machine with two load/store units, an integer
ALU, and a branch unit, with latencies 2, 2, 1, 2,
respectively. If we wish to perform a simple addition, C =
A + B, the code given to a superscalar would be something
like this:

 Load R1,A
 Load R2,B
 Add R3,R1,R2
 Store C,R3

Instruction grouping

VLIW
Initiation timing Initiation timing

Instruction grouping

compiler

superscalar

EPIC

hardware

Dynamic VLIW
Fn. unit assignment Fn. unit assignment

Code generation

Figure 1. Graphical Depiction of the Three Major Tasks.

 The hardware has to determine that the loads are
independent and can be grouped together, while the add is
dependent on both and must be in a separate group.
Likewise the store is dependent on the add and must be
placed in a third group. The hardware will assign the
instructions to the different function units based on the
operation codes, and the register scoreboarding hardware
will govern the initiation of the add and store. (Note:
because of special forwarding paths or cascaded function
units, some superscalar processors like the IBM RS/6000
and the TI SuperSPARC can start the execution of certain
pairs of dependent instructions at the same time.)
 If we look at the corresponding VLIW program, we see
that the compiler has completely planned out the grouping,
function unit assignment, and initiation timing. This is the
complete plan of execution and relies on a particular
implementation and on particular latencies. Thus, this
VLIW program would be invalid for an implementation
with only one load/store unit, whereas the traditional code
for a superscalar processor as given above would run
without any changes being necessary.

 ld/st unit 0 ld/st unit 1 integer alu branch unit

Load R1,A Load R2,B nop nop
nop nop nop nop
nop nop Add R3,R1,R2 nop
Store C,R3 nop nop nop

 The VLIW program also illustrates a difficulty of low
utilization of the long instruction word fields. Of the 16
total fields in the four long instruction words, 12 are empty
and have a no-operation placed in them. Multiflow
recognized this inefficiency and provided a compression
scheme, in which VLIW programs existed on disk and in
main memory in an encoded format [6]. Long instruction
words from the program were expanded to the traditional
fixed-length VLIW format when they were fetched into the
instruction cache. Several VLIW processors now use
similar compression schemes, including the Lucent
StarCore, Philips TriMedia, Sun MAJC, and TI C6x
processors.
 If we add register scoreboarding to handle dynamic
events like cache misses, either on a long-instruction-word-
wide basis or on a function-unit-by-function-unit basis, we
move to a dynamic VLIW architecture. Note that in this
case we can omit the second long instruction word above,
since it only has nops. This further improves the utilization
of instruction memory. Two computers that can be placed
in this category appeared in the late 1980s: the Intel i860
microprocessor [18] and the Apollo Domain DN10000
workstation. In each computer, an integer pipeline can run
in parallel with a floating-point pipeline. The instruction
formats in these computers include a bit to specify an
integer and a floating-point instruction pair that can be
initiated in parallel (they are slotted in a fixed order in
memory to correspond to the function unit assignment).

 The EPIC style of instruction set for this example must
have grouping information, such as a count of independent
instructions. For example, if we add a Horizon-like
lookahead count (given in parentheses for all but the last
instruction), we obtain:

(2) Load R1,A
(1) Load R2,B
(1) Add R3,R1,R2
(.) Store C,R3

The hardware can use the lookahead count to group the two
loads together. Note that hardware function unit assignment
and hardware instruction initiation timing are still required.
 An analogy to these distinctions that might be helpful
in presenting these ideas in the classroom is the example of
designing and building a simple wooden stool. The design
represents a program, and the construction and assembly of
the stool (e.g., top, two legs, cross-brace) represent the
operations. The designer will send the plan to the
woodshop, which represents the processor. If there are
several machines and workers in the woodshop (i.e.,
multiple function units), a shop foreman would set up a
complete plan of building the stool. This plan would
determine which parts could be constructed or assembled in
parallel, which machines or tools would be used, and when
construction or assembly activities would start. E.g.,

 table saw band saw hand saw hammer

 To correspond to the superscalar approach, the designer
walks to the wood shop and hands the design to the shop
foreman, who must then do the planning there in the shop as
construction proceeds. To correspond to the VLIW
approach, the designer and the shop foreman are the same
person; the design includes the detailed plan of building as
illustrated above. This plan is necessarily shop-specific,
since some shops might not have a band saw. Instead, in
this second shop a hand saw must be used, and the time for
cutting the legs will lengthen, thereby forcing the nailing to
start later. The plan is thus not compatible across wood
shops. (A dynamic VLIW analog might be where the time to
complete hand sawing is unknown in the second shop and
nailing activities start only when sawing on certain parts is
completed.)
 To complete the analogy for the EPIC approach, the
dependencies can be given in the design. For instance, the
cutting of the brace, top, and legs are all independent; but,
nailing cannot start until at least two parts are completed.
The design and independence information make no

Cut
brace

Cut leg 0

Cut top Cut leg 1 Nail leg 0 to brace
 Nail leg 1 to brace
 Nail legs to top

assumptions about what particular shops tools will be
present (i.e., at least one cutting-type tool is assumed, but
the specific type is not necessarily set down in the plan), nor
assumptions about the length of time required to construct or
build. The independence information assists the foreman in
the shop in setting up an efficient plan of building.

3. Characteristics of EPIC Architectures
and Historical Precedents

3.1. Explicit Parallelism

As described above, explicit information on independent
instructions in the program is a major distinguishing feature
of EPIC architectures. In the IPF architecture, three 41-bit
instructions are packaged together into a 128-bit “bundle”,
which is the unit of instruction fetch. A 5-bit template
identifies the instruction type and any architectural stops
between groups of instructions. In little-endian format, a
bundle appears as:

Instruction 2 Instruction 1 Instruction 0 Template
127 86 45 4 0

 Bundles can have zero, one, or at most two stops.
Instruction groups (i.e., sets of independent instructions)
thus can span instruction bundles. Nops may be needed to
pad out the bundles in some cases. The instruction type
(one of six types: integer alu, non-alu integer, memory,
floating-point, branch, and extended) can help in function
unit assignment and routing during decoding, but this
information provides type information rather than specific
function unit identification. Thus, it is not in the dynamic or
traditional VLIW category. (Note that not all combinations
of instruction type and stop boundaries are available --
which would have required an 11-bit template to encode
6³*2³ cases.) S. Vassiliadis at IBM proposed a similar
instruction bundling scheme, called SCISM, in the early
1990s [37].
 Schlansker and Rau list five other attributes of EPIC
architectures beyond instruction grouping [28]. The first
two deal with eliminating and/or speeding up branching, the
third with cache locality management, and the final two with
starting load instructions as early as possible.

3.2. Predicated execution

To avoid conditional branches, each instruction can be
conditioned or predicated on a true/false value in a predicate
register. Only those instructions with a true predicate are
allowed to write into their destination registers. Thus, if-
then-else sequences can be compiled without branches
(called “if conversion”). Instructions from each side of the
decision are predicated with one of two inversely-related
predicate registers and can be executed in parallel. (If
predicate values are available in time, an implementation

can delete instructions with false predicates in the decode or
issue stages.)
 IPF provides 64 predicate registers. Each register can
hold one bit (true or false) and is set by compare
instructions. In the normal case, a compare instruction
writes to two predicate registers, one with the result of the
compare and one with the inverted result, so that if-
converted code can make use of this register pair.
 The idea of predication dates back to at least 1952,
when the IBM 604 plugboard-controlled computer included
a suppression bit in each instruction format and
programmers could provide if-converted segments of code
[2]. Predication has been an important part of several
instruction sets, including Electrologica X8 (1965), IBM
ACS (1967), ARM (1986), Cydra-5 (1988), and Multiflow
(1990) [2,24]. Other instruction sets without extra bits to
spare in instruction formats have added a conditional move
instruction, which provides for “partial predication”.

3.3. Unbundled branches

Conditional branches are composed of three separate
actions: (1) making a decision to branch or not; (2)
providing the target address; and, (3) actual change of the
PC. By separating these actions, multiple comparisons can
be made in parallel, earlier in the instruction stream.
Moreover, multiple targets can be specified, and instructions
can be prefetched from those paths. Thus, the change of the
PC can be delayed until an explicit branch instruction or set
of branch instructions, having the effect of a multiway,
prioritized branch.
 The IPF architecture uses the predicate registers to
record the results of comparisons and includes eight branch
registers for use in prefetching. Branch instructions in IPF
are made conditional by use of a predicate and can specify a
branch register (action 3) or relative address (actions 2+3).
 The decomposition of branches into separate actions is
an idea that has been independently rediscovered several
times, but the decomposition into actions 1+2 as a branch on
condition instruction and action 3 as a separate exit
instruction that chose among the currently active targets was
part of the IBM ACS-1 instruction set in the mid-1960s [31].

3.4. Compiler control of the memory hierarchy

EPIC architectures should be able to provide hints to the
hardware about the probable latency of load operation (i.e.,
where in the memory hierarchy a data value will be found)
and the probable locality of a loaded or stored data item
(i.e., where in the memory hierarchy to place a data value).
These are hints rather than exact operation timings, so
register interlocks or scoreboarding techniques are still used.
 IPF provides hints as given in Table 2 and also
provides prefetching stride information by use of base-
update addressing mode. Because of low temporal locality
of vector operands, data cache bypass was a feature of some

vector processors. The Intel i860 was perhaps the first
processor to offer two types of scalar load instructions, one
of which would bypass cache [18]. In 1994, the HP 7200
included temporal locality hints as part of the normal
load/store instructions [20]. Several instruction set
architectures since that time have included locality hints,
typically as part of software prefetch instructions (e.g.,
Alpha, MIPS, SPARC v.9).

hint Store Load Fetch

Temporal locality / L1 Yes Yes Yes

No temporal locality / L1 Yes Yes

No temporal locality / L2 Yes

No temporal locality / all
levels

Yes Yes Yes

Table 2. Cache Hints in IPF

3.5. Control speculation

To start loads (or other potentially-long-running
instructions) early, they must often be moved up beyond a
branch. The problem with this approach occurs when the
load (or other instruction) generates an exception. If the
branch is taken, the load (or other instruction) would not
have been executed in the original program and thus the
exception should not be seen. To allow this type of code
scheduling, an EPIC architecture should provide a
speculative form of load (or other long-running instruction)
and tagged operands. When the speculative instruction
causes an exception, the exception is deferred by tagging the
result with the required information. The exception is
handled only when a nonspeculative instruction reads the
tagged operand (in fact, multiple instructions may use the
tagged operand in the meantime and merely pass the tag on).
Thus, if the branch over which the instruction is moved is
not taken, no exception occurs, thereby following the
semantics of the original program.
 IPF provides speculative load and speculation check
instructions. Integer speculative loads set a NaT (Not a
Thing) bit associated with the integer destination register
when an exception is deferred. Floating-point speculative
loads place a NaTVal (Not a Thing Value) code in the
floating-point destination register when an exception is
deferred. These bits and encoded values propagate through
other instructions until a speculation check instruction is
executed. At that point a NaT bit or NaTVal special value
will raise the exception.
 The need to start loads early can be seen back in
Konrad Zuse’s Z4 computer constructed in Germany during
the Second World War. The instruction stream was read
two instructions in advance; and, if a load was encountered,
it was started early [2]. The IBM Stretch (1961) used a
separate index processor to pre-execute index-related

instructions in the instruction stream and start loads early
[3]. Moving instructions across branches was a vital aspect
of Fisher’s trace scheduling [24], and Ebcioglu discussed
conditional execution of instructions based on branches in
1987 [9]. Multiflow introduced special non-faulting loads
and used IEEE floating-point NaN propagation rules for
supporting control speculation [6]. Deferring exceptions
from speculative loads appears to have been first presented
by Smith, Lam, and Horowitz in 1990 [30].

3.6. Data speculation

To be able to rearrange load and store instructions, the
compiler must know the memory addresses to which the
instructions refer. Because of aliasing, compilers are not
always able to do this at compile time. In the absence of
exact alias analysis, most compilers must settle for safe but
slower (i.e., unreordered) code. EPIC architectures provide
speculative loads that can be used when an alias situation is
unlikely but yet still possible. A speculative load is moved
earlier in the schedule to start the load as early as possible;
and, at the place where the loaded value is needed, a data-
verifying load is used instead. If no aliasing has occurred,
then the value retrieved by the speculative load is used by
the data-verifying load instruction. Otherwise, the data-
verifying load reexecutes the load to obtain the new value.
 IPF provides advanced load and advanced load check
instructions that use an Advanced Load Address Table
(ALAT) to detect stores that invalidate advanced load
values.
 The IBM Stretch (1961) started loads early, as
mentioned above. The lookahead unit checked the memory
address of a store instruction against subsequent loads and
on a match cancelled the load and forwarded the store value
to the buffer reserved for the loaded value (only one
outstanding store was allowed at a time) [3]. The CDC
6600 (1964) memory stunt box performed similar actions
[34].

4. Alternate Translation Times

To this point, we have assumed a standard compilation
model, which includes steps such as compilation, linking,
loading, and execution. We have assumed that either the
compiler or the hardware does the three major tasks of
managing ILP. However, alternatives exist. For example,
even within the compilation model, nontraditional points of
translation and optimization have been proposed, such as
reallocating registers and/or repositioning procedures at link
time for better performance. Additionally, other
nontraditional points are available during execution, such as
software-based translation at page-fault time [7], hardware-
based translation at icache-miss time [1,22], hardware-based
capture and caching of parallel issue [11,23], or various
dynamic optimizations during execution (e.g., software

based [10] or hardware-based [5]). At any of these
additional points, translation from a traditional instruction
set into an EPIC or VLIW internal format is possible.
Indeed, a typical compiler optimization step of if-conversion
has been proposed as a run-time action using either software
[12] or hardware [17]. Transmeta provides a run-time
software approach that translates x86 instructions into an
internal VLIW format, which they call “code-morphing”
and which includes data and control speculation [15,16].
 An early example of the run-time hardware approach
is the National Semiconductor Swordfish processor (1990).
Instructions from a traditional instruction set were examined
at instruction cache miss by a hardware predecoder. The
predecoder checked the instruction types and stored pairs of
instructions with a grouping bit for parallel issue in the
instruction cache [32]. Register scoreboarding was still
performed at decode time, so this scheme looks like a
traditional superscalar processor from the outside but is
actually a dynamic-VLIW processor internally. Figure 2
illustrates this approach.

 5. Conclusions

EPIC architectures are a new style of instruction set for
computers. They are the skillful combination of several
preexisting ideas in computer architecture along with a
nontraditional assignment of the responsibilities in ILP

processing between the compiler and the hardware. As
such, EPIC architectures can claim to combine the best
attributes of superscalar processors (compatibility across
implementations) and VLIW processors (efficiency since
less control logic). Through nontraditional translation,
current traditional instruction sets can be used but the
combined hardware and software system can exploit the
efficiency of VLIW and EPIC implementations.

References

[1] S. Banerjia, et al., “MPS: Miss-Path Scheduling for

Multiple Issue Processors,” IEEE Transactions on
Computers, December 1998, pp. 1382-1397.

[2] G. Blaauw and F. Brooks, Jr., Computer Architecture:
Concepts and Evolution. Reading, MA: Addison-
Wesley, 1997.

[3] W. Buchholz (ed.), Planning a Computer System. New
York: McGraw-Hill, 1962.

[4] A. Charlesworth, “An Approach to Scientific Array
Processing: The Architectural Design of the AP-
120B/FPS-164 Family,” IEEE Computer, September
1981, pp. 18-27.

[5] Y. Chou, et al., “PipeRench Implementation of the
Instruction Path Coprocessor,” in Proceedings Micro-
33, December 2000, pp. 147-158.

predecoder
Code generation

Instruction grouping

Fn. unit assignment

Initiation timing

compiler

instruction unit

Contents of instruction cache
= dynamic VLIW

Contents of executable file =
traditional instruction set

Figure 2. Nontraditional Assignment of ILP Management Tasks.

[6] R. Colwell, et al., “A VLIW Architecture for a Trace
Scheduling Compiler,” IEEE Transactions on
Computers, August 1988, pp. 967-979.

[7] T. Conte and S. Sathaye, “Dynamic Rescheduling: A
Technique for Object Code Compatibility in VLIW
Architectures,” in Proceedings of Micro-28, Ann
Arbor, November 1995, pp. 208-217.

[8] J. Crawford, “Introducing the Itanium Processors,” IEEE
Micro, September-October 2000, pp. 9-11.

[9] K. Ebcioglu, “A Compilation Technique for Software
Pipelining of Loops with Conditional Jumps,” in
Proceedings of Micro-20, Colorado Springs,
December 1987, pp. 69-79.

[10] K. Ebcioglu and E. Altman, “DAISY: Dynamic
Compilation for 100% Architectural Compatibility,” in
Proceedings of ISCA-24, Denver, June 1997, pp. 26-
37.

[11] M. Franklin and M. Smotherman, “A Fill-Unit
Approach to Multiple Instruction Issue,” in
Proceedings of Micro-27, San Jose, December 1994,
pp. 162-171.

[12] K. Hazelwood and T. Conte, “A Lightweight
Algorithm for Dynamic If-Conversion During
Dynamic Optimization,” in Proceedings PACT, 2000,
pp. 71-80.

[13] L. Higbie, “Overlapped Operation with
Microprogramming,” IEEE Transactions on
Computers, March 1978, pp. 270-275.

[14] A. Holler, “Compiler Optimizations for the PA-8000,”
in Proceedings of Compcon 97, San Jose, February
1997, pp. 87-94.

[15] E. Kelly, R. Cmelik, and M. Wing, “Memory
Controller for a Microprocessor for Detecting a Failure
of Speculation on the Physical Nature of a Component
Being Addressed,” US Patent 5,832,205.

[16] A. Klaiber, “The Technology Behind Crusoe
Processors,” Transmeta Corporation, January 2000.

[17] A. Klauser, et al., “Dynamic Hammock Predication for
Non-predicated Instruction Set Architectures,” in
Proceedings PACT, 1998, pp. 278-285.

[18] L. Kohn and N. Margulis, “Introducing the Intel i860
64-bit Microprocessor,” IEEE Micro, August 1989, pp.
15-30.

[19] J. Kuehn and B. Smith, “The Horizon Supercomputing
System: Architecture and Software,” in Proceedings of
Supercomputing 88, Orlando, November 1988, pp. 28-
34.

[20] G. Kurpanek, et al., “PA 7200: A PA-RISC Processor
with Integrated High-Performance MP Bus Interface,”
in Proceedings of Compcon 94, San Francisco,
February 1994, pp. 375-382.

[21] S. McGeady, “The i960CA Superscalar
Implementation of the 80960 Architecture,” in
Proceedings of Compcon 90, San Francisco, January
1990, pp. 232-239.

[22] K. Minagawa, M. Saito, and T. Aikawa, “Pre-decoding
Mechanism for Superscalar Architecture,” in
Proceedings of IEEE Pacific Rim Conference on
Communications, Victoria B.C., May 1991, pp. 21-24.

[23] R. Nair and M. Hopkins, “Exploiting Instruction Level
Parallelism in Processors by Caching Scheduled
Groups,” in Proceedings ISCA-24, June 1997, pp. 13-
25.

[24] B. Rau and J. Fisher, “Instruction-Level Parallel
Processing: History, Overview, and Perspective,”
Journal of Supercomputing, July 1993, pp. 9-50.

[25] B. Rau, et al., “The Cydra 5 Departmental
Supercomputer,” IEEE Computer, January 1989, pp.
12-35.

[26] K. Rudd, “VLIW Processors: Efficiently Exploiting
Instruction Level Parallelism,” Ph.D. dissertation,
Computer Science Dept., Stanford University, 1999.

[27] M. Schlansker, et al., “Achieving High Levels of
Instruction-Level Parallelism with Reduced Hardware
Complexity,” HP Labs Tech. Rept. HPL-96-120,
November 1994.

[28] M. Schlansker and B. Rau, “EPIC: Explicitly Parallel
Instruction Computing,” IEEE Computer, February
2000, pp. 37-45. (See also “EPIC: An Architecture for
Instruction-Level Parallel Processors,” HP Labs Tech.
Rept. HPL-1999-111, February, 2000.)

[29] H. Sharangpani and K. Arora, “Itanium Processor
Microarchitecture,” IEEE Micro, September-October
2000, pp. 24-43.

[30] M. Smith, M. Lam, and M. Horowitz, “Boosting
Beyond Static Scheduling in a Superscalar Processor,”
in Proceedings of ISCA-17, Seattle, May 1990, pp.
344-354.

[31] M. Smotherman, “IBM Advanced Computing Systems
– A Secret 1960’s Supercomputer Project,” available
online http://www.cs.clemson.edu/~mark/acs.html

[32] M. Smotherman, “National Semiconductor Swordfish,”
available online
http://www.cs.clemson.edu/~mark/swordfish.html

[33] Special issue, “IBM RISC System/6000 Processor,”
IBM Journal of Research and Development, January
1990.

[34] J. Thornton, Design of a Computer – The Control Data
6600. Glenview, IL: Scott, Foresman, and Co., 1970.

[35] G. Tjaden and M. Flynn, “Detection and Parallel
Execution of Independent Instructions,” IEEE
Transactions on Computers, October 1970, pp. 889-
895.

[36] R. Tomasulo, “An Efficient Algorithm for Exploiting
Multiple Arithmetic Units,” IBM Journal of Research
and Development, January 1967, pp. 25-33.

[37] S. Vassiliadis, R. Blaner, and R. Eickemeyer, “SCISM:
A Scalable Compound Instruction Set Machine,”
Journal of Research and Development, January 1994,
pp. 59-78.

