Part 1: 2D/3D Geometry, Colour, Illumination Vectors, Matrices, Transformations

Patrice Delmas and Georgy Gimel'farb

COMPSCI 373 Computer Graphics and Image Processing

https://vimeo.com/2473185

- Lecturer: Georgy Gimel'farb (ggim001@cs; 86609)
- Office hours: whenever the door of 3035.389 is open...

Part 1 overview:

(1) 2D/3D geometry:
(1) 2D/3D points; matrices; vectors; dot and cross products.
(2) Geometry of planes; 2D affine transformations.
(3) Homogeneous coordinates; 3D affine transformations.
(2) Colour
(1) Colours: light-material interaction; human colour perception.
(2) SDF (spectral density function).
(3) SRF (spectral response function).
(4) Colour spaces. RGB, CIE XYZ, HLS; colour gamut.
(3) Illumination
(1) Phong illumination model; shading; reflection; shadows.
(1) Points, Vectors, and Matrices
(2) Dot Product •
(3) Cross Product \times
(4) Summary 1
(5) Dot and Cross Product Applications
(6) Geometry of planes
(7) 2D Affine Transformations

8 Summary 2
9 Homogeneous Coordinates
(10) 3D Affine Transformations
(11) Examples
(12) Summary 3

Computer Graphics and Imaging Geometry

Given illumination sources and optical cameras mimicking human eyes, model shapes and reflective properties of real-world surfaces to find an image or a video sequence that each particular eye will perceive...

Points, Vectors, and Matrices

Points

Cartesian coordinate system:

- Orthogonal axes of coordinates (numbers).
- Origin, or centre: all zero coordinates.

Point - a spatial position:

- 2D point - a pair (x, y) of coordinate values.
- E.g., Auckland on a map: $y=-36^{\circ} 52^{\prime}$ latitude (south) $x=174^{\circ} 45^{\prime}$ longitude (east)
- 3D point - a triple (x, y, z).

Points and Vectors

Vector - a displacement / difference between two points:

- Direction+length of displacing point P_{2} relative to point P_{1} :

- Example: Where is Hamilton?
- Point:
$-39^{\circ} 43^{\prime}$ latitude;
$175^{\circ} 19^{\prime}$ longitude.
- Vector:

120 km to the south-south-west of Auckland.

Representing Points and Vectors

Points are represented by tuples:
2D: 2-tuples (x, y) with x and y coordinates
3D: 3-tuples (x, y, z) with x, y, z coordinates
Vectors are also represented as tuples, but written usually as a column, rather than a row:

$$
\mathbf{v}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \begin{aligned}
& \text { with } x \text { and } y \text { component } \\
& \text { (in 3D also } z \text { component) }
\end{aligned}
$$

Right-handed
coordinate system

Position vector of a point: the vector from the origin to the point.

- Often convenient to use position vectors instead of points.

Our notation:

- Points are written in capital letters, e.g. P
- Vectors in small bold letters, e.g. position vector of P is \mathbf{p}

Operations on Points and Vectors

Vectors

- Add, subtract
- Scale (change length)

Points

- Subtracting one point from another gives a vector (displacement)
- Cannot add two points: Auckland + Hamilton = ???
- But can add and subtract their position vectors:

Basic Operations on Vectors

Addition:

- Representing the combined displacement.
- Add the corresponding components.

$$
\begin{aligned}
\mathbf{u}+\mathbf{v} & = \\
{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right]
\end{aligned}
$$

Subtraction:

- Same as adding a negated vector, i.e. one in the opposite direction.
- Subtract the corresponding

$$
\begin{aligned}
\mathbf{u}-\mathbf{v} & = \\
{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]-\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
u_{1}-v_{1} \\
u_{2}-v_{2}
\end{array}\right]
\end{aligned}
$$ components.

Basic Operations on Vectors

Scaling:

- Changing the length (magnitude).
- Defined such that $\mathbf{v}+\mathbf{v}=2 \mathbf{v}$.

$$
s \mathbf{u}=s\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
s \cdot u_{1} \\
s \cdot u_{2}
\end{array}\right]
$$

- Multiply all components by the scalar.

Magnitude of a vector - its length or quadratic $\left(L_{2}\right)$ norm:

$$
|\mathbf{u}|=\sqrt{u_{1}^{2}+u_{2}^{2}} ; \quad \quad|s \mathbf{u}|=|s||\mathbf{u}|
$$

Normalization: $\widehat{\mathbf{u}}=\frac{\mathbf{u}}{|\mathbf{u}|}$, i.e., $|\widehat{\mathbf{u}}|=1$

- Scaling a vector to make it of the length 1 (the unit vector).
- The scale by reciprocal of the magnitude.

Matrices

Matrix: several vectors stuck together...

- $m \times n$ matrix has m rows and n columns.
- Like m row vectors or n column vectors.

Operations:

- Addition / Subtraction -
like adding / subtracting several vectors at the same time:

$$
\mathbf{M} \pm \mathbf{N}=\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right] \pm\left[\begin{array}{ll}
n_{11} & n_{12} \\
n_{21} & n_{22}
\end{array}\right]=\left[\begin{array}{ll}
m_{11} \pm n_{11} & m_{12} \pm n_{12} \\
m_{21} \pm n_{21} & m_{22} \pm n_{22}
\end{array}\right]
$$

- Scaling - like scaling several vectors at the same time:

$$
s \mathbf{M}=\left[\begin{array}{ll}
s \cdot m_{11} & s \cdot m_{12} \\
s \cdot m_{21} & s \cdot m_{22}
\end{array}\right]
$$

Matrix Multiplication: $\mathrm{BC}=\mathbf{A}$

Multiplying an $l \times m$ matrix \mathbf{B} to an $m \times n$ matrix \mathbf{C} to get an $l \times n$ matrix \mathbf{A} with elements:

$$
\begin{aligned}
& \text { A with elements: } \\
& a_{i j}=b_{i 1} c_{1 j}+\ldots+b_{i m} c_{m j} \equiv \sum_{k=1}^{m} b_{i k} c_{k j}
\end{aligned}
$$

"Rows times columns" with the products summed up.

- Elements of \mathbf{A} are dot products of the row vectors of \mathbf{B} and
column vectors of \mathbf{C} : $a_{i j}=\left[b_{i 1} \ldots b_{i m}\right]\left[\begin{array}{c}c_{1 j} \\ \ldots \\ c_{m j}\end{array}\right]$

Matrix Multiplication: $\mathrm{BC}=\mathbf{A}$

Can be used to transform several vectors simultaneously:

$$
\mathbf{B}\left[\begin{array}{l}
c_{11} \\
c_{21}
\end{array}\right]=\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right] \quad \mathbf{B}\left[\begin{array}{l}
c_{12} \\
c_{22}
\end{array}\right]=\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right]
$$

Example: $l=m=n=2$
$\underbrace{\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]}_{\mathbf{B}} \underbrace{\left[\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right]}_{\mathbf{C}}=\underbrace{\left[\begin{array}{ll}b_{11} c_{11}+b_{12} c_{21} & b_{11} c_{12}+b_{12} c_{22} \\ b_{21} c_{11}+b_{22} c_{21} & b_{21} c_{12}+b_{22} c_{22}\end{array}\right]}_{\mathbf{A}=\mathbf{B C}}$
Numerical example:
$\underbrace{\left[\begin{array}{rr}2 & -1 \\ 1 & 3\end{array}\right]}_{\mathbf{B}_{2 \times 2}} \underbrace{\left[\begin{array}{rr}4 & 0 \\ -2 & 5\end{array}\right]}_{\mathbf{C}_{2 \times 2}}=\underbrace{\left[\begin{array}{rr}2 \cdot 4+(-1) \cdot(-2) & 2 \cdot 0+(-1) \cdot 5 \\ 1 \cdot 4+3 \cdot(-2) & 1 \cdot 0+3 \cdot 5\end{array}\right]=\left[\begin{array}{rr}10 & -5 \\ -2 & 15\end{array}\right]}_{\mathbf{A}_{2 \times 2}=\mathbf{B}_{2 \times 2} \mathbf{C}_{2 \times 2}}$

Identity Matrix and Inverse Matrix

Identity matrix I - the neutral element of matrix multiplication:

- For all square matrices $\mathbf{M}: \mathbf{I M}=\mathbf{M I}=\mathbf{M}$
- The 2×2 identity matrix $\mathbf{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Inverse matrix \mathbf{M}^{-1} of a square matrix \mathbf{M} :

- It does not always exist.
- If it exists, then: $\mathbf{M} \mathbf{M}^{-1}=\mathbf{M}^{-1} \mathbf{M}=\mathbf{I}$ and $\left(\mathbf{M}^{-1}\right)^{-1}=\mathbf{M}$ Inverse of a 2×2 matrix:

$$
\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]^{-1}=\frac{1}{m_{11} m_{22}-m_{12} m_{21}}\left[\begin{array}{rr}
m_{22} & -m_{12} \\
-m_{21} & m_{11}
\end{array}\right]
$$

exists only if the determinant $m_{11} m_{22}-m_{12} m_{21} \neq 0$

Transpose Operation ${ }^{\top}$

(Matrix/Vector Transposition)

Make rows out of columns (or vice versa).

- Transpose of a row vector is a column vector (and vice versa):

$$
\mathbf{u}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right] \Longrightarrow \mathbf{u}^{\top}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

- For a matrix \mathbf{M}, swap $m_{i j}$ and $m_{j i}$ for all $i=1 . . m, j=1$..n:

$$
\mathbf{M}=\left[\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23}
\end{array}\right] \Longrightarrow \mathbf{M}^{\boldsymbol{\top}}=\left[\begin{array}{ll}
m_{11} & m_{21} \\
m_{12} & m_{22} \\
m_{13} & m_{23}
\end{array}\right]
$$

Transpose rules:

$$
\begin{array}{ll}
\left(\mathbf{M}^{\top}\right)^{\top}=\mathbf{M} & (s \mathbf{M})^{\top}=s\left(\mathbf{M}^{\top}\right) \\
(\mathbf{M}+\mathbf{N})^{\top}=\mathbf{M}^{\top}+\mathbf{N}^{\top} & (\mathbf{M N})^{\top}=\mathbf{N}^{\top} \mathbf{M}^{\top}
\end{array}
$$

Dot, or Scalar Product u•v

Produce a scalar (a single number) from two vectors \mathbf{u} and \mathbf{v} :

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2} \\
& =\mathbf{u}^{\top} \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos (\theta)
\end{aligned}
$$

θ - the angle between \mathbf{u} and \mathbf{v}

Rules:

$$
\begin{array}{ll}
\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a} & \text { Symmetry } \\
(\mathbf{a}+\mathbf{b}) \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}+\mathbf{b} \cdot \mathbf{c} & \text { Linearity } \\
(s \mathbf{a}) \cdot \mathbf{b}=s(\mathbf{a} \cdot \mathbf{b}) & \text { Homogeneity } \\
\mathbf{b} \cdot \mathbf{b}=|\mathbf{b}|^{2} & \\
\hline
\end{array}
$$

Example: $|\mathbf{a}-\mathbf{b}|^{2}=(\mathbf{a}-\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})=\mathbf{a} \cdot \mathbf{a}-2 \mathbf{a} \cdot \mathbf{b}+\mathbf{b} \cdot \mathbf{b}$

Angle between Two Vectors

Most important dot product application: find the angle between two vectors (or two intersecting lines):

$$
\mathbf{b}=\left[\begin{array}{l}
|\mathbf{b}| \cos \phi_{b} \\
|\mathbf{b}| \sin \phi_{b}
\end{array}\right] ; \quad \mathbf{c}=\left[\begin{array}{l}
|\mathbf{c}| \cos \phi_{c} \\
|\mathbf{c}| \sin \phi_{c}
\end{array}\right]
$$

hence
$\mathbf{b} \cdot \mathbf{c}=|\mathbf{b}||\mathbf{c}| \cos \phi_{b} \cos \phi_{c}+|\mathbf{b}||\mathbf{c}| \sin \phi_{b} \sin \phi_{c}$

$$
=\left|\mathbf { b } \left\|\mathbf { c } \left|\cos \left(\phi_{b}-\phi_{c}\right)=|\mathbf{b} \| \mathbf{c}| \cos \phi\right.\right.\right.
$$

Two non-zero vectors \mathbf{b} and \mathbf{c} with common start point are:
less than exactly 90° apart if b.c >0 more than
90° apart if b.c $=0$ 90° apart if b.c <0
[b and care orthogonal (perpendicular)]

Orthogonal Projection of a Vector

Projecting a vector \mathbf{b} onto a vector \mathbf{a} :

- L - a line through A in direction of a
- \mathbf{b} - the vector from A to B

Given: \mathbf{a} and \mathbf{b}
Find: $\mathbf{b}_{\mathbf{a}}$ (the orthogonal projection of \mathbf{b} onto \mathbf{a})

Solution:

1. Length of $\mathbf{b}_{\mathbf{a}}:\left|\mathbf{b}_{\mathbf{a}}\right|=|\mathbf{b}| \cos \theta=\frac{\mathbf{a} \mathbf{a} \mathbf{b}}{|\mathbf{a}|}$ by definition of dot product:

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta
$$

2. Vector $\mathbf{b}_{\mathbf{a}}: \quad \mathbf{b}_{\mathbf{a}}=\frac{\mathbf{a} \bullet \mathbf{b}}{|\mathbf{a}|} \frac{\mathbf{a}}{|\mathbf{a}|}=\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \quad$ because $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}$

Distance from a Line to a Point

Projecting a vector \mathbf{b} onto a vector \mathbf{a} :

- L - a line through A in direction of a
- \mathbf{b} - the vector from A to B

Given: \mathbf{a} and \mathbf{b}
Find: \mathbf{c} (the perpendicular from L to B)
Solution:

$$
|\mathbf{c}|=\left|\mathbf{b}-\mathbf{b}_{\mathbf{a}}\right|=\left|\mathbf{b}-\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}\right|
$$

Cross, or Vector Product $\mathbf{u} \times \mathbf{v}$

Produce a 3D vector from two 3D vectors \mathbf{u} and \mathbf{v} :
$\mathbf{a} \times \mathbf{b}=\left[\begin{array}{l}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right]=(|\mathbf{a}||\mathbf{b}| \sin \theta) \mathbf{n}$

- θ - the angle between \mathbf{a} and \mathbf{b}
- \mathbf{n} - the unit normal vector $(|\mathbf{n}|=1)$ orthogonal to \mathbf{a} and \mathbf{b}
- Hard to remember? Memorise its meaning, not formula!

Rules:

$(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$	Linearity
$(s \mathbf{a}) \times \mathbf{b}=s(\mathbf{a} \times \mathbf{b})$	Homogeneity
$\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})$	Asymmetry

Cross Product $\mathbf{a} \times \mathbf{b}=(|\mathbf{a}||\mathbf{b}| \sin \theta) \mathbf{n}$: Properties

(1) Vector $\mathbf{a} \times \mathbf{b}$ is perpendicular/orthogonal to both \mathbf{a} and \mathbf{b}.
(2) Direction of $\mathbf{a} \times \mathbf{b}$ is given by the "right-hand rule".
(3) Asymmetry: $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
(4) Magnitude $|\mathbf{a} \times \mathbf{b}|$ - the area of parallelogram defined by \mathbf{a} and \mathbf{b} :

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

(5) $0.5|\mathbf{a} \times \mathbf{b}|$ - the area of triangle defined by \mathbf{a} and \mathbf{b}

Summary 1

(1) Vectors: addition, subtraction, scaling, magnitude, normalisation.
(2) Matrices: addition, subtraction, scaling, transposition, multiplication.
(3) Dot product: $\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{\top} \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta$
(4) Cross product: $\mathbf{u} \times \mathbf{v}=\left[\begin{array}{l}u_{2} v_{3}-u_{3} v_{2} \\ u_{3} v_{1}-u_{1} v_{3} \\ u_{1} v_{2}-u_{2} v_{1}\end{array}\right]=(|\mathbf{u}||\mathbf{v}| \sin \theta) \mathbf{n}$

References:

- Vectors, matrices: Hill, Chapter 4.2.
- Dot product: Hill, Chapter 4.3.
- Cross product: Hill, Chapter 4.4.

Q U I Z

$$
\mathbf{a}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] ; \quad \mathbf{b}=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right] ; \quad \mathbf{M}=\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 0 \\
3 & 0 & 2
\end{array}\right] ; \quad \mathbf{N}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 1 & 1 \\
-1 & 3 & -1
\end{array}\right]
$$

(1) Calculate: $\mathbf{a}+\mathbf{b},|\mathbf{b}| \mathbf{a}, \mathbf{M a}, \mathbf{M N}, \mathbf{a} \cdot \mathbf{b}, \mathbf{a} \times \mathbf{b}$.
(2) What can you tell about the angle between \mathbf{a} and \mathbf{b} ?
(3) What is the projection of \mathbf{b} onto \mathbf{a} ?
(4) What is the distance between the point given by \mathbf{b} and the line going through the origin along \mathbf{a} ?

Applications of • and \times : Areas and Volumes

$|\mathbf{a} \times \mathbf{b}|$ - the area of a parallelogram, specified by \mathbf{a} and \mathbf{b} :

$$
\begin{aligned}
|\mathbf{a} \times \mathbf{b}| & =|\mathbf{a}||\mathbf{b}| \sin (\theta)|n|
\end{aligned} \stackrel{\Leftarrow|n|=1}{ } \begin{aligned}
& =|\mathbf{a}||\mathbf{b}| \sin (\theta) \quad \Leftarrow h=|\mathbf{b}| \sin \theta \\
& =|\mathbf{a}| h
\end{aligned}
$$

$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ - the volume of a parallelepiped specified by \mathbf{a}, \mathbf{b}, and \mathbf{c} :

$$
\begin{aligned}
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} & =(|\mathbf{a}||\mathbf{b}| \sin (\theta) \mathbf{n}) \cdot \mathbf{c} \\
& =(\underline{\text { area of bottom }) \mathbf{n} \cdot \mathbf{c}} \\
& =(\underline{\text { area of bottom }}) \text { height }
\end{aligned}
$$

Reminder: $\mathbf{n} \cdot \mathbf{c}=|\mathbf{n}||\mathbf{c}| \sin \theta$

Coordinate Transformations

Given: A new coordinate system with location E and axis unit vectors $\mathbf{u}, \mathbf{v}, \mathbf{n}$

Find: Coordinates P^{\prime} of a point P in the new coordinate system. Idea:
(1) Find position vector \mathbf{r} expressing P relative to E :

$$
\mathbf{r}=P-E
$$

(2) Project \mathbf{r} onto each of the axis unit vectors to get the new coordinates:

$$
\mathrm{P}^{\prime}=(\mathbf{r} \cdot \mathbf{u}, \mathbf{r} \cdot \mathbf{v}, \mathbf{r} \bullet \mathbf{n})
$$

Normal of a Polygon

In principle, the normal \mathbf{n} can be obtained from the cross product, $\mathbf{a} \times \mathbf{b}=|\mathbf{a}||\mathbf{b}| \sin (\theta) \mathbf{n}$, of any two adjacent edge vectors, e.g.,

$$
\mathbf{n}=(D-C) \times(B-C)
$$

But this approach is non-robust - a non-representative or erroneous normal vector is computed when:
(1) 3 vertices are co-linear (on a straight line).
(2) 2 adjacent vertices are very close together.
(3) Polygon is not coplanar (i.e., not all points are on a plane).
\Rightarrow i.e., when the cross product's magnitude tends to zero and direction is sensitive to a slight movement of either vertex!

Warning: the above non-robustness conditions 1,2 or 3 are not exceptional in computer graphics and occur all the time!

Robust Normal Algorithm

Note: The orientation of the resulting normal is such that the vertices are listed in counterclockwise order around it.

Just sum together all the cross products, $\mathbf{a} \times \mathbf{b}=|\mathbf{a}||\mathbf{b}| \sin (\theta) \mathbf{n}$, of the adjacent edge vectors, i.e.,

$$
\begin{aligned}
(B-A) \times(E-A) & +(C-B) \times(A-B)+(D-C) \times(B-C) \\
& +(E-D) \times(C-D)+(A-E) \times(D-E)
\end{aligned}
$$

and normalise the result.

Robustness:

- Short edges or nearly co-linear vertex triples give negligible cross product contribution.
- Long nearly-perpendicular edges give the biggest contribution.

Point-Normal Form of a Plane

Define plane by:
(1) A point S on the plane.
(2) A normal vector \mathbf{n} orthogonal to the plane (with $|\mathbf{n}|=1$).

For any point P on the plane, $(P-S)$ is orthogonal to \mathbf{n} :

$$
\mathbf{n} \cdot(P-S)=0 \quad \text { ("point-normal form" of the plane equation) }
$$

If \mathbf{p} and \mathbf{s} are the position vectors to P and S :

$$
\mathbf{n} \cdot(\mathbf{p}-\mathbf{s})=0 \Leftrightarrow \mathbf{n} \cdot \mathbf{p}=\mathbf{n} \cdot \mathbf{s} \Leftrightarrow \mathbf{n} \cdot \mathbf{p}=d \text { where } d=\mathbf{n} \cdot \mathbf{s}
$$

If $\mathbf{n}=[a, b, c]^{\top}$ and $\mathbf{p}=[x, y, z]^{\top}$, then this is the familiar 3D plane equation $a x+b y+c z=d$

Distance to a Plane from the Origin

- Let Q be a point on the plane, such that the position vector \mathbf{q} is parallel to the plane normal \mathbf{n}.
- Then $|\mathbf{q}|$ is the "shortest distance" to the plane from the origin.

The plane equation n•p $=d$ is valid for every point P on plane:

$$
\begin{aligned}
\mathbf{n} \cdot \mathbf{q} & =d & & (Q \text { is on the plane }) \\
\mathbf{n} \cdot \mathbf{q} & =|\mathbf{n}||\mathbf{q}| \cos 0^{\circ} & & (\mathbf{n} \text { is parallel to } \mathbf{q}) \\
& =|\mathbf{q}| & & \left(|\mathbf{n}|=1 \text { and } \cos 0^{\circ}=1\right) \\
& \Rightarrow|\mathbf{q}|=d & &
\end{aligned}
$$

Conclusion:
Provided that $\mathbf{n}=[a, b, c]^{\top}$ is a unit vector, d is the distance to the plane from the origin in the plane equation

$$
\mathbf{n} \cdot \mathbf{p}=d \Leftrightarrow a x+b y+c z=d
$$

Distance of a Point from a Plane

How far is a point Q from the plane $\mathbf{n} \cdot \mathbf{p}=d$ with the normal \mathbf{n} ?

- The shortest line from Q to the plane is parallel to \mathbf{n}.
- Project the position vector \mathbf{q} of Q onto n:

$\mathbf{q} \cdot \mathbf{n}=$ the distance along \mathbf{n} from Q to the origin O
To get only the distance of Q from the plane, subtract the distance d of the origin O from the plane:
$\mathbf{q} \cdot \mathbf{n}-d=$ the distance along \mathbf{n} from Q to the plane (for the unit normal $|\mathbf{n}|=1$).

2D Affine Transformations $\mathrm{F}(\mathrm{p})=\mathrm{Mp}+\mathrm{t}$

Vector $\mathbf{F}(\mathbf{p})$ by linear transformation and translation of a vector \mathbf{p} :

- The linear transformation is a matrix multiplication: Mp
- The translation is a vector addition: ... $+\mathbf{t}$

Properties of the affine transformation \mathbf{F} :
(1) Preserves collinearity: if P, Q, R are on a straight line, then also $\mathbf{F}(\mathbf{p}), \mathbf{F}(\mathbf{q}), \mathbf{F}(\mathbf{r})$.
(2) Preserves ratios of distances along a line: if P, Q, R are on a straight line, then

$$
\frac{|Q-P|}{|R-Q|} \equiv \frac{|\mathbf{q}-\mathbf{p}|}{|\mathbf{r}-\mathbf{q}|}=\frac{|\mathbf{F}(\mathbf{q})-\mathbf{F}(\mathbf{p})|}{|\mathbf{F}(\mathbf{r})-\mathbf{F}(\mathbf{q})|}
$$

Scaling S and Translation T

S: squeezing and stretching along the x - and y-axis about the origin.

- Scaling factor s_{x} / s_{y} along the x - / y-axis.
- Scaling factor <1 - squeezing.
- Scaling factor >1 - stretching.
\mathbf{T} : moving along the x - and y-axes.
- Distance (shift) t_{x} / t_{y} along the x - / y-axis.

$$
\mathbf{S}(\mathbf{p})=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right]=\left[\begin{array}{l}
s_{x} p_{x} \\
s_{y} p_{y}
\end{array}\right]
$$

$$
\mathbf{T}(\mathbf{p})=\mathbf{I}\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]=\left[\begin{array}{l}
p_{x}+t_{x} \\
p_{y}+t_{y}
\end{array}\right]
$$

Reflections at Axes and Origin

Special cases of scaling:

Reflection at the y-axis: $\mathbf{q}=\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right] \mathbf{p}$

Reflection at the x-axis: $\mathbf{q}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \mathbf{p}$

Rotation R

About the origin anti-clockwise by angle β :
$\alpha-$ an initial angle of point P
β - the angle of rotation, so that P becomes P^{\prime}

(1) Coordinates of the point $\mathrm{P}: x=r \cos (\alpha) ; y=r \sin (\alpha)$
(2) Coordinates of the point P^{\prime} :

$$
\begin{aligned}
& x^{\prime}=r \cos (\alpha+\beta)=r \cos (\alpha) \cos (\beta)-r \sin (\alpha) \sin (\beta) \\
& y^{\prime}=r \sin (\alpha+\beta)=r \sin (\alpha) \cos (\beta)+r \cos (\alpha) \sin (\beta)
\end{aligned}
$$

(3) Substitute formulae for x and y into x^{\prime} and y^{\prime} :

$$
\begin{aligned}
& x^{\prime}=x \cos (\beta)-y \sin (\beta) \\
& y^{\prime}=y \cos (\beta)+x \sin (\beta)
\end{aligned} \Longrightarrow \mathbf{R}(\mathbf{p})=\left[\begin{array}{rr}
\cos (\beta) & -\sin (\beta) \\
\sin (\beta) & \cos (\beta)
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y}
\end{array}\right]
$$

Shearing

Horizontal shear \mathbf{H}_{x} :

- Shifts points parallel to the x-axis proportionally to their y-coordinate.
- The further up a point, the more it is shifted to the right (or left).
Analogously: the vertical shear \mathbf{H}_{y}.

General shear $\mathbf{H}=\left[\begin{array}{rr}1 & s_{x} \\ s_{y} & 1\end{array}\right]\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]=\left[\begin{array}{l}p_{x}+s_{x} p_{y} \\ p_{y}+s_{y} p_{x}\end{array}\right]$

- The greater the shearing factor s_{x} or s_{y}, the stronger the horizontal or vertical shearing.
- $\mathbf{H}_{x}: s_{x}>0$ and $s_{y}=0 ; \quad \mathbf{H}_{y}: s_{x}=0$ and $s_{y}>0$.
- Shearing preserves the area of a shape.

Affine Transformation $\mathrm{T}(\mathbf{p})=\mathrm{Mp}+\mathrm{t}$: Basic Properties

- Straight lines are preserved.
- Parallel lines remain parallel.
- Proportionality between the distances is preserved.
- Any arbitrary affine transformation can be represented as a sequence of shearing, scaling, rotation and translation.
- Transformations generally do not commute, i.e., $\mathbf{T}_{1} \mathbf{T}_{2} \neq \mathbf{T}_{2} \mathbf{T}_{1}$:

$$
\begin{aligned}
& \mathbf{T}_{2}(\mathbf{p})=\mathbf{M}_{2} \mathbf{p}+\mathbf{t}_{2} \Rightarrow \mathbf{T}_{1}\left(\mathbf{T}_{2}(\mathbf{p})\right)=\mathbf{M}_{1} \mathbf{M}_{2} \mathbf{p}+\mathbf{M}_{1} \mathbf{t}_{2}+\mathbf{t}_{1} \\
& \mathbf{T}_{1}(\mathbf{p})=\mathbf{M}_{1} \mathbf{p}+\mathbf{t}_{1} \Rightarrow \mathbf{T}_{2}\left(\mathbf{T}_{1}(\mathbf{p})\right)=\mathbf{M}_{2} \mathbf{M}_{1} \mathbf{p}+\mathbf{M}_{2} \mathbf{t}_{1}+\mathbf{t}_{2}
\end{aligned}
$$

- Transformations are associative, $\mathbf{T}_{1}\left(\mathbf{T}_{2} \mathbf{T}_{3}\right)=\left(\mathbf{T}_{1} \mathbf{T}_{2}\right) \mathbf{T}_{3}$:

$$
\begin{aligned}
\mathbf{T}_{1} \mathbf{T}_{2} \mathbf{T}_{3}(\mathbf{p}) & =\mathbf{M}_{1} \mathbf{M}_{2} \mathbf{M}_{3} \mathbf{p}+\mathbf{M}_{1} \mathbf{M}_{2} \mathbf{t}_{3}+\mathbf{M}_{1} \mathbf{t}_{2}+\mathbf{t}_{1} \\
& =\mathbf{M}_{1}\left(\mathbf{M}_{2}\left(\mathbf{M}_{3} \mathbf{p}+\mathbf{t}_{3}\right)+\mathbf{t}_{2}\right)+\mathbf{t}_{1}
\end{aligned}
$$

Summary 2

(1) Applications of the dot (\bullet) and cross (\times) products: areas and volumes, coordinate transformations, normals.
(2) Planes
(1) Point-normal form: $\mathbf{n} \cdot \mathbf{p}=d$ with $d=$ distance to the origin
(2) Distance from a point Q to plane: $\mathbf{q} \cdot \mathbf{n}-d$
(3) 2D affine transformations: $\mathbf{F}(\mathbf{p})=\mathbf{M p}+\mathbf{t}$: scaling, translation, rotation, shearing.

References:

- Dot product: Hill, Chapter 4.3
- Cross product: Hill, Chapter 4.4
- Introduction to affine transformations: Hill, Chapter 5.2

Quiz

Given: $a=b$

$$
\begin{gathered}
a^{2}=a b \\
a^{2}-b^{2}=a b-b^{2}
\end{gathered}
$$

$(a+b)(a-b): b(a-b)$
$(a+b)=b$
$a+a=a$
$2 a=a$
$2=1!!$
(1) Transform $P=(2,2,-1)$ to the new coordinate system with the axis vectors $\mathbf{u}=[0,1,0]^{\top}, \mathbf{v}=[0,0,-1]^{\top}$, $\mathbf{w}=[-1,0,0]^{\top}$ and origin $E=(0,2,0)$.
(2) How far is the plane $3 x+y-2 z=5$ from the origin $(0,0,0)$?
(3) How far is the point $Q=(3,4,2)$ from the plane $3 x+y-2 z=5$?
(4) Transform the point $R=(1,2)$: scale it along the y-axis with factor 0.5 ; move it up the y-axis by 4 ; then shear it vertically by 2 .

Homogeneous Coordinates

Cartesian 2D (x, y)-coordinates: $P=(x, y) \Leftrightarrow$ Homogeneous 2D coordinates $P=(x, y, 1)$ or $(x w, y w, w) ; w \neq 0$:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \longleftrightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \equiv\left[\begin{array}{c}
x w \\
y w \\
w
\end{array}\right]
$$

Cartesian 3D (x, y, z)-coordinates: $P=(x, y) \Leftrightarrow$ Homogeneous 3D coordinates $P=(x, y, z, 1)$ or $(x w, y w, z w, w) ; w \neq 0$:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \longleftrightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \equiv\left[\begin{array}{c}
x w \\
y w \\
z w \\
w
\end{array}\right]
$$

Homogeneous Coordinates: Why?

- Affine transformation \mathbf{F} consists of a linear (matrix) transformation and a translation: $\mathbf{F}(\mathbf{p})=\mathbf{M p}+\mathbf{t}$
- Goal: Represent translations with a matrix, too: $\mathbf{F}(\mathbf{p})=\mathbf{M p}$

Solution - Homogeneous coordinates:

- Add to every vector an additional coordinate w, which is initially set to $1: \mathbf{p}=\left[\begin{array}{l}x \\ y\end{array}\right] \longrightarrow\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
- Also add another row and column to the matrices, specifying the transformations, e.g.,

$$
\mathbf{M}=\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
m_{11} & m_{12} & 0 \\
m_{21} & m_{22} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

1D Homogeneous Coordinates

Cartesian (inhomogeneous) 1D coordinate x :

- A point is represented by a single value, e.g., $x=1$.

Homogeneous 1D coordinates represent the same 1D point by a 2 D vector $\left[x^{\prime}, w\right]^{\top}$ or $\left[\frac{x^{\prime}}{w}, 1\right]^{\top}$, which defines a 2D ray:

2D Homogeneous Coordinates

Cartesian (inhomogeneous) 2D coordinates:

- A point P is represented by a 2D vector, e.g., $\left[x_{\mathrm{p}}, y_{\mathrm{p}}\right]^{\top}$.

The same 2D point is represented by a homogeneous vector $\left[x^{\prime}, y^{\prime}, w\right]^{\top}$ or multiple of the vector $\left[\frac{x^{\prime}}{w}, \frac{y^{\prime}}{w}, 1\right]^{\top}$, defining a 3D ray:

Using Homogeneous Coordinates

(1) Every vector gets an additional coordinate with value 1.
(2) Every matrix gets an additional row and column $(0, \ldots, 0,1)$.

For affine transformations other than translations, no difference:

$$
\underbrace{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]}_{\mathbf{M}} \underbrace{\left[\begin{array}{l}
x \\
y
\end{array}\right]}_{\mathbf{p}}=\underbrace{\left[\begin{array}{c}
a x+b y \\
c x+d y
\end{array}\right]}_{\mathbf{M} \mathbf{p}} \Rightarrow\left[\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y \\
c x+d y \\
1
\end{array}\right]
$$

Converting translation vector \mathbf{t} into translation matrix \mathbf{T} :

$$
\overbrace{\left[\begin{array}{l}
x \\
y
\end{array}\right]}^{\mathbf{p}}+\overbrace{\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]}^{\mathbf{t}}=\overbrace{\left[\begin{array}{l}
x+t_{x} \\
y+t_{y}
\end{array}\right]}^{\mathbf{p}+\mathbf{t}} \Rightarrow \mathbf{T}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]
$$

Converting Coordinates

Cartesian (ordinary) to homogeneous coordinates:

- Just add another coordinate (often called w-coodinate): e.g., $[x, y, z]^{\top} \rightarrow[x, y, z, 1]^{\top}$.

Homogeneous to ordinary coordinates:

- Divide all other coordinates by w-coordinate (if $w \neq 0$): e.g.,

$$
[x, y, z, w]^{\top} \rightarrow\left[\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right]^{\top}
$$

- All homogenous 2D coordinate points $\left[w p_{1}, w p_{2}, w\right]^{\top}$ with $w \neq 0$ represent the same ordinary 2D point $\left[p_{1}, p_{2}\right]^{\top}$.
- Usually (e.g., for affine transformations) $w=1$, so the conversion means just omitting the w-coordinate.

Conversion Examples

The ordinary 3D point $[5,3,2]^{\top}$ has the homogeneous representation $[5 w, 3 w, 2 w, w]^{\top}$ with an arbitrary factor $w \neq 0$, e.g.,

$$
\left[\begin{array}{l}
5 \\
3 \\
2 \\
1
\end{array}\right] \text {, or }\left[\begin{array}{c}
15 \\
9 \\
6 \\
3
\end{array}\right] \text {, or }\left[\begin{array}{l}
-55 \\
-33 \\
-22 \\
-11
\end{array}\right] \text {, or }\left[\begin{array}{l}
0.05 \\
0.03 \\
0.02 \\
0.01
\end{array}\right] \text {, and so on. }
$$

Conversely, the homogeneous vector $[900,300,450,150]^{\top}$ and all other vectors of the form $[6 \alpha, 2 \alpha, 3 \alpha, \alpha]^{\top}$ with $\alpha \neq 0$ represent the same 3 D point $[6,2,3]^{\top}$; i.e., $\frac{900}{150}=6 ; \frac{300}{150}=2$; and $\frac{450}{150}=3$.

- In homogeneous coordinates projective transformations as well as affine transformations (e.g. translations, rotations, scaling) are specified by linear equations.

3D Affine Transformations

Mostly analogous to 2D and represented by a left-multiplied matrix \mathbf{M} in homogeneous coordinates, too: $\mathbf{M v}$.

Translation \mathbf{T} by a vector $\mathrm{t}=\left[t_{x}, t_{y}, t_{z}\right]^{\mathrm{T}}$:

- Similar to identity matrix.
- The rightmost column contains \mathbf{t}.

$$
\mathbf{T}=\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Scaling S about the origin with scaling factors s_{x}, s_{y}, s_{z} :

- Similar to identity matrix.
- Scaling factors at main diagonal.
- Negative s_{x}, s_{y}, or s_{z} reflect on the
$\mathbf{S}=\left[\begin{array}{cccc}s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ $x=0, y=0$, or $z=0$ plane.

3D Affine Transformations

General shearing H:

- Any coordinate $(x / y / z)$ can linearly influence any other coordinate.
- $h_{y x}$ expresses how much y influences x.

$$
\mathbf{H}=\left[\begin{array}{llll}
1 & h_{y x} & h_{z x} & 0 \\
h_{x y} & 1 & h_{z y} & 0 \\
h_{x z} & h_{y z} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Examples:

$h_{y x}>0$;
all others $=0$
$h_{y z}>0$;
all others $=0$

$h_{y x}>0 ; h_{y z}>0$;
all others $=0$

3D Affine Transformations: Rotation

Rotations are the most difficult transformations.

- We will consider three rotation situations:
(1) Rotation around the three coordinate axes (x, y, z).
(2) Rotation to align an object with a new coordinate system.
(3) Rotation around an arbitrary axis.
- We use a right-handed coordinate system.
- We use positive (right-handed) rotation, i.e. counterclockwise when looking into an axis.

1. Rotating Around Coordinate Axes (x, y, z)

Three matrices for positive (right-handed) rotation
(C and S stand for $\cos \theta$ and $\sin \theta$, respectively).

Rotation about x-axis:

$$
\mathbf{R}_{x}=\left[\begin{array}{rrr|r}
1 & 0 & 0 & 0 \\
0 & C & -S & 0 \\
0 & S & C & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{R}_{y}=\left[\begin{array}{rrr|r}
C & 0 & S & 0 \\
0 & 1 & 0 & 0 \\
-S & 0 & C & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{R}_{z}=\left[\begin{array}{rrr|r}
C & -S & 0 & 0 \\
S & C & 0 & 0 \\
0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right]
$$

Notes on 3×3 rotation matrices:

Row and column corresponding to rotation axis are as for the identity \mathbf{I}.

Other elements are C on and $\pm S$ off diagonal, so that $\mathbf{R}=\mathbf{I}$ if $\theta=0$.

Sign of S can be inferred from the fact that rotation around x, y, z by $\theta=90^{\circ}$ transforms $y \rightarrow z, z \rightarrow x$, $x \rightarrow y$, respectively.

2. Rotating to Align with New Coordinate Axes

Find: the matrix \mathbf{R} that rotates the coordinate system to align with a new coordinate system ($\mathbf{a}, \mathbf{b}, \mathbf{c}$) with the same origin.

- $(\mathbf{x}, \mathbf{y}, \mathbf{z})$ - unit vectors along the axes of the old system.
- ($\mathbf{a}, \mathbf{b}, \mathbf{c}$) - unit vectors along the axes of the new system.

Solution:

$\mathbf{R}_{3 \times 3}$ should do the following:
$\mathbf{R}_{3 \times 3}\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\top}=\mathbf{a}$
$\mathbf{R}_{3 \times 3}\left[\begin{array}{ll}0 & 1\end{array} 0\right]^{\top}=\mathbf{b}$
$\mathbf{R}_{3 \times 3}\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{\top}=\mathbf{c}$

Using homogeneous coordinates:
$\underbrace{\left[\begin{array}{c|c}\mathbf{R}_{3 \times 3} & \mathbf{0} \\ \hline \mathbf{0}^{\top} & 1\end{array}\right]}_{\mathbf{R}}\left[\begin{array}{lll|l}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll|l}a_{x} & b_{x} & c_{x} & 0 \\ a_{y} & b_{y} & c_{y} & 0 \\ a_{z} & b_{z} & c_{z} & 0 \\ \hline 0 & 0 & 0 & 1\end{array}\right]=\mathbf{R}$

3. Rotating About an Arbitrary Axis

- Often need to rotate an object about some arbitrary axis through a reference point on it.
- E.g., forearm of robot rotating around an axis through the elbow.
Involves three steps:
(1) Translate the reference point to the origin.
(2) Do the rotation.
(3) Translate the reference point back again.
- Translation is easy (steps 1 and 3).

We know how to rotate about coordinate axes, but how about an arbitrary axis through the origin?
(1) Textbook method: Decompose the rotation into primitive rotations about x, y, and z axes.
(2) Coordinate system alignment method.

(3.1) Arbitrary Axis Rotation: Textbook

(1) Rotate the object so that the required axis of rotation \mathbf{r} lies along the z-axis ($\mathbf{R}_{\text {align } Z}$)
(2) Do the rotation about z-axis
(3) Undo original rotation $\left(\mathbf{R}_{\text {align } Z}^{-1}\right)$

How to get $\mathbf{R}_{\text {align } Z}$?
(1) Measure azimuth θ as a right handed rotation about the y-axis, starting at the z-axis.
(2) Measure elevation (or "latitude") ϕ as the angle above the plane $y=0$.
(3) $\mathbf{R}_{\mathrm{align} Z}=\mathbf{R}_{x}(\phi) \mathbf{R}_{y}(\theta)$

(3.2) Arbitrary Axis Rotation: Alignment

Given:

- Coordinate system ($\mathbf{a}, \mathbf{b}, \mathbf{c}$) attached to the object to be rotated.
- Position P of the object's coordinate system.
- New system $(\mathbf{u}, \mathbf{v}, \mathbf{n})$ to rotate the object to.

Solution:

(1) Translate the object to the origin $\left(\mathbf{T}_{P}^{-1}\right)$.
(2) Rotate $(\mathbf{a}, \mathbf{b}, \mathbf{c})$ to align with the world coordinate axes (inverse of the "rotate to align" case: $\mathbf{R}_{\mathbf{a b c}}^{-1}$).
(3) Rotate the coordinate axes to align with $(\mathbf{u}, \mathbf{v}, \mathbf{n})$ ($\mathbf{R}_{\text {uvn }}$).
(4) Translate the object back to the original position $\left(\mathbf{T}_{P}\right)$.

The full matrix: $\mathbf{T}_{P} \mathbf{R}_{\mathrm{uvn}} \mathbf{R}_{\mathrm{abc}}^{-1} \mathbf{T}_{P}^{-1}$

The Inverse of a Rotation Matrix

Columns of a rotation matrix are unit vectors along the rotated coordinate axis directions.

- So columns are orthogonal, i.e., their dot products $=0$:

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{lll}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
a_{z} & b_{z} & c_{z}
\end{array}\right]}_{\mathbf{R}_{3 \times 3}^{\top}} \underbrace{\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right]}_{\mathbf{R}_{3 \times 3}}=\underbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}_{\mathbf{I}_{3 \times 3}} \\
& \mathbf{R}_{3 \times 3}^{\top} \mathbf{R}_{3 \times 3}=\mathbf{I}_{3 \times 3} \quad \text { therefore, } \mathbf{R}_{3 \times 3}^{-1}=\mathbf{R}_{3 \times 3}^{\top}
\end{aligned}
$$

- The inverse of a rotation matrix is its transpose.
- Matrices with this property are called orthogonal.

Examples

https://vimeo.com/2473185

Composition of Transformations

- All transformations that can be represented in the matrix form.
- Combine several transformations into a single matrix by multiplying all transformation matrixes: $\mathbf{M}_{n} \mathbf{M}_{n-1} \cdots \mathbf{M}_{1}=\mathbf{M}$
- Transformation of the rightmost matrix is applied first (i.e., \mathbf{M}_{1}).

Example - Rotating an object about its centre point C :
(1) Translate the object so that its centre is at the origin ($\left.\mathrm{M}_{1}: C \rightarrow 0\right)$.
(2) Rotate about the origin (M_{2} : by angle θ).
(3) Translate object back to its original position $\left(\mathrm{M}_{3}: 0 \rightarrow C\right)$.

$$
\begin{aligned}
& {\left[\begin{array}{l}
q_{1} \\
q_{2} \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{llr}
1 & 0 & c_{1} \\
0 & 1 & c_{2} \\
0 & 0 & 1
\end{array}\right]}_{\mathbf{M}=\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1}}\left[\begin{array}{rrr}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & -c_{1} \\
0 & 1 & -c_{2} \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}\left[\begin{array}{l}
p_{1} \\
p_{2} \\
1
\end{array}\right]
$$

Order of Transformations Does Matter!

In general, affine transformations do not commute, i.e., $\mathbf{K L} \neq \mathbf{L K}$.
(a) First scale by $(1,2)$, then rotate 90° :
$\left.\mathbf{M}=\left[\begin{array}{lrr}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{rrr}0 & -2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], \square\right]$

(b) First rotate 90°, then scale by $(1,2)$:
$\mathbf{N}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{rrr}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{rrr}0 & -1 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

Question 1 [1996 exam]

Which homogeneous 2D matrix \mathbf{M} transforms (a) to (b)?

- Sometimes it is easier to do this backwards, then take inverse, i.e., starting with (b): Rotate -30°; Shift by $(-3,1)$; Scale by $(0.5,1)$.
- Hence the required transformation is: $\mathbf{M}=\mathbf{R}\left(30^{\circ}\right) \mathbf{T}(3,-1) \mathbf{S}(2,1)$ (first scaling, then translation, finally rotation).
- Do not forget to use homogeneous matrices.

Question 2 [2003 exam]

Which homogeneous 2D matrix \mathbf{M} transforms (a) to (b)?
You are allowed to write \mathbf{M} as a product of simpler matrices (i.e., you need not multiply the matrices).

Summary 3

(1) Homogeneous coordinates make it possible to represent translation as a matrix.
(2) 3D affine transformations similar to 2D: translation, scaling, shearing, and rotation.

- Column vectors of a rotation matrix \mathbf{R} are axis unit vectors of a new coordinate system to align the current unit vectors \mathbf{x}, \mathbf{y}, and \mathbf{z} with.
- $\mathbf{R}^{-1}=\mathbf{R}^{\top}$
(3) Transformations are applied from right to left.

References:

- Homogeneous coordinates: Hill, Section 4.5.1
- 3D affine transformations: Hill, Section 5.3

Quiz

(1) An object has a local coordinate system

$$
\mathbf{a}=(1,0,0), \quad \mathbf{b}=(0,0,-1), \quad \mathbf{c}=(0,1,0)
$$

at position $(-10,2,5)$. Which homogeneous matrix rotates the object into the new coordinate system

$$
\mathbf{u}=(0,-1,0), \quad \mathbf{v}=(0,0,-1), \quad \mathbf{n}=(1,0,0) ?
$$

(2) Solve Questions 1 and 2 (Slides 59 and 60).
(3) Create your own variant of these questions and solve it.

Count the black dots! \Longrightarrow

