Part 1: 2D/3D Geometry, Colour, lllumination

Vectors, Matrices, Transformations

Patrice Delmas and Georgy Gimel'farb

COMPSCI 373 Computer Graphics and Image Processing

https://vimeo.com/2473185



e Lecturer. Georgy Gimel'farb (ggim001@cs; 86609)
e Office hours: whenever the door of 3035.389 is open. ..

® 2D/3D geometry:

@ 2D/3D points; matrices; vectors; dot and cross products.
@® Geometry of planes; 2D affine transformations.
© Homogeneous coordinates; 3D affine transformations.

® Colour

@ Colours: light-material interaction; human colour perception.
@® SDF (spectral density function).

© SRF (spectral response function).

@ Colour spaces. RGB, CIE XYZ, HLS; colour gamut.

©® lllumination

@ Phong illumination model; shading; reflection; shadows.




@ Points, Vectors, and Matrices
® Dot Product «

© Cross Product x

O Summary 1

® Dot and Cross Product Applications
® Geometry of planes

@ 2D Affine Transformations

® Summary 2

© Homogeneous Coordinates

@ 3D Affine Transformations

® Examples

® Summary 3



Outline

Computer Graphics and Imaging Geometry

https://vimeo.com/2473185
Given illumination sources and optical cameras mimicking human eyes,
model shapes and reflective properties of real-world surfaces to find an
image or a video sequence that each particular eye will perceive. ..
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Points, Vectors, and Matrices

Two-dimensional (2D) points

x| | =3
Y N 1
Vector - column
(or 2 x 1 matrix)
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3.8 =03 0.7

2 % 3 matrix

[ a b
c d

2 x 2 matrix



Points

Cartesian coordinate system:

e Orthogonal axes of
coordinates (numbers).

e Origin, or centre: all zero
coordinates.

Point — a spatial position:
e 2D point — a pair (z,y) of

coordinate values. > .‘::‘(;,”
e E.g., Auckland on a map: 5 [k
y = —36°52' latitude (south) 5 £
x = 174°45' longitude (east) ' = 1=
e 3D point — a triple (z,y, 2). T a9 Longtude (s MH:Z
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Points and Vectors

Vector — a displacement / difference
between two points:

e Direction+length of displacing
point Ps relative to point Py:

o R

o Example: Where is Hamilton?
e Point:
—39°43' latitude;
175°19’ longitude.
e Vector:
120 km to the
south-south-west of Auckland.
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Representing Points and Vectors

Points are represented by tuples:

2D: 2-tuples (z,y) with x and y coordinates
3D: 3-tuples (z,y, z) with x,y, z coordinates
Vectors are also represented as tuples,

but written usually as a column, rather than a row:

| with x and y component
V= Right-handed

y (in 3D also z component)
coordinate system

Position vector of a point: the vector from the origin to the point.
e Often convenient to use position vectors instead of points.

Our notation:
e Points are written in capital letters, e.g. P

e Vectors in small bold letters, e.g. position vector of P is p
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Operations on Points and Vectors

Vectors
e Add, subtract
e Scale (change length)

Points
e Subtracting one point from another gives a vector
(displacement)
e Cannot add two points: Auckland 4+ Hamilton = 777
e But can add and subtract their position vectors:
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Basic Operations on Vectors

Addition:
e Representing the combined
displacement.

e Add the corresponding
components.

Subtraction:

e Same as adding a negated
vector, i.e. one in the opposite
direction.

e Subtract the corresponding
components.

V1 | | w1 —|-1}1
V2 U2 + V2

v | | w -
vy Uy — U2



Basic Operations on Vectors

Scaling;:
e Changing the length (magnitude). CTw] [suw
e Defined such that v + v = 2v. su=s ws || s-us

e Multiply all components by the scalar.

Magpnitude of a vector — its length or quadratic (L2) norm:

u
T/v‘ 2 uf = Vui + u3; |suf = |s][ul

U1

Normalization: u = T+ i€ lul =1

e Scaling a vector to make it of the length 1 (the unit vector).

e The scale by reciprocal of the magnitude.
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Matrices

Matrix: several vectors stuck together. ..
e m X n matrix has m rows and n columns.
e Like m row vectors or n column vectors.
Operations:

¢ Addition / Subtraction -
like adding / subtracting several vectors at the same time:

M LN — [mu mm] I [nn le] _ [mn £ n11 mi2 £ nig

ma21 Ma2 n21 N22 ma1 & ng1 Mg + Noo
e Scaling — like scaling several vectors at the same time:

S-M11 S-M12
sM:[ ]

S-Mo1 S-Mo2
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Matrix Multiplication: BC = A

1 J 35

1 ] 35
T
I
|
|
|
|
|
l
l
!

15

20

Multiplying an [ x m matrix B to an m x n matrix C to get an
I X n matrix A with elements: m
Q5 = bilclj + ...+ bimij = Z bikckj
k=1
“Rows times columns” with the products summed up.
e Elements of A are dot products of the row vectors of B and
Clj
column vectors of C: a;; = [bi1 - . . bim)
Cmj
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Matrix Multiplication: BC = A

Can be used to transform several vectors simultaneously:
C a C a
Bl | = 11 Bl ¢2 | = 12
21 az1 €22 a22
Example: [=m =n =2

[ bi1 bi2 } { c11 ci2 ] _ [ biici1 + biacar  biicia + biacoo }
bar  bao C21 €22 barci1 + baacor  baicia + baacas

B C A=BC
Numerical example:
2 -1 4 0 _ 2.4+ (-1)-(=2)2-0+(~1)-5 _ 10 =5
1 3][-25 1-443-(-2) 1-043-5 -2 15
N N—

Baxo Caxe2 Asx2=B2x2Cax2
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Identity Matrix and Inverse Matrix

Identity matrix I — the neutral element of matrix multiplication:
e For all square matrices M: IM = MI =M

01

Inverse matrix M~! of a square matrix M:

e The 2 x 2 identity matrix I = [ 10 ]

e |t does not always exist.
e If it exists, then: MM ! =M 'M =Tand (M)
Inverse of a 2 x 2 matrix:

—1
mir miz _ 1 M2y —Mi2
mo1 Ma2 M11Mao2 — M12M21 —ma21 mii

_1:M

exists only if the determinant my3mas — miamay # 0
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T (Matrix/Vector Transposition)

Transpose Operation

Make rows out of columns (or vice versa).

e Transpose of a row vector is a column vector (and vice versa):

u=[u; ug] = u' = [ul}
U2

e For a matrix M, swap m;; and mj; forall i =1..m, j = 1..n:

mi1 Mz M3 a2
M = — MT = mi2 1Mo
ma1 M22 M23
mi3z Mma3
Transpose rules:
T
M7 =M (sM)T =5 (M)

M+N)T=MT+NT (MN)T=NTMT
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Dot, or Scalar Product u.v

Produce a scalar (a single number) from two vectors u and v:

u
ui U1
Uev = . = U1v1 + U202
us V2 v

=u'v = ’qu’ cos(6) 0 — the angle between u and v
Rules:
a«b = bea Symmetry
(a+ b)ec = asc + bec  Linearity
(sa)eb = s(aeb) Homogeneity
b.b = |b|?

Example: |a —b|? = (a— b).(a — b) = a.a — 2a.b + b.b
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Angle between Two Vectors

Most important dot product application:
find the angle between two vectors (or
two intersecting lines):

_[Iblcosgy|  [|c|cos .
b= Lb\sinqﬁb]’ €= Lcysinqbc]

hence cos ¢

bec = |b]|c| cos ¢y cos ¢, + |b||c| sin ¢ sin ¢,
= |bl|c| cos (¢p — pc) = |b]|c| cos ¢

Two non-zero vectors b and ¢ with common start point are:

less than 90° apart if bec >0

exactly 90° apart if bec =0 [b and c are orthogonal (perpendicular)]
more than  90° apart if bec <0

18 /62



Orthogonal Projection of a Vector

Projecting a vector b onto a vector a:

e [ —aline through A in
direction of a

e b — the vector from A to B

Given: a and b
Find: b, (the orthogonal projection of b onto a)

Solution:
1. Length of by: |ba| = |b|cosf = ET;? by definition of dot product:
a.b = |a||b| cosd

2. Vector by: b, = 7;?% = ‘;:Za because a.a = |al?
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Distance from a Line to a Point

Projecting a vector b onto a vector a:

e [ —aline through A in
direction of a

e b — the vector from A to B
Given: aand b
Find: c (the perpendicular from L to B)

Solution:

a.b

Aed

]c]:|b—ba|:'b— a

20 /62



Cross, or Vector Product u X v

Produce a 3D vector from two 3D vectors u and v:

CLng — agbg
axb = a3b1 — a1b3 = (|a||b\ sin9) n
a1b2 — a261

e ) — the angle between a and b
e n — the unit normal vector (|n| = 1) orthogonal to a and b

e Hard to remember? Memorise its meaning, not formula!

Rules:
Sine

(a+b)xc=axc+bxc Linearity
(sa) x b=s(axb) Homogeneity
axb=—(bxa) Asymmetry
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Cross Product a x b = (|a||b|sin @) n: Properties

@ Vector a x b is perpendicular/orthogonal
to both a and b.

® Direction of a x b is given by the
“right-hand rule”.

© Asymmetry: axb=—-bxa

O Magnitude |a x b| — the area of
parallelogram defined by a and b:

\bi blsing
laxb| = |a||b|sin 6

|al

@ 0.5|a x b| — the area of triangle defined N
by a and b

b
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Suml

Summary 1

® Vectors:
addition, subtraction, scaling, magnitude, normalisation.

® Matrices:
addition, subtraction, scaling, transposition, multiplication.

T

® Dot product: u.v =u'v = |ul|v|cosf

uU2V3 — U3V
® Cross product: u x v = [uzv; —ujvz| = (Jul|v|sind)n
ULV — UV

References:
e Vectors, matrices: Hill, Chapter 4.2.
e Dot product: Hill, Chapter 4.3.
e Cross product: Hill, Chapter 4.4.
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Suml

1 2 101 01 0
a=[2|; b=|1|; M=[210|; N=|-11 1
3 2 302 ~13 -1

® Calculate: a+ b, |bla, Ma, MN, a.b, a x b.
® What can you tell about the angle between a and b?
©® What is the projection of b onto a?

® What is the distance between the point given by b and the
line going through the origin along a?
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Applications of « and x: Areas and Volumes

|a x b| — the area of a parallelogram,
specified by a and b:

la x b| = |a||b|sin(f)|n| < |n| =1
= |a||b|sin(f) < h = |b|sind
= lajh

(a X b)ec — the volume of a parallelepiped
specified by a, b, and c:

(a x b)ec = (Ja||b|sin(f)n).c
= (area of bottom)nec
= (area of bottom) height

Reminder: n.c = |n||c|siné
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Coordinate Transformations

Given: A new coordinate system with location E and axis unit
vectors u, v, n

Find: Coordinates P’ of a point P in the new coordinate system.
Idea:

® Find position vector r
expressing P relative to E:

r=P—-F

® Project r onto each of the
axis unit vectors to get the
new coordinates:

P’ = (reu,rev,ren)
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Normal of a Polygon

In principle, the normal n can be obtained
from the cross product, a x b = |a||b| sin(0)n,
of any two adjacent edge vectors, e.g.,

n=(D-C)x(B-C)
But this approach is non-robust — a non-representative or
erroneous normal vector is computed when:
@ 3 vertices are co-linear (on a straight line).

® 2 adjacent vertices are very close together.

©® Polygon is not coplanar (i.e., not all points are on a plane).

= i.e., when the cross product's magnitude tends to zero and direction is
sensitive to a slight movement of either vertex!

Warning: the above non-robustness conditions 1, 2 or 3 are not
exceptional in computer graphics and occur all the time!

27 /62



KR
X

Robust Normal Algorithm

Note: The orientation of the resulting
normal is such that the vertices are listed in
counterclockwise order around it.

Just sum together all the cross products, a x b = |a||b|sin(f)n, of
the adjacent edge vectors, i.e.,
B-A)x(E-A)+(C-B)x(A-B)+(D-C)x (B-C)
+(E-D)x(C-D)+(A—E)x (D-E)

and normalise the result.

Robustness:

e Short edges or nearly co-linear vertex triples give negligible
cross product contribution.

e Long nearly-perpendicular edges give the biggest contribution.
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Planes

Point-Normal Form of a Plane

Define plane by:
@ A point S on the plane.

® A normal vector n orthogonal to the plane
(with |n| =1).
For any point P on the plane, (P — S) is orthogonal to n:
ne(P—5)=0 (“point-normal form” of the plane equation)

If p and s are the position vectors to P and S:

Ne(p—5s) =0 < nep =ne < n.p =d where d = n.s
If n = [a,b,c]" and p = [z,y,2]T, then this is the familiar 3D
plane equation ax + by + cz = d
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Planes

Distance to a Plane from the Origin

e Let () be a point on the plane, such that the position vector q is
parallel to the plane normal n.

e Then |q| is the “shortest distance” to the plane from the origin.

The plane equation nep = d is valid for every point P on plane:

neq =d (Q is on the plane)

neq = |n||q|cos0° (n is parallel to q)
= |dq| (In] =1 and cos0° = 1)
= laf=d

Conclusion:

Provided that n = [a,b,c]T is a unit vector, d is the distance to
the plane from the origin in the plane equation
np=d < ar+by+cz=d.
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Planes

Distance of a Point from a Plane

How far is a point @@ from the
plane nep = d with the normal n?

e The shortest line from Q) to
the plane is parallel to n.

e Project the position vector q
of () onto n:

qen = the distance along n from @ to the origin O

To get only the distance of ) from the plane, subtract the distance
d of the origin O from the plane:

gen — d = the distance along n from @ to the plane

(for the unit normal |n| = 1).
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2D Affine

2D Affine Transformations F(p) = Mp + t

Vector F(p) by linear transformation and translation of a vector p:
e The linear transformation is a matrix multiplication: Mp

e The translation is a vector addition: ...+t
F(p)
S T R
Lok = U F(r)
P ~e

Properties of the affine transformation F':
@ Preserves collinearity: if P, (), R are on a straight line, then
also F(p), F(q), F(r).
® Preserves ratios of distances along a line: if P, (, R are on
a straight line, then

Q—-P| _la—p| _[F(q)—F(p)|
[R-Q| |r—q] [F(r)-F(q)
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2D Affine

Scaling S and Translation T

S: squeezing and stretching along
the z- and y-axis about the origin.

e Scaling factor s, / s, along the
x- | y-axis.
e Scaling factor < 1 — squeezing.

e Scaling factor > 1 — stretching.

T: moving along the z- and y-axes.

e Distance (shift) t,, / t, along
the x- / y-axis.
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2D Affine

Reflections at Axes and Origin

Special cases of scaling:

. . —1 0]
Reflection at the y-axis: q = 0 (1) p
P|
Pg
. : 1 0'
Reflection at the x-axis: q = 0 1 »“'1

Pg
_ - -1 %’
Reflection at the origin: q = [ 0 — ] p,
q=

- P"J
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2D Affine

Rotation R

About the origin anti-clockwise by angle 3:
« — an initial angle of point P
[ — the angle of rotation, so that P
becomes P’
® Coordinates of the point P: x = rcos(a); y = rsin(«)
® Coordinates of the point P’:

x' = rcos(a+ ) = rcos(a) cos() — rsin(a) sin(B)
y' = rsin(a+ 8) = rsin(a) cos(8) + r cos(a) sin(f)

© Substitute formulae for x and y into 2’ and /:

oo i) == [0 nip)] [
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2D Affine

Shearing

Horizontal shear H,:

e Shifts points parallel to the z-axis
proportionally to their y-coordinate.

e The further up a point, the more it
is shifted to the right (or left).

Analogously: the vertical shear H,.
General shear H = [ 1 Sz] [ x] = [p’” + Sxpy]
sy 1| [py Dy + SyDz
e The greater the shearing factor s, or s,, the stronger the
horizontal or vertical shearing.
e H;: s, >0and s, =0; H,: s, =0and s, > 0.

e Shearing preserves the area of a shape.
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2D Affine

Affine Transformation T(p) = Mp + t: Basic Properties

e Straight lines are preserved.
e Parallel lines remain parallel.
e Proportionality between the distances is preserved.

e Any arbitrary affine transformation can be represented as a
sequence of shearing, scaling, rotation and translation.

e Transformations generally do not commute, i.e.,
T1T2 75 T2T1:

To(p) = Mop +ty = T(T2(p)) = MiMop + Mto + t;
Ti(p) =Mip+t: = To(Ti(p)) = MaM;p + Moty + to

e Transformations are associative, T1(T2T3) = (T1T2)Ts:

T T2T3(p) = MiMyMsp + MMtz + Mits + t;
= M; (M (Msp + t3) +t2) + t;
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Sum?2

Summary 2

® Applications of the dot (s) and cross (x) products:
areas and volumes, coordinate transformations, normals.

® Planes
@ Point-normal form: n.p = d with d = distance to the origin
@® Distance from a point () to plane: qen — d

©® 2D affine transformations: F(p) = Mp + t: scaling,
translation, rotation, shearing.

References:
e Dot product: Hill, Chapter 4.3
e Cross product: Hill, Chapter 4.4

e Introduction to affine transformations:
Hill, Chapter 5.2
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@ Transform P = (2,2, —1) to the new
coordinate system with the axis vectors
u=1[0,1,0]", v=1[0,0,-1]T,

w = [~1,0,0]" and origin E = (0,2,0).

® How far is the plane 3z 4+ y — 2z = 5 from
the origin (0,0,0)?

©® How far is the point @ = (3,4, 2) from the
plane 3x +y — 22 = 57

@ Transform the point R = (1,2): scale it
along the y-axis with factor 0.5; move it up
the y-axis by 4; then shear it vertically by 2.
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Homogeneous

Homogeneous Coordinates

Cartesian 2D (z,y)-coordinates: P = (z,y) < Homogeneous 2D
coordinates P = (z,y,1) or (zw,yw,w); w # 0:

. T Tw
HH y| = |y
Y 1 w

Cartesian 3D (z,y, z)-coordinates: P = (z,y) < Homogeneous
3D coordinates P = (x,y, z,1) or (zw, yw, zw,w); w # 0:

T TWw
v w
y Yyl = Y

z 2ZW
z

1 w
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Homogeneous

Homogeneous Coordinates: Why?

e Affine transformation F consists of a linear (matrix)
transformation and a translation: F(p) = Mp + t

e Goal: Represent translations with a matrix, too: F(p) = Mp

Solution — Homogeneous coordinates:

e Add to every vector an additional coordinate w, which is
T

initially set to 1: p = [ ] — |y

o 1

e Also add another row and column to the matrices, specifying
the transformations, e.g.,

mi1 miz 0O
:| — mo1 1Moo 0
0 0 1

mi1 Mmi2

M =
ma1  1M22
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Homogeneous

1D Homogeneous Coordinates

Cartesian (inhomogeneous) 1D coordinate :
e A point is represented by a single value, e.g., z = 1.
Homogeneous 1D coordinates represent the same 1D point by a

. AT
2D vector [2/,w]T or [%, 1] , which defines a 2D ray:

AW

1 1
) for w #0 : <
L} oru L} rw# {ﬂ or w {ﬂ forw #0

/Rayl W
ﬁ

1

2w

A 4

S = N W

o = N W
X\
[«
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Homogeneous

2D Homogeneous Coordinates

Cartesian (inhomogeneous) 2D coordinates:
e A point P is represented by a 2D vector, e.g., [7p, Yp] -

The same 2D point is represented by a homogeneous vector

/ ! T
[2’,9/,w]" or multiple of the vector [%, z, 1} , defining a 3D ray:

Ray w

43 /62



Homogeneous

Using Homogeneous Coordinates

@ Every vector gets an additional coordinate with value 1.

@® Every matrix gets an additional row and column (0,...,0,1).

For affine transformations other than translations, no difference:

0 bl Tz az + by a b 0 [z azr + by

= = |c d 0] |y| = |cx+dy
c d| |y cr +dy 0o 1l 11 1

—— ——

M p Mp

Converting translation vector t into translation matrix T:

o] t p+t

N N T 1 0 t.| |z| [+t
AT 123 I ) I D R P Tt
Y v yTly 1 00 1|11 1
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Homogeneous

Converting Coordinates

Cartesian (ordinary) to homogeneous coordinates:
e Just add another coordinate (often called w-coodinate): e.g.,
[z,y,2]T — [z,y,2,1]T.
Homogeneous to ordinary coordinates:
e Divide all other coordinates by w-coordinate (if w # 0): e.g.,

]T

z y 21T
['r7y7zaw ]

— [77777
w w w

e All homogenous 2D coordinate points [wpl,wpg,w]T with
w # 0 represent the same ordinary 2D point [p1, pa]".

e Usually (e.g., for affine transformations) w = 1, so the
conversion means just omitting the w-coordinate.
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Homogeneous

Conversion Examples

The ordinary 3D point [5,3,2]" has the homogeneous
representation [5w, 3w, 2w,w]T with an arbitrary factor w # 0,

e.g.,
5 15 —55 0.05
3 or ) or —33 or 0.03 and so on
21’ 6|’ —22|° 0.02]"° '
1 3 —-11 0.01

Conversely, the homogeneous vector [900, 300, 450, 15O]T and all
other vectors of the form [6c, 2a, 3a, a] T with o # 0 represent the
same 3D point [6,2,3]T; i.e., 928 = 6; 200 = 2; and 120 = 3.

¢ In homogeneous coordinates projective transformations as
well as affine transformations (e.g. translations, rotations,
scaling) are specified by linear equations.

46 /62



3D Affine

3D Affine Transformations

Mostly analogous to 2D and represented by a left-multiplied matrix
M in homogeneous coordinates, too: Mv.

Translation T by a vector t = [t,,t,,t.]":

1 0 0 ¢t

e Similar to identity matrix. T — 0 1 0 ¢
. . 0 0 1 ¢,

e The rightmost column contains t. 00 0 1

e Similar to identity matrix. 0

e Scaling factors at main diagonal. S — 8 Soy 0 8
5y

e Negative s;, sy, or s, reflect on the 0O 0 0 1

x=0,y=0, or z=0 plane.

47 /62



3D Affine

3D Affine Transformations

General shearing H:

. : 1 hyg hr O
e Any coordinate (x/y/z) can linearly 3 1 b0
influence any other coordinate. H= hjz hy- lzy 0
e hy, expresses how much y influences x. 0 0 0 1
Examples:
hyz > 0; hy. > 0; hyz > 0; hy. > 0;

all others =0 all others =0 all others =0
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3D Affine

3D Affine Transformations: Rotation

Rotations are the most difficult transformations.

e We will consider three rotation situations:
@ Rotation around the three coordinate axes
(z,y,2).
@® Rotation to align an object with a new
coordinate system.
© Rotation around an arbitrary axis.

e We use a right-handed coordinate system.

e We use positive (right-handed) rotation, i.e.
counterclockwise when looking into an axis.
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3D Affine

1. Rotating Around Coordinate Axes (z,y, 2)

Three matrices for positive (right-handed) rotation
(C and S stand for cos 6 and sin 6, respectively).

1 0 o]0
Rotation 0C —S1|o Notes on 3 x 3 rotation matrices:
about z-axis: R, = 0SS Clo
00 0 1 Row and column corresponding to ro-
- tation axis are as for the identity 1.
[ C0S]|0]
Rotation R — 01 0|0 Other elements are C on and £S5 off
about y-axis: Yo |=s0cCjo diagonal, so that R=1if § = 0.
| 00 0]1
_ Sign of S can be inferred from the
¢ =500 fact that rotation around z, y, z by
Rotation R, — S C0]0 6 = 90° transforms y — z, z — =,
about z-axis: 0 01]0 T — y, respectively.
0 00|1]
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3D Affine

. Rotating to Align with New Coordinate Axes

Find: the matrix R that rotates the coordinate system to align
with a new coordinate system (a, b, c) with the same origin.

* (x,y,z) — unit vectors along
the axes of the old system.

e (a,b,c) — unit vectors along
the axes of the new system.

Solution:
R..; should do Using homogeneous coordinates:
the following: 100/0 az by ¢ |0

Ry[1 0 0" =a {Rm o] 0100 ay by ey |0 _ o

R;.;[0 1 0" =b 0" 1] [001]0|  |a.b. e |0

Ry0 01"=c (0001 000]1
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3D Affine

3. Rotating About an Arbitrary Axis

e Often need to rotate an object about some
arbitrary axis through a reference point on it.

e E.g., forearm of robot rotating around an
axis through the elbow.
Involves three steps:

@ Translate the reference point to the origin.
® Do the rotation.
© Translate the reference point back again.

e Translation is easy (steps 1 and 3).
We know how to rotate about coordinate axes, but how about an
arbitrary axis through the origin?
@ Textbook method: Decompose the rotation into primitive
rotations about z, ¥, and z axes.
® Coordinate system alignment method.
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3D Affine

(3.1) Arbitrary Axis Rotation: Textbook

@ Rotate the object so that the required
axis of rotation r lies along the z-axis

(RalignZ)
® Do the rotation about z-axis
® Undo original rotation (R;lilgnZ)
How to get Ralignz?
@ Measure azimuth € as a right handed é = tan~! < Uy )

rotation about the y-axis, starting at VuZ+u?
the z-axis.
€ Zmaxis 0 = atan2(ug, u,)
® Measure elevation (or "latitude”) ¢ as i.e. a d-quadrant
the angle above the plane y = 0.
g Vi p y tanfl (%)

(3] RalignZ = Rx(¢)Ry(9)
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(3.2) Arbitrary Axis Rotation: Alignment

Given:
e Coordinate system (a, b, c) attached to the object to
be rotated.

e Position P of the object’s coordinate system.

e New system (u,v,n) to rotate the object to.

Solution:
@ Translate the object to the origin (T5").

® Rotate (a, b, c) to align with the world coordinate axes
(inverse of the "rotate to align” case: R;..).

© Rotate the coordinate axes to align with (u, v, n)
(Ruvn)

O Translate the object back to the original position (Tp).
The full matrix: TpRyynRop.Tp'
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The Inverse of a Rotation Matrix

Columns of a rotation matrix are unit vectors along the rotated

coordinate axis directions.
e So columns are orthogonal, i.e., their dot products = 0:

az by cz| [az ay a;
ay by cy| by by b = (01 0

Az bz Cz Cx Cy Cz 00 1
S——
Rgxii Rsx3 Isxs
T _ 1 oT
R; Ry = Loxs therefore, R; ., = R,

e The inverse of a rotation matrix is its transpose.

e Matrices with this property are called orthogonal.
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Examples

https://vimeo.com/2473185
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Composition of Transformations

o All transformations that can be represented in the matrix form.

e Combine several transformations into a single matrix by multiplying
all transformation matrixes: M, M,,_1---M; =M

e Transformation of the rightmost matrix is applied first (i.e., My).
Example — Rotating an object about its centre point C":

@ Translate the object so that its centre is at the origin (M;: C' — 0).

® Rotate about the origin (Ms: by angle 6).

© Translate object back to its original position (M3: 0 — C).

T 10 ¢1| [cos@ —sinf 0| [10 —c1| |p1
qg| = |01 cof| [sinf cosf Of |01 —cof [p2
1 00 1 0 0 1] (00 1] |1

M=M3zM,M;
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Order of Transformations Does Matter!

In general, affine transformations do not commute, i.e., KL # LK.

(a) First scale by (1,2), then rotate 90°:
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Question 1 [1996 exam]

Which homogeneous 2D matrix M transforms (a) to (b)?

)
21 (a)
1
0 — X
0o 1 2 o 1 2 3 4 5

e Sometimes it is easier to do this backwards, then take inverse, i.e.,
starting with (b): Rotate —30°; Shift by (—3,1); Scale by (0.5, 1).

e Hence the required transformation is: M = R(30°)T(3,—1)S(2,1)
(first scaling, then translation, finally rotation).

e Do not forget to use homogeneous matrices.
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Question 2 [2003 exam]

Which homogeneous 2D matrix M transforms (a) to (b)?

You are allowed to write M as a product of simpler matrices (i.e.,
you need not multiply the matrices).
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Summary 3

@ Homogeneous coordinates make it possible to represent
translation as a matrix.
® 3D affine transformations similar to 2D: translation, scaling,
shearing, and rotation.
e Column vectors of a rotation matrix R are axis unit vectors of
a new coordinate system to align the current unit vectors x, y,

and z with.
[ ) Ril = RT

© Transformations are applied from right to left.
References:
o Homogeneous coordinates: Hill, Section 4.5.1

e 3D affine transformations: Hill, Section 5.3
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Quiz

@ An object has a local coordinate system
a=(1,0,0), b=(0,0,-1), ¢=(0,1,0)
at position (—10,2,5). Which homogeneous matrix rotates the
object into the new coordinate system
u=(0,-1,0), v=(0,0,—-1), n=(1,0,0)?

® Solve Questions 1 and 2
(Slides 59 and 60).

© Create your own variant
of these questions and
solve it.

Count the black dots! —
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