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Part 1: 2D/3D Geometry, Colour, Illumination
Vectors, Matrices, Transformations

Patrice Delmas and Georgy Gimel’farb

COMPSCI 373 Computer Graphics and Image Processing

https://vimeo.com/2473185
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• Lecturer: Georgy Gimel’farb (ggim001@cs; 86609)

• Office hours: whenever the door of 303S.389 is open. . .

Part 1 overview:

1 2D/3D geometry:

1 2D/3D points; matrices; vectors; dot and cross products.
2 Geometry of planes; 2D affine transformations.
3 Homogeneous coordinates; 3D affine transformations.

2 Colour

1 Colours: light-material interaction; human colour perception.
2 SDF (spectral density function).
3 SRF (spectral response function).
4 Colour spaces. RGB, CIE XYZ, HLS; colour gamut.

3 Illumination

1 Phong illumination model; shading; reflection; shadows.
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Computer Graphics and Imaging Geometry

https://vimeo.com/2473185

Given illumination sources and optical cameras mimicking human eyes,
model shapes and reflective properties of real-world surfaces to find an
image or a video sequence that each particular eye will perceive. . .
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Points, Vectors, and Matrices

Two-dimensional (2D) points

[
x
y

]
=

[
−3
1

]
Vector - column
(or 2× 1 matrix)[
0.5 3.0 −1.7
3.8 −0.3 0.7

]
2× 3 matrix[
a b

c d

]
2× 2 matrix
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Points

Cartesian coordinate system:

• Orthogonal axes of
coordinates (numbers).

• Origin, or centre: all zero
coordinates.

Point – a spatial position:

• 2D point – a pair (x, y) of
coordinate values.

• E.g., Auckland on a map:
y = −36◦52′ latitude (south)

x = 174◦45′ longitude (east)

• 3D point – a triple (x, y, z).
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Points and Vectors

Vector – a displacement / difference
between two points:

• Direction+length of displacing
point P2 relative to point P1:

P1
P2

• Example: Where is Hamilton?
• Point:
−39◦43′ latitude;
175◦19′ longitude.

• Vector:
120 km to the
south-south-west of Auckland.
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Representing Points and Vectors

Points are represented by tuples:

2D: 2-tuples (x, y) with x and y coordinates

3D: 3-tuples (x, y, z) with x, y, z coordinates

Vectors are also represented as tuples,

but written usually as a column, rather than a row:

v =

[
x
y

]
with x and y component
(in 3D also z component) Right-handed

coordinate system
Position vector of a point: the vector from the origin to the point.

• Often convenient to use position vectors instead of points.

Our notation:

• Points are written in capital letters, e.g. P

• Vectors in small bold letters, e.g. position vector of P is p
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Operations on Points and Vectors

Vectors

• Add, subtract

• Scale (change length)

Points

• Subtracting one point from another gives a vector
(displacement)

• Cannot add two points: Auckland + Hamilton = ???

• But can add and subtract their position vectors:
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Basic Operations on Vectors

Addition:

• Representing the combined
displacement.

• Add the corresponding
components.

u + v =[
u1
u2

]
+

[
v1
v2

]
=

[
u1 + v1
u2 + v2

]
Subtraction:

• Same as adding a negated
vector, i.e. one in the opposite
direction.

• Subtract the corresponding
components.

u − v =[
u1
u2

]
−
[
v1
v2

]
=

[
u1 − v1
u2 − v2

]
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Basic Operations on Vectors

Scaling:

• Changing the length (magnitude).

• Defined such that v + v = 2v.

• Multiply all components by the scalar.

su=s

[
u1
u2

]
=

[
s · u1
s · u2

]

Magnitude of a vector – its length or quadratic (L2) norm:

u1

u2
u

|u| =
√
u21 + u22; |su| = |s||u|

Normalization: û = u
|u| , i.e., |û| = 1

• Scaling a vector to make it of the length 1 (the unit vector).

• The scale by reciprocal of the magnitude.
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Matrices

Matrix: several vectors stuck together. . .

• m× n matrix has m rows and n columns.

• Like m row vectors or n column vectors.

Operations:

• Addition / Subtraction –
like adding / subtracting several vectors at the same time:

M±N =

[
m11 m12

m21 m22

]
±
[
n11 n12
n21 n22

]
=

[
m11 ± n11 m12 ± n12
m21 ± n21 m22 ± n22

]
• Scaling – like scaling several vectors at the same time:

sM =

[
s ·m11 s ·m12

s ·m21 s ·m22

]
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Matrix Multiplication: BC = A

B15×20

1 20

i
1

15

C20×35

j
1 35
1

20

A15×35

i

j1 35

aij
1

15

=

Multiplying an l ×m matrix B to an m× n matrix C to get an
l × n matrix A with elements:

aij = bi1c1j + . . .+ bimcmj ≡
m∑
k=1

bikckj

“Rows times columns” with the products summed up.

• Elements of A are dot products of the row vectors of B and

column vectors of C: aij = [bi1 . . . bim]

 c1j
. . .
cmj


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Matrix Multiplication: BC = A

Can be used to transform several vectors simultaneously:

B

[
c11
c21

]
=

[
a11
a21

]
B

[
c12
c22

]
=

[
a12
a22

]
Example: l = m = n = 2[
b11 b12
b21 b22

]
︸ ︷︷ ︸

B

[
c11 c12
c21 c22

]
︸ ︷︷ ︸

C

=

[
b11c11 + b12c21 b11c12 + b12c22
b21c11 + b22c21 b21c12 + b22c22

]
︸ ︷︷ ︸

A=BC

Numerical example:[
2 −1
1 3

]
︸ ︷︷ ︸

B2×2

[
4 0
−2 5

]
︸ ︷︷ ︸

C2×2

=

2 · 4 + (−1) · (−2) 2 · 0 + (−1) · 5
1 · 4 + 3 · (−2) 1 · 0 + 3 · 5

 =

[
10 −5
−2 15

]
︸ ︷︷ ︸

A2×2=B2×2C2×2
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Identity Matrix and Inverse Matrix

Identity matrix I – the neutral element of matrix multiplication:

• For all square matrices M: IM = MI = M

• The 2× 2 identity matrix I =

[
1 0
0 1

]
Inverse matrix M−1 of a square matrix M:

• It does not always exist.

• If it exists, then: MM−1 = M−1M = I and
(
M−1

)−1
= M

Inverse of a 2× 2 matrix:[
m11 m12

m21 m22

]−1
=

1

m11m22 −m12m21

[
m22 −m12

−m21 m11

]
exists only if the determinant m11m22 −m12m21 6= 0

15 / 62



Outline Math • × Sum1 •
× Planes 2D Affine Sum2 Homogeneous 3D Affine Miscell Sum3

Transpose Operation T (Matrix/Vector Transposition)

Make rows out of columns (or vice versa).

• Transpose of a row vector is a column vector (and vice versa):

u = [u1 u2] =⇒ uT =

[
u1
u2

]
• For a matrix M, swap mij and mji for all i = 1..m, j = 1..n:

M =

[
m11 m12 m13

m21 m22 m23

]
=⇒MT =

 m11 m21

m12 m22

m13 m23


Transpose rules:(

MT
)T

= M (sM)T = s
(
MT

)
(M+N)T = MT +NT (MN)T = NTMT
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Dot, or Scalar Product u•v

Produce a scalar (a single number) from two vectors u and v:

u•v =

[
u1
u2

]
•

[
v1
v2

]
= u1v1 + u2v2

= uTv = |u||v| cos(θ)

u

vθ

θ – the angle between u and v

Rules:

a•b = b•a Symmetry
(a+ b)•c = a•c+ b•c Linearity
(sa)•b = s(a•b) Homogeneity
b•b = |b|2

Example: |a− b|2 = (a− b)•(a− b) = a•a− 2a•b+ b•b
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Angle between Two Vectors

Most important dot product application:
find the angle between two vectors (or

two intersecting lines):

b =

[
|b| cosφb
|b| sinφb

]
; c =

[
|c| cosφc
|c| sinφc

]
hence

b•c = |b||c| cosφb cosφc + |b||c| sinφb sinφc
= |b||c| cos (φb − φc) = |b||c| cosφ

cosφ

Two non-zero vectors b and c with common start point are:
less than 90◦ apart if b•c > 0
exactly 90◦ apart if b•c = 0 [b and c are orthogonal (perpendicular)]

more than 90◦ apart if b•c < 0
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Orthogonal Projection of a Vector

Projecting a vector b onto a vector a:

• L – a line through A in
direction of a

• b – the vector from A to B

Given: a and b

Find: ba (the orthogonal projection of b onto a)

Solution:

1. Length of ba: |ba| = |b| cos θ = a•b
|a| by definition of dot product:

a•b = |a||b| cos θ

2. Vector ba: ba = a•b
|a|

a
|a| =

a•b
a•aa because a•a = |a|2
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Distance from a Line to a Point

Projecting a vector b onto a vector a:

• L – a line through A in
direction of a

• b – the vector from A to B

Given: a and b

Find: c (the perpendicular from L to B)

Solution:

|c| = |b− ba| =
∣∣∣∣b− a•b

a•a
a

∣∣∣∣
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Cross, or Vector Product u× v

Produce a 3D vector from two 3D vectors u and v:

a×b =

a2b3 − a3b2a3b1 − a1b3
a1b2 − a2b1

 = (|a||b| sin θ)n

• θ – the angle between a and b

• n – the unit normal vector (|n| = 1) orthogonal to a and b

• Hard to remember? Memorise its meaning, not formula!

Rules:

(a+ b)× c = a× c+ b× c Linearity
(sa)× b = s(a× b) Homogeneity
a× b = −(b× a) Asymmetry

Sine
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Cross Product a× b = (|a||b| sin θ)n: Properties

1 Vector a× b is perpendicular/orthogonal
to both a and b.

2 Direction of a× b is given by the
“right-hand rule”.

3 Asymmetry: a× b = −b× a

4 Magnitude |a× b| – the area of
parallelogram defined by a and b:

|a×b| = |a||b| sin θ
|b|

|a|

|b| sin θ

5 0.5|a× b| – the area of triangle defined
by a and b
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Summary 1

1 Vectors:
addition, subtraction, scaling, magnitude, normalisation.

2 Matrices:
addition, subtraction, scaling, transposition, multiplication.

3 Dot product: u•v = uTv = |u||v| cos θ

4 Cross product: u× v =

u2v3 − u3v2u3v1 − u1v3
u1v2 − u2v1

 = (|u||v| sin θ)n

References:

• Vectors, matrices: Hill, Chapter 4.2.

• Dot product: Hill, Chapter 4.3.

• Cross product: Hill, Chapter 4.4.
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Q U I Z

a =

12
3

 ; b =

21
2

 ; M =

1 0 1
2 1 0
3 0 2

 ; N =

 0 1 0
−1 1 1
−1 3 −1


1 Calculate: a+ b, |b|a, Ma, MN, a•b, a× b.

2 What can you tell about the angle between a and b?

3 What is the projection of b onto a?

4 What is the distance between the point given by b and the
line going through the origin along a?
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Applications of • and ×: Areas and Volumes

|a× b| – the area of a parallelogram,
specified by a and b:

|a× b| = |a||b| sin(θ)|n| ⇐ |n| = 1
= |a||b| sin(θ) ⇐ h = |b| sin θ
= |a|h

(a × b)•c – the volume of a parallelepiped
specified by a, b, and c:

(a× b)•c = (|a||b| sin(θ)n)•c
= (area of bottom)n•c

= (area of bottom) height

Reminder: n•c = |n||c| sin θ
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Coordinate Transformations

Given: A new coordinate system with location E and axis unit
vectors u, v, n

Find: Coordinates P′ of a point P in the new coordinate system.

Idea:

1 Find position vector r
expressing P relative to E:

r = P − E

2 Project r onto each of the
axis unit vectors to get the
new coordinates:

P′ = (r•u, r•v, r•n)
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Normal of a Polygon

In principle, the normal n can be obtained
from the cross product, a×b = |a||b| sin(θ)n,
of any two adjacent edge vectors, e.g.,

n = (D − C)× (B − C)
But this approach is non-robust – a non-representative or
erroneous normal vector is computed when:

1 3 vertices are co-linear (on a straight line).

2 2 adjacent vertices are very close together.

3 Polygon is not coplanar (i.e., not all points are on a plane).

⇒ i.e., when the cross product’s magnitude tends to zero and direction is

sensitive to a slight movement of either vertex!

Warning: the above non-robustness conditions 1, 2 or 3 are not
exceptional in computer graphics and occur all the time!
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Robust Normal Algorithm

Note: The orientation of the resulting
normal is such that the vertices are listed in
counterclockwise order around it.

Just sum together all the cross products, a× b = |a||b| sin(θ)n, of
the adjacent edge vectors, i.e.,

(B−A)× (E−A) + (C− B)× (A− B) + (D− C)× (B− C)
+ (E−D)× (C−D) + (A− E)× (D− E)

and normalise the result.

Robustness:

• Short edges or nearly co-linear vertex triples give negligible
cross product contribution.

• Long nearly-perpendicular edges give the biggest contribution.

28 / 62



Outline Math • × Sum1 •
× Planes 2D Affine Sum2 Homogeneous 3D Affine Miscell Sum3

Point-Normal Form of a Plane

Define plane by:

1 A point S on the plane.

2 A normal vector n orthogonal to the plane
(with |n| = 1).

For any point P on the plane, (P − S) is orthogonal to n:

n•(P − S) = 0 (“point-normal form” of the plane equation)

If p and s are the position vectors to P and S:

n•(p− s) = 0 ⇔ n•p = n•s ⇔ n•p = d where d = n•s

If n = [a, b, c]T and p = [x, y, z]T, then this is the familiar 3D
plane equation ax+ by + cz = d
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Distance to a Plane from the Origin

• Let Q be a point on the plane, such that the position vector q is
parallel to the plane normal n.

• Then |q| is the “shortest distance” to the plane from the origin.

The plane equation n•p = d is valid for every point P on plane:

n•q = d (Q is on the plane)

n•q = |n||q| cos 0◦ (n is parallel to q)

= |q| (|n| = 1 and cos 0◦ = 1)

⇒ |q| = d

Conclusion:
Provided that n = [a, b, c]T is a unit vector, d is the distance to
the plane from the origin in the plane equation

n•p = d ⇔ ax+ by + cz = d.
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Distance of a Point from a Plane

How far is a point Q from the
plane n•p = d with the normal n?

• The shortest line from Q to
the plane is parallel to n.

• Project the position vector q
of Q onto n:

q•n = the distance along n from Q to the origin O

To get only the distance of Q from the plane, subtract the distance
d of the origin O from the plane:

q•n− d = the distance along n from Q to the plane

(for the unit normal |n| = 1).

31 / 62



Outline Math • × Sum1 •
× Planes 2D Affine Sum2 Homogeneous 3D Affine Miscell Sum3

2D Affine Transformations F(p) = Mp+ t

Vector F(p) by linear transformation and translation of a vector p:

• The linear transformation is a matrix multiplication: Mp
• The translation is a vector addition: . . .+ t

p

P

q

Q

r

R F
=⇒

F(p)

F(q)
F(r)

Properties of the affine transformation F:

1 Preserves collinearity: if P , Q, R are on a straight line, then
also F(p), F(q), F(r).

2 Preserves ratios of distances along a line: if P , Q, R are on
a straight line, then

|Q− P |
|R−Q|

≡ |q− p|
|r− q|

=
|F(q)− F(p)|
|F(r)− F(q)|
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Scaling S and Translation T

S: squeezing and stretching along
the x- and y-axis about the origin.

• Scaling factor sx / sy along the
x- / y-axis.

• Scaling factor < 1 – squeezing.

• Scaling factor > 1 – stretching.

S(p) =

[
sx 0
0 sy

] [
px
py

]
=

[
sxpx
sypy

]

T: moving along the x- and y-axes.

• Distance (shift) tx / ty along
the x- / y-axis.

T(p) = I

[
px
py

]
+

[
tx
ty

]
=

[
px + tx
py + ty

]
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Reflections at Axes and Origin

Special cases of scaling:

Reflection at the y-axis: q =

[
−1 0
0 1

]
p

Reflection at the x-axis: q =

[
1 0
0 −1

]
p

Reflection at the origin: q =

[
−1 0
0 −1

]
p
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Rotation R

About the origin anti-clockwise by angle β:

α – an initial angle of point P

β – the angle of rotation, so that P
becomes P′

1 Coordinates of the point P: x = r cos(α); y = r sin(α)

2 Coordinates of the point P′:

x′ = r cos(α+ β) = r cos(α) cos(β)− r sin(α) sin(β)
y′ = r sin(α+ β) = r sin(α) cos(β) + r cos(α) sin(β)

3 Substitute formulae for x and y into x′ and y′:

x′ = x cos(β)− y sin(β)
y′ = y cos(β) + x sin(β)

=⇒ R(p) =

[
cos(β) − sin(β)
sin(β) cos(β)

] [
px
py

]
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Shearing

Horizontal shear Hx:

• Shifts points parallel to the x-axis
proportionally to their y-coordinate.

• The further up a point, the more it
is shifted to the right (or left).

Analogously: the vertical shear Hy.

General shear H =

[
1 sx
sy 1

] [
px
py

]
=

[
px + sxpy
py + sypx

]
• The greater the shearing factor sx or sy, the stronger the

horizontal or vertical shearing.

• Hx: sx > 0 and sy = 0; Hy: sx = 0 and sy > 0.

• Shearing preserves the area of a shape.
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Affine Transformation T(p) = Mp+ t: Basic Properties

• Straight lines are preserved.

• Parallel lines remain parallel.

• Proportionality between the distances is preserved.

• Any arbitrary affine transformation can be represented as a
sequence of shearing, scaling, rotation and translation.

• Transformations generally do not commute, i.e.,
T1T2 6= T2T1:

T2(p) = M2p+ t2 ⇒ T1(T2(p)) = M1M2p+M1t2 + t1
T1(p) = M1p+ t1 ⇒ T2(T1(p)) = M2M1p+M2t1 + t2

• Transformations are associative, T1(T2T3) = (T1T2)T3:

T1T2T3(p) = M1M2M3p+M1M2t3 +M1t2 + t1
= M1 (M2 (M3p+ t3) + t2) + t1
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Summary 2

1 Applications of the dot (•) and cross (×) products:
areas and volumes, coordinate transformations, normals.

2 Planes

1 Point-normal form: n•p = d with d = distance to the origin
2 Distance from a point Q to plane: q•n− d

3 2D affine transformations: F(p) = Mp+ t: scaling,
translation, rotation, shearing.

References:

• Dot product: Hill, Chapter 4.3

• Cross product: Hill, Chapter 4.4

• Introduction to affine transformations:
Hill, Chapter 5.2
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Quiz

1 Transform P = (2, 2,−1) to the new
coordinate system with the axis vectors
u = [0, 1, 0]T, v = [0, 0,−1]T,
w = [−1, 0, 0]T and origin E = (0, 2, 0).

2 How far is the plane 3x+ y − 2z = 5 from
the origin (0, 0, 0)?

3 How far is the point Q = (3, 4, 2) from the
plane 3x+ y − 2z = 5?

4 Transform the point R = (1, 2): scale it
along the y-axis with factor 0.5; move it up
the y-axis by 4; then shear it vertically by 2.
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Homogeneous Coordinates

Cartesian 2D (x, y)-coordinates: P = (x, y) ⇔ Homogeneous 2D
coordinates P = (x, y, 1) or (xw, yw,w); w 6= 0:

[
x
y

]
←→

xy
1

 ≡
xwyw
w


Cartesian 3D (x, y, z)-coordinates: P = (x, y) ⇔ Homogeneous
3D coordinates P = (x, y, z, 1) or (xw, yw, zw,w); w 6= 0:

xy
z

 ←→


x
y
z
1

 ≡

xw
yw
zw
w


40 / 62



Outline Math • × Sum1 •
× Planes 2D Affine Sum2 Homogeneous 3D Affine Miscell Sum3

Homogeneous Coordinates: Why?

• Affine transformation F consists of a linear (matrix)
transformation and a translation: F(p) = Mp+ t

• Goal: Represent translations with a matrix, too: F(p) = Mp

Solution – Homogeneous coordinates:

• Add to every vector an additional coordinate w, which is

initially set to 1: p =

[
x
y

]
−→

xy
1


• Also add another row and column to the matrices, specifying

the transformations, e.g.,

M =

[
m11 m12

m21 m22

]
−→

m11 m12 0
m21 m22 0
0 0 1


41 / 62



Outline Math • × Sum1 •
× Planes 2D Affine Sum2 Homogeneous 3D Affine Miscell Sum3

1D Homogeneous Coordinates

Cartesian (inhomogeneous) 1D coordinate x:

• A point is represented by a single value, e.g., x = 1.

Homogeneous 1D coordinates represent the same 1D point by a

2D vector [x′, w]T or
[
x′

w , 1
]T

, which defines a 2D ray:

w

0 x′
1

x
2

3

1

2

3

Ray 1

[
1
1

]
or w

[
1
1

]
for w 6= 0

w

0 x′
1

x
2

3

2

4

6

Ray 2

[
2
1

]
or w

[
2
1

]
for w 6= 0
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2D Homogeneous Coordinates

Cartesian (inhomogeneous) 2D coordinates:

• A point P is represented by a 2D vector, e.g., [xp, yp]
T.

The same 2D point is represented by a homogeneous vector

[x′, y′, w]T or multiple of the vector
[
x′

w ,
y′

w , 1
]T

, defining a 3D ray:

y′

0 w

x′

y

1

x

xp

yp

Ray w

xpyp
1


P
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Using Homogeneous Coordinates

1 Every vector gets an additional coordinate with value 1.

2 Every matrix gets an additional row and column (0, . . . , 0, 1).

For affine transformations other than translations, no difference:[
a b
c d

]
︸ ︷︷ ︸

M

[
x
y

]
︸︷︷︸
p

=

[
ax+ by
cx+ dy

]
︸ ︷︷ ︸

Mp

⇒

a b 0
c d 0
0 0 1

xy
1

 =

ax+ by
cx+ dy

1


Converting translation vector t into translation matrix T:

p︷︸︸︷[
x
y

]
+

t︷︸︸︷[
tx
ty

]
=

p+t︷ ︸︸ ︷[
x+ tx
y + ty

]
⇒ T

xy
1

 =

1 0 tx
0 1 ty
0 0 1

xy
1

x+ tx
y + ty

1


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Converting Coordinates

Cartesian (ordinary) to homogeneous coordinates:

• Just add another coordinate (often called w-coodinate): e.g.,
[x, y, z]T → [x, y, z, 1]T.

Homogeneous to ordinary coordinates:

• Divide all other coordinates by w-coordinate (if w 6= 0): e.g.,

[x, y, z, w]T →
[ x
w
,
y

w
,
z

w

]T

• All homogenous 2D coordinate points [wp1, wp2, w]
T with

w 6= 0 represent the same ordinary 2D point [p1, p2]
T.

• Usually (e.g., for affine transformations) w = 1, so the
conversion means just omitting the w-coordinate.
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Conversion Examples

The ordinary 3D point [5, 3, 2]T has the homogeneous
representation [5w, 3w, 2w,w]T with an arbitrary factor w 6= 0,
e.g., 

5
3
2
1

 , or


15
9
6
3

 , or


−55
−33
−22
−11

 , or


0.05
0.03
0.02
0.01

 , and so on.

Conversely, the homogeneous vector [900, 300, 450, 150]T and all
other vectors of the form [6α, 2α, 3α, α]T with α 6= 0 represent the
same 3D point [6, 2, 3]T; i.e., 900

150 = 6; 300
150 = 2; and 450

150 = 3.

• In homogeneous coordinates projective transformations as
well as affine transformations (e.g. translations, rotations,
scaling) are specified by linear equations.
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3D Affine Transformations

Mostly analogous to 2D and represented by a left-multiplied matrix
M in homogeneous coordinates, too: Mv.

Translation T by a vector t = [tx, ty, tz]
T:

• Similar to identity matrix.

• The rightmost column contains t.
T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


Scaling S about the origin with scaling factors sx, sy, sz:

• Similar to identity matrix.

• Scaling factors at main diagonal.

• Negative sx, sy, or sz reflect on the
x = 0, y = 0, or z = 0 plane.

S =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1


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3D Affine Transformations

General shearing H:

• Any coordinate (x/y/z) can linearly
influence any other coordinate.

• hyx expresses how much y influences x.

H =


1 hyx hzx 0
hxy 1 hzy 0
hxz hyz 1 0
0 0 0 1


Examples:

hyx > 0;
all others = 0

hyz > 0;
all others = 0

hyx > 0; hyz > 0;
all others = 0
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3D Affine Transformations: Rotation

Rotations are the most difficult transformations.

• We will consider three rotation situations:

1 Rotation around the three coordinate axes
(x, y, z).

2 Rotation to align an object with a new
coordinate system.

3 Rotation around an arbitrary axis.

• We use a right-handed coordinate system.

• We use positive (right-handed) rotation, i.e.
counterclockwise when looking into an axis.
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1. Rotating Around Coordinate Axes (x, y, z)

Three matrices for positive (right-handed) rotation
(C and S stand for cos θ and sin θ, respectively).

Rotation
about x-axis:

Rotation
about y-axis:

Rotation
about z-axis:

Rx =


1 0 0 0
0 C −S 0
0 S C 0
0 0 0 1



Ry =


C 0 S 0
0 1 0 0
−S 0 C 0
0 0 0 1



Rz =


C −S 0 0
S C 0 0
0 0 1 0
0 0 0 1



Notes on 3× 3 rotation matrices:

Row and column corresponding to ro-
tation axis are as for the identity I.

Other elements are C on and ±S off
diagonal, so that R = I if θ = 0.

Sign of S can be inferred from the
fact that rotation around x, y, z by
θ = 90◦ transforms y → z, z → x,
x→ y, respectively.
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2. Rotating to Align with New Coordinate Axes

Find: the matrix R that rotates the coordinate system to align
with a new coordinate system (a,b, c) with the same origin.

• (x,y, z) – unit vectors along
the axes of the old system.

• (a,b, c) – unit vectors along
the axes of the new system.

Solution:
R3×3 should do
the following:

R3×3[1 0 0]T = a
R3×3[0 1 0]T = b
R3×3[0 0 1]T = c

Using homogeneous coordinates:

[
R3×3 0

0T 1

]
︸ ︷︷ ︸

R


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1

 =


ax bx cx 0
ay by cy 0
az bz cz 0

0 0 0 1

 = R
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3. Rotating About an Arbitrary Axis

• Often need to rotate an object about some
arbitrary axis through a reference point on it.

• E.g., forearm of robot rotating around an
axis through the elbow.

Involves three steps:

1 Translate the reference point to the origin.

2 Do the rotation.

3 Translate the reference point back again.

• Translation is easy (steps 1 and 3).

We know how to rotate about coordinate axes, but how about an

arbitrary axis through the origin?

1 Textbook method: Decompose the rotation into primitive
rotations about x, y, and z axes.

2 Coordinate system alignment method.
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(3.1) Arbitrary Axis Rotation: Textbook

1 Rotate the object so that the required
axis of rotation r lies along the z-axis
(RalignZ)

2 Do the rotation about z-axis

3 Undo original rotation (R−1alignZ)

How to get RalignZ?

1 Measure azimuth θ as a right handed
rotation about the y-axis, starting at
the z-axis.

2 Measure elevation (or ”latitude”) φ as
the angle above the plane y = 0.

3 RalignZ = Rx(φ)Ry(θ)

φ = tan−1
(

uy√
u2
x+u2

z

)
θ = atan2(ux, uz)

i.e. a 4-quadrant

tan−1
(
ux
uz

)
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(3.2) Arbitrary Axis Rotation: Alignment

Given:
• Coordinate system (a,b, c) attached to the object to

be rotated.

• Position P of the object’s coordinate system.

• New system (u,v,n) to rotate the object to.

Solution:
1 Translate the object to the origin (T−1P ).

2 Rotate (a,b, c) to align with the world coordinate axes
(inverse of the ”rotate to align” case: R−1abc).

3 Rotate the coordinate axes to align with (u,v,n)
(Ruvn).

4 Translate the object back to the original position (TP ).

The full matrix: TPRuvnR
−1
abcT

−1
P
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The Inverse of a Rotation Matrix

Columns of a rotation matrix are unit vectors along the rotated
coordinate axis directions.

• So columns are orthogonal, i.e., their dot products = 0:ax bx cx
ay by cy
az bz cz


︸ ︷︷ ︸

RT
3×3

ax ay az
bx by bz
cx cy cz


︸ ︷︷ ︸

R3×3

=

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

I3×3

RT
3×3R3×3 = I3×3 therefore, R−13×3 = RT

3×3

• The inverse of a rotation matrix is its transpose.

• Matrices with this property are called orthogonal.
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Examples

https://vimeo.com/2473185
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Composition of Transformations

• All transformations that can be represented in the matrix form.

• Combine several transformations into a single matrix by multiplying
all transformation matrixes: MnMn−1 · · ·M1 = M

• Transformation of the rightmost matrix is applied first (i.e., M1).

Example – Rotating an object about its centre point C:

1 Translate the object so that its centre is at the origin (M1: C → 0).

2 Rotate about the origin (M2: by angle θ).

3 Translate object back to its original position (M3: 0→ C).q1q2
1

 =

1 0 c1
0 1 c2
0 0 1

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

1 0 −c1
0 1 −c2
0 0 1


︸ ︷︷ ︸

M=M3M2M1

p1p2
1


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Order of Transformations Does Matter!

In general, affine transformations do not commute, i.e., KL 6= LK.

(a) First scale by (1, 2), then rotate 90◦:

M =

0 −1 0
1 0 0
0 0 1

1 0 0
0 2 0
0 0 1

 =

0 −2 0
1 0 0
0 0 1


(b) First rotate 90◦, then scale by (1, 2):

N =

1 0 0
0 2 0
0 0 1

0 −1 0
1 0 0
0 0 1

 =

0 −1 0
2 0 0
0 0 1


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Question 1 [1996 exam]

Which homogeneous 2D matrix M transforms (a) to (b)?

y

x
0

0
1

1

2

2 (a) (b)

y

x
0 1 2 3 4 5

0

1

2

30◦

3

2 1

• Sometimes it is easier to do this backwards, then take inverse, i.e.,

starting with (b): Rotate −30◦; Shift by (−3, 1); Scale by (0.5, 1).

• Hence the required transformation is: M = R(30◦)T(3,−1)S(2, 1)
(first scaling, then translation, finally rotation).

• Do not forget to use homogeneous matrices.
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Question 2 [2003 exam]

Which homogeneous 2D matrix M transforms (a) to (b)?

You are allowed to write M as a product of simpler matrices (i.e.,
you need not multiply the matrices).
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Summary 3

1 Homogeneous coordinates make it possible to represent
translation as a matrix.

2 3D affine transformations similar to 2D: translation, scaling,
shearing, and rotation.
• Column vectors of a rotation matrix R are axis unit vectors of

a new coordinate system to align the current unit vectors x, y,
and z with.

• R−1 = RT

3 Transformations are applied from right to left.

References:

• Homogeneous coordinates: Hill, Section 4.5.1

• 3D affine transformations: Hill, Section 5.3
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Quiz

1 An object has a local coordinate system

a = (1, 0, 0), b = (0, 0,−1), c = (0, 1, 0)

at position (−10, 2, 5). Which homogeneous matrix rotates the
object into the new coordinate system

u = (0,−1, 0), v = (0, 0,−1), n = (1, 0, 0)?

2 Solve Questions 1 and 2
(Slides 59 and 60).

3 Create your own variant
of these questions and
solve it.

Count the black dots! =⇒
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