
© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 1

8 Viewing and Projection

1. OpenGL Rendering Pipeline
2. OpenGL tools for Modeling and Viewing
3. Orthographic and Perspective Cameras
4. View Transformation
5. Specifying View Position and Orientation
6. Perspective Transformation
7. Clipping Edges after Perspective Transformation

� Textbook Readings: Hill 5.6.1, 5.6.2; Chapter 7.1 – 7.4

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 2

8 Viewing and Projection
� Learning objectives and problems to be solved

� Transformations and projections needed to render a 3D scene:
What are the modeling, viewing , and projection transformations and
how are they applied in the rendering pipeline? How are they invoked
in OpenGL?

� Viewport: What is the viewport transformation, how is it used, how do
we create multiple viewports?

� View Transformation
� What are some different ways a view transformation can be specified, what

is the matrix for the transformation, and how is it implemented in OpenGL?
� How can we specify a view attached to an object in the scene?

� View Projection
� What are the transformations for orthographic and perspective projection?
� How are homogeneous coordinates used for perspective scaling?
� How are 3D objects clipped in 4D space?

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 3

8.1 OpenGL Rendering Pipeline

� User sets up state of transformation matrices in pipeline with calls like glOrtho,
glTranslatef, glRotatef, etc

� Then user sends scene components down pipeline with
glBegin(<thing>)..glEnd() sequences, GLUT func calls, etc

� After a program sets the transformations to be used OpenGL automatically
applies transformations to all vertices.

� These notes discuss various transformation stages of pipeline

� MODEL_VIEW, PROJECTION and Viewport transformations

Hill Chapter 5.6.1 (review)

Modeling
Transformation

View
Transformation

Projection
Transformation

Viewport
Transformation

Scene primitives
(polygons, points, lines, etc.
Includes GLUT “primitives”.)

Display

The “MODELVIEW” transformation

Clipping Illumination

Rasterization

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 4

Rendering Pipeline: ModelView Matrix
� Modelview matrix: combines modeling and viewing transforms.

� Modeling transforms: M, translate, rotate, and scale applied to primitives
to compose objects of 3D scene. *** Different transforms for each object.

� Viewing transforms: V, translate and rotate applied to position the camera
(eye) for viewing. *** Same viewing transforms applied all objects.

� V and M combined into one modelview matrix, MModelView

MModelView = V M = (RzVRyVRxVTV) (T0Rx0Ry0Rz0S0) – when object 0 drawn
MModelView = V M = (RzVRyVRxVTV) (T1Rx1Ry1Rz1S1) – when object 1 drawn.

� Transforming a 3D point *** ORDER OF MATRICES IS IMPORTANT!!!
Mathematically: model transformations applied 1st, view transformations 2nd.
Transformed P’ = MModelView P = (RzVRyVRxVTV) (T0Rx0Ry0Rz0) S0 P

= (RzVRyVRxVTV) (T0Rx0Ry0) Rz0 P(1)

= (RzVRyVRxVTV) (T0Rx0) Ry0 P(2)

. . .
= (RzV) RyV P(5)

= RzV P(6) = P’

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 5

Rendering Pipeline: Modeling Transf.
� Modeling Transformation Examples:

� OpenGL demo – Instance (modeling) and view transformations.

4 legs of a chair, each with
separate Translate and Scale

modeling transformations:
leg0 = T0S0 • cube,
leg1 = T1S1 • cube, etc.

6 instances of cube:
chair in Master Coord. Space

Instance of chair
translated in
World Coordinates.
All model parts
transformed by same
instance transformation(s).

3 chair instances
translated and
rotated in World
Coordinates

Cube in Master Coord. Space
(RHS)

Z

Y

X

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 6

Rendering Pipeline: Projection Matrix
� Projection matrix: specifies transformation from 3D World

coordinate space to normalised 3D camera/eye coord. space.
� Defines 3D viewing volume that will be mapped onto the 2D drawing

window, i.e., the viewport (actually still in 3D viewport, because
3D � 2D projection occurs after 3D clipping and visibility computations
during rasterization stage).

� Projection transformation matrix, MProj, maps 3D World Coordinate
values into 3D Normalised Device Coordinates (NDC). View volume
boundaries (rectangular block) mapped to {-1, +1} cube in X, Y, and Z. 3D
clipping performed most efficiently in NDC.

� Aspect ratio (width/height ratio) of view volume must match aspect ratio
of viewport to preserve correct x,y,z proportionality of objects.

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 7

� In OpenGL window coords. are relative to eye position.

� In OpenGL World Coords. are RHS and NDC are LHS, so projection
transformation also inverts Z values. Allows Z clipping planes to be
specified as positive distances from the eye position. For example, Z
coord. of near clip plane = Zeye - Znear , Z coord. of far clip plane = Zeye - Zfar

� Similar mapping for perspective projection (see later slides)

� OpenGL demo – orthographic and perspective view volumes

Projection Matrix (cont’d)

(xleft, ybottom, znear)

(xright, ytop, zfar)

RHS

World Coordinates

LHS

(-1, -1, -1)

(1, 1, 1)

NDC

MProj

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 8

Rendering Pipeline: Viewport Matrix
� Viewport transformation : specifies mapping from normalised

window (3D viewing volume in NDC) to a 3D viewport.
� After passing through the MODEL_VIEW and PROJECTION matrices, all

vertex coordinates x,y and z are in range -1 to 1.
� Finally, these floating point values have to be mapped to integer screen

coordinates (becomes input values for rasterization stage).
� Mapping: from range {-1, +1} usually

to range {0, WINDOW_WIDTH} and {0, WINDOW_HEIGHT}
� But user can override this with a call to
glViewport(x, y, width, height); // or alternately

glViewport(xmin, ymin, xmax-xmin, ymax-ymin);

� We used this command in the GLUT window reshape callback function.

� Viewport matrix
� Maps NDC boundaries onto viewport boundaries (also called Device

Coordinates, DC).

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 9

Rendering Pipeline: Viewport Matrix
� In OpenGL viewport matrix includes inverting Y coordinates because

viewport coordinate origin is at upper left.

� Viewport transformation is the world-to-viewport mapping from chapter 3.
Rewrite the equation from chapter 3 in homogeneous coordinates and
replace w.l, w.r, w.b, w.t with -1, 1, -1, 1, respectively.

� Denote the normalised World Coordinates (NDC coords. in range {-1, +1})
by x = (x, y, z, 1)T and the 3D screen coordinates (in range {-1, +1}) by
u = (u, v, n, 1)T then the world-to-viewport mapping (NDC-to-DC) is:

� UDOO the transformation for device coordinates, DC, in range:
{0, (maxScreenX-1)}, (maxScreenY-1), 0}, {0, (maxZbuffer-1)}:

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

+−

+−

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

1
1000
1100
2

..
0

2
..

0

2
..

00
2

..

1
z

y

x

bvtvbvtv

lvrvlvrv

n

v

u

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 10

Viewport Matrix (cont’d)
� Problem: How to write a GL program that displays multiple views of a

scene, each one in a different viewport?

� Solution: Multiple viewports
Multiple views of a scene, e.g., architectural drawing front, side, and top views
Loop: repeat for each viewport

� Set this viewport: call OGL function
glViewport(x, y, width, height);

� Set view projection for this viewport (might be the same for all viewports, if
so do this before loop)
glOrtho(left, right, bottom, top, zNear, zFar);

or other such as gluPerspective(…);

� Set camera view position and orientation for this viewport
gluLookAt(left, right, bottom, top, zNear, zFar);

or other such as glTranslatef(…); glRotatef(…);

� Draw scene

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 11

Viewport Matrix (cont’d)
� Multiple viewports code example:

4 views: perspective, front, side, and top (ortho). window = 1000 x 1000, viewports = 250 x 250.
Demonstrating use of glTranslatef/glRotatef and gluLookAt.

� OpenGL demo program – 1, 2, and 4 viewports

// bottom left: perspective
glViewport(0, 250, 250, 250);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(yfov, aspect, zNear, zFar);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(viewXAngle, 1.0f, 0.0f, 0.0f);
glTranslatef(viewX, viewY, viewZ);
drawScene();

// set orthographic projctn (all 3 vp)
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left, right, bottom, top,

zNear, zFar);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

// top right: orthographic, front view
glViewport(250, 0, 250, 250);
glLoadIdentity();
gluLookAt(0.0f, 0.0f, 10.0f,

0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f);
drawScene();

// top left: orthographic, side view
glViewport(0, 0, 250, 250);
glLoadIdentity();
glRotatef(-90.0f, 0.0f, 1.0f, 0.0f);
glTranslatef(-10.f, 0.0f, 0.0f);
drawScene();

// bottom right: orthographic, top view
glViewport(250, 250, 250, 250);
glLoadIdentity();
gluLookAt(0.0f, 10.0f, 0.0f,

0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f);
drawScene();

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 12

OpenGL Rendering Pipeline: Revision

� Summary: Rendering Pipeline Coordinate Spaces and
Transformations
� Note: to render multiple viewports with perhaps different view

transformations and projections traverse the pipeline once for each
viewport and view (redraw/resend same primitive geometry).

Modeling
Transformation

View
Transformation

Projection
Transformation

Viewport
Transformation

Scene primitives

Display

The “MODELVIEW” transformation

Clipping Illumination

Rasterization

Master
Coord. Space

World Coord.
Space

Camera
Coord. Space

Normalised
Coord. Space

(NDC)

Device
Coord. Space

(DC)

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 13

8.2 OpenGL Tools for Modeling, Viewing
� Set camera for parallel (orthographic) projection:

� set matrix mode: glMatrixMode(GL_PROJECTION);
� reset top of stack : glLoadIdentity();
� multiply by 3D ortho matrix (values relative to eye position, LHS coords.):
glOrtho(left, right, bottom, top, near, far);

� CTMProj[top of stack] � CTMProj post-multiplied by transf. matrix

� Position and orient camera:
� glMatrixMode(GL_MODELVIEW); // select CTMModelView stack

� reset top of stack : glLoadIdentity();
� multiply by view transformation matrix, may use
glTranslatef() and glRotatef(), or
gluLookAt(eye.x, eye.y, eye.z, look.x, look.y, look.z,

up.x, up.y, up.z);

� CTMModelView[top of stack] � CTMModelView post-multiplied by transf. matrix

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 14

OpenGL Modeling, Viewing Tools (cont’d)
� Set Model (instance) transformations:

� glMatrixMode(GL_MODELVIEW); // select CTMModelView stack

� apply:
glTranslatef(tx, ty, tz);
glRotatef(angle, ux, uy, uz); // angle in degrees
glScalef(sx, sy, sz);

� CTMModelView[top of stack] � CTMModelView post-multiplied by each transf.
matrix

� use glPushMatrix() and glPopMatrix() to save/restore matrix state
for different model objects (but same view transformation).

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 15

OpenGL Modeling, Viewing Tools: Hints
� Modeling, viewing, and projection functions merely set OpenGL state.

Actual drawing occurs only when primitive functions are called.
� Normal order is GL_PROJECTION transf., then GL_MODELVIEW transf.

(doesn’t matter which is set first as long as both before drawing)
� Order of model and view transf calls (applied in opposite order):

� identity: CTMModelView[top] = I
� view transformations: CTMModelView[top] = MView

� push matrix stack: CTMModelView[top] and CTMModelView[top-1] now both = MView

� model0 transformations: CTMModelView[top] = MView MModel0
� draw 1st object: all vertices transformed by CTMProj[top] CTMModelView[top]
� pop matrix stack CTMModelView[top] = MView

� push matrix stack: CTMModelView[top] and CTMModelView[top-1] now both = MView

� model1 transformations: CTMModelView[top] = MView MModel1
� draw 2nd object: all vertices transformed by CTMProj[top] CTMModelView[top]
� pop matrix stack CTMModelView[top] = MView

� MUST set identity before projection and also before view, but NOT before
any of the model transformations (why?)

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 16

OpenGL Modeling, Viewing: Aspect Ratio
� Final pipeline transformation step (after 3D clipping) is viewport

transformation.
glViewport(GLint x, GLint y,

GLsizei width, GLsizei height);
Default viewport is entire drawing window, (0, 0, winWidth, winHeight).

� Aspect ratio of view volume and viewport should be same.

� Problem: How to write a GLUT program that automatically resets
the view volume aspect ratio when window (viewport) is resized?

View volume
with 2:1 aspect ratio

in World Coords

Viewport
with 2:1 aspect ratio

Viewport
with 1:2 aspect ratio

Normalised view volume
1:1 aspect ratio

in NDC

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 17

Aspect Ratio: reshape callback function
� Solution: in GLUT, use reshape callback to adjust viewport

and view volume aspect ratio after a window resize event.
� Register reshape callback function (in main at prog. init.)

void reshape(GLsizei width, GLsizei height); // prototype
glutReshapeFunc(reshape); // callback registration

� Define reshape callback function (in main prog. module)
// left, right, bottom, top = class member or global variables
void reshape(GLsizei width, GLsizei height) {

glViewport(0, 0, width, height); // set viewport size
GLfloat aspect = (GLfloat)width / (GLfloat)height; // NOT int!!!
GLdouble center = (left + right) / 2.0;
GLdouble newHalfWidth = aspect * (top - bottom) / 2.0;
left = center - newHalfWidth; right = center + newHalfWidth;
glMatrixMode(GL_PROJECTION); // reset proj matrix
glLoadIdentity(); // 3D window->viewport
glOrtho(left, right, bottom, top, zNear, zFar); // mapping
drawSceneObjects(); // redraw all objects

}

� OpenGL demo program – viewport resize, aspect ratio resize
© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 18

8.3 Orthographic & Perspective Cameras
� Orthographic (Hill 5.6.1/2) � Perspective (Hill 7.2, 7.4, …)

Eyepoint Near plane

Far plane

Look
direction

a. View transformation
b. Transforming coords to range

(-1,+1)
c. 3D � 2D Projection

a. View transformation
b. Perspective transformation

(includes scaling)
c. 3D � 2D Projection

Near plane

Far plane

Eyepoint

Look direction

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 19

Ortho, Perspective Cameras: OpenGL
� Orthographic

� void glOrtho(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble zNear, GLdouble zFar)

� View volume boundaries in World Coord units, relative to eyepoint in the
look direction. Z is positive distance from eye (along negative Z axis)

� View volume may be symmetric about look direction vector (typical).

� Perspective
� void gluPerspective(GLdouble fovy, GLdouble aspect,

GLdouble zNear, GLdouble zFar)

� Vertical field of view angle specified in degrees.
� Horizontal fov determined by aspect ratio = width/height

fovx = aspect * fovy;

� View volume (frustum, or truncated pyramid) always symmetric about
eyepoint towards the look direction.

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 20

8.4 View Transformation
� Default view transformation is identity: eye at origin looking down

negative Z axis [OpenGL demo program]

� View transformation is combination of a translation that moves
eye to World Coord. origin and a rotation that aligns look
direction with negative Z axis (same for both projection types).

z

Y

x

Orthographic camera

Y

xz

Eyepoint

Far plane

Near plane

z

Y

x

Perspective camera
Far plane

Eyepoint
Near plane

Y

xz

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 21

8.5 Specifying View Position & Orientation

� List of Problems
How to write an OpenGL program that sets the view for a camera:
1. Given an camera (eye) position and a point to look at?
2. Given an eye translation and a rotation?
3. For an airplane flight simulator (simulating the view out the front

window) where the simulator position and orientation are controlled via
pilot commands that set the plane’s pitch, yaw, and roll?

4. Mounted on a pilot’s helmet (simulating the pilot’s eye view such as in a
virtual reality head mounted display) where the pilot can move (translate)
and rotate his head within the airplane’s cockpit?

5. Mounted on the end of a multi-jointed robot arm, such as the NASA
Space Shuttle Canadian arm?

� You already know the answer to #1, use gluLookAt().
But, there is no single gl, glu, or glut function for #2-#5 !

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 22

8.5 Specifying View Position & Orientation

� Solution: OpenGL program that sets view position & orientation
given eye position and a point to look at. Use gluLookAt()

� Need:
� Eyepoint
� View direction
� Something that specifies

camera rotation around its axis
roughUp may be any vector
not parallel to (eye-look)
vector. Along with the
(eye-look) vector it defines
the plane in which the true
up vector must lie.
Question: why is roughUp necessary?

[OpenGL demo program]

gluLookAt(
eyeX, eyeY, eyeZ,

lookAtX, lookAtY, lookAtZ,

roughUpX, roughUpY, roughUpZ

)

y

xz

(eyeX, eyeY, eyeZ)

(roughUpX, roughUpY, roughUpZ) = (0,1,0)

(lookAtX, lookAtY, lookAtZ)

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 23

The View Coordinate System (UVN)
a.k.a. Eye Coordinate System or Camera Coordinate System

� From the Eye and LookAt points
plus the approximate Up vector,
can derive UVN Coordinate system
(Eye Coords.) basis vectors:

� n = Normalised(Eye – LookAt)
� u = Normalised(Cross(Up, n))
� v = Cross(n, u)

Alternate definition: Burkhard’s notes, 5.1 slide #14

y

xz

u

n
v

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 24

The View Transformation Matrix, V
� Translates eye to World Coordinate origin (applied 1st)
� Rotates uvn to align with xyz (applied 2nd)

0 1 0 0
0 0 1 0
0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 1

x y z x

x y z y

x y z z

x y z

x y z

x y z

u u u eye

v v v eye

n n n eye

u u u

v v v

n n n

−� �� �
� �� �−
� �� �=

−� �� �
� �� �
� �� �

−� �
� �−
� �=

−� �
� �
� �

V

eye u
eye v
eye n

�

�

�

This is what gluLookAt
computes. Note that is a

transformation applied to all
scene component vertices.

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 25

� Mathematical derivation of view matrix, V (Hill, pp. 364-366)

� Eye position along with vectors u, v, n define the UVN Coordinate
System (Eye/camera coords) relative to World Coord. System (WCS).
u, v, and n are the basis vectors of coordinate system UVN.

� Scene object vertices are defined relative to WCS. Therefore, V must be
a transformation that converts them to be relative to ECS, i.e., V = MW->E

� 2 ways to think about a geometric transformation:

� Camera analogy: motion in each case is inverse of the other
1. Real world, real visual effect: objects stationary, move camera
2. Virtual world, rendering pipeline requirements: camera stationary, move objects

� OpenGL demo program – 2 ways to visualize view transformation

View Transformation Matrix (cont’d)

Transform
old points
to new points
in same coordinate system.

P
py

px

P’

p’x

p’y
Change (transform)
coordinate system
keeping
same points.

p(1)
y

P(1)

p(1)
x p(2)

x

P(2)

p(2)
y

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 26

View Transformation Matrix (cont’d)
� Review: Hill text Ch. 5.4 “Changing Coordinate Systems”, pg.244

If i, j are basis vectors of System 1, and i’, j’ are basis vectors of System 2
(expressed relative to System 1), then transformation matrix M, with column
vectors i’, j’ and the vector, t, the translation of the origins, is the matrix that
transforms the coordinate frame (basis vectors) of System 1 into those of
System 2. I.e., columns of V are the transformed System 1 coordinate frame
basis vectors.

Example: M = T R = R =

Verify: Transform
endpoints of
vectors i, j, and
origin point by M

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

=
�
�
�

�

�

�
�
�

�

�

100
0''
0''

100
10
01

100
''
''

yy

xx

y

x

yyy

xxx

ji

ji

t

t

tji

tji

�
�
�

�

�

�
�
�

�

� −

100
0cossin

0sincos

θθ
θθ

�
�
�

�

�

�
�
�

�

�

+
+

=
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

0
'

'

1
0

1

100
''

''

yy

xx

yyy

xxx

ti

ti

tji

tji

�
�
�

�

�

�
�
�

�

�

+
+

=
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

0
'
'

1
1
0

100
''
''

yy

xx

yyy

xxx

tj

tj

tji

tji

�
�
�

�

�

�
�
�

�

�

=
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

11
0
0

100
''
''

y

x

yyy

xxx

t

t

tji

tji

i

j

i’
j’

M =
i

j

i’
j’

R = �
T =

i’

j’

ty
tx

i

j

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 27

View Transformation Matrix (cont’d)
� By Hill’s “theorem” (5.35) on page 245, if P is a point in System 2

and M is matrix that transforms System 1’s coordinate frame to
System 2’s, then M P = coordinates of the point expressed in
System 1. (see also, Burkhard’s notes, 5.8 slide #40)

So, if we know P(2) = (p(2)
x, p(2)

y,1) in System 2, i.e.,
relative to the basis vectors i’, j’, then we can solve for
P(1) = (p(1)

x, p(1)
y,1) in System 1, i.e., relative to the basis

vectors i, j using, P(1) = M P(2)

� But, for a viewing transformation:
� System 1 corresponds to World Coords., System 2 to Eye Coords.

(because the Eye Coordinate Frame. and 3D scene object vertices are expressed
relative to World Coords).

� Matrix M with basis vectors defined by the gluLookAt() parameters is the matrix
that transforms from System 2’s coordinate frame to System 1’s (Eye to World).

� However, we need a solution for the inverse: from System 1 (World) to System 2
(Eye) coordinates, P(2) = M-1 P(1), not P(1) = M P(2) .

M =
i’

j’

p(2)
x

p(2)
y

i

j

p(1)
x

p(1)
y

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 28

View Transformation Matrix (cont’d)
� Given M = T R, how to find M-1 = (T R)-1 ?
� Review: some axioms of linear algebra

� (AB)-1 = B-1 A-1 (Hill Appendix 2, pg. 825)
� an orthogonal matrix is a matrix such that:

coli • colj = 0, i � j, and coli • coli = 1 (Hill Ch. 5, pg. 243)
� a rotation matrix is orthogonal (Hill Ch. 5, pg. 243)
� M-1 = MT (transpose) if M is orthogonal (Hill Ch. 5, pg. 243)

(also, Burkhard’s notes, 5.8, slide #44)
� The inverse of a translation matrix is a matrix (by definition of translation)

with the translation column terms negated.

� Thus, View Transformation Matrix V,
that transforms points from
World Coordinates to Eye Coordinates is

V = M-1 = (T R)-1 = R-1 T-1 = RT T-1

0 1 0 0
0 0 1 0
0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 1

x y z x

x y z y

x y z z

x y z

x y z

x y z

u u u eye

v v v eye

n n n eye

u u u

v v v

n n n

−� �� �
� �� �−
� �� �=

−� �� �
� �� �
� �� �

−� �
� �−
� �=

−� �
� �
� �

V

eye u
eye v
eye n

�

�

�

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 29

View Transformation Matrix Summary
� The rendering pipeline processing draws geometric primitives as seen from

the World Coordinate origin looking down the –Z axis.
� The View Transformation Matrix V, transforms points from World

Coordinates to Eye Coordinates. The result is that primitives appear as they
would if the eye were at the origin looking down the –Z axis.

� If a view’s position and orientation are specified by a translation matrix and a
rotation matrix, M = T R, then the view transformation matrix V is the inverse
of the matrix M:

V = M-1 = (T R)-1 = R-1 T-1 = RT T-1

� M is the same as an instance transformation (modeling transformation)
without any scale transformation. So, if we specify a view as part of our
model, we can determine the corresponding view transformation from the
inverse of the view’s modeling transformation!

� We now have a solution to problems # 1 and 2 (slide #21).
Do you think you now know the answer to problems #3, #4, and #5?

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 30

Alternative View Transform Specifications
� View specified as a general instance transformation

� Calls to glRotatef() for Euler angle rotations and to glTranslatef()
for a translation to orient and position the camera (but, no scale).

� Transformation matrix M that transforms System 1’s coordinate frame
(World Coord.) to System 2’s frame (Eye Coord.) is:

M = T Rx Ry Rz
Matrix V, that transforms points from World to Eye Coordinates is

V = M-1 = (T Rx Ry Rz)-1 = Rz
-1 Ry

-1 Rx
-1 T-1

� Note: tx, ty, tz are in World Coords., NOT relative to camera orientation.

� Specified as a hierarchy of instance transformations
Example: camera on the gripper of a robot arm
� Arm hierarchy, joints: base, lower arm, upper arm, gripper
� Instance transformation of gripper

M = TB RBy TLA RLAx RLAy TUA RUAx RUAy TG RGx RGy RGz

� View transformation for camera attached to gripper, V = M-1

camera

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 31

View Transformations for Aerospace
� View specified as pitch, yaw, roll

� Euler angle specification, normally applied:
Rroll Ryaw Rpitch

� pitch = angle n axis makes with plane Y = 0
(horizontal)
same as rotation about u axis

� yaw = angle u axis makes with plane Z = 0
same as rotation about v axis
(also known as heading or bearing)

� roll = angle u axis makes with plane X = 0
same as rotation about n axis

� Graphics applications often use a “no-roll”
camera – pitch and yaw only

� M = T Rroll Ryaw Rpitch , V = M-1

V = (T Rroll Ryaw Rpitch) -1 = R-1
pitch R-1

yaw R-1
roll T-1

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 32

View Transformations Aerospace (cont’d)
� View specified as azimuth, elevation

(tilt, optional but uncommon)
� Euler angle specification, normally

applied:
Relevation Razimuth

� azimuth = angle u axis makes
with the plane Z = 0
same as rotation about v axis,
same as yaw

� elevation = angle n axis makes
with the plane Y = 0 (horizontal)

� M = T Relevation Razimuth
V = M-1

= (T Relevation Razimuth) -1

= R-1
azimuth R-1

elevation T-1

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 33

View Transformations Aerospace (cont’d)
� Question: Are these transformations really correct?

� if M = T Rroll Ryaw Rpitch
then V = (T Rroll Ryaw Rpitch) -1 = R-1

pitch R-1
yaw R-1

roll T-1 ?
if M = T Relevation Razimuth
then V = (T Relevation Razimuth) -1 = R-1

azimuth R-1
elevation T-1 ?

� M = camera’s instance transformation = position and orientation in World
Coords. Translation by (tx, ty, tz)T will be applied after the rotations. Result:
first rotates camera about its origin and then translates in World
Coordinates! [OpenGL demo program]

� But – want to translate relative to look direction, i.e., in Eye Coordinates.
� Examples:

� For the default view orientation: “forward” = translate (0, 0, -dt), and
“pitch up” = rotate dAngle about X axis, (1, 0, 0).

� But, if camera has been rotated 90 degrees left and rolled 45 degrees, then
“forward” = translate (-dt, 0, 0), and “pitch up” = rotate ??? about (?, ?, ?) axis.

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 34

View Transformations Aerospace (cont’d)
� Problem: How to “fly” a view using motion relative to view

direction
� Need to convert changes in position and orientation that are specified

relative to current view orientation into changes relative to World Coords.
� “slide” function: translation (+/-) for back/forward, right/left, and up/down

relative to current orientation. Equivalent to motion along the n, u, and v
axes in the camera’s UVN coordinate system.

� Given: displacement vector d2 = (du, dv, dn) in UVN Coord. System (System 2)
Find: displacement vector d1 = (dx, dy, dz) in XYZ Coord. System (System 1)

�

matrix that transforms System 1 basis vectors
M = into System 2 basis vectors. Then, by Hill’s

theorem (slide #24-25), d1 = M d2
(also, Burkhard’s notes, 5.8 slide #40)

� For slide() and roll() functions C++ code, see Hill text pg. 368

�
�
�

�

�

�
�
�

�

�

zzz

yyy

xxx

nvu

nvu

nvu

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 35

ModelView Transformation Summary
� Summary: Rendering pipeline ModelView transformation

� Vertex coordinate points automatically transformed by ModelView matrix
P’ = MModelView P = (V M) P
where V = gluLookAt matrix or V = Rvz

-1 Rvy
-1 Rvx

-1 Tv-1

and M = T Rx Ry Rz S or combination of several T R S matrices.
� Points are transformed so that they are relative to the Eye Coordinate

system with eye point at the origin. Thus, vertices that fall within the eye’s
viewing volume have a negative Z coordinate value (in RHS coordinate
system).

� OpenGL demo program
� transforming eye/camera relative to the World versus transforming the objects in

the World relative to the eye/camera
� flying the camera view

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 36

Questions about View Transformations
1. Why does gluLookAt() fail if you try looking vertically down and set

up = (0,1,0)?
2. Write your own version of gluLookAt.
3. gluLookAt takes 9 float parameters. What would be the minimum number to

specify the camera position and orientation?
4. What significance, if any, does the eyePoint have when specifying an

orthographic view?
5. In the demo program shown in lecture you saw views in additional viewports

that showed side, front, and top views as well as the main camera view of
the 3D scene. Thus, the demo showed
a “view” and a “view of a view”. Write a
program that shows two views in two
viewports, a main view and another view,
either a side, a front, or a top view.

Main view
(shown from the top)

Side view of main view
(shown from the top)

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 37

Questions View Transformations (cont’d)
6. Example from NASA Ames Mars Virtual Planetary Exploration project.

The project’s graphics system renders a polygon mesh model of the surface of
Mars. A space exploration scientist wears a virtual reality head mounted display
(HMD). The rendered view is displayed on 2 small LCD screens inside the HMD.
Attached to the HMD is a 6 degree-of-freedom (DOF) magnetic tracker that
measures the helmet’s (x,y,z) position and (pitch, yaw, roll) orientation 30 times/sec.
These are measured relative to the tracking device’s fixed coordinate system in the
laboratory (same as World Coords.). The scientist has a 5 DOF no-roll joystick
(left/right, up/down, forward/back plus 2 twist rotations for pitch and yaw). This
controls the position and orientation of a virtual hover craft on which the virtual
explorer is sitting on virtual Mars. Translations and rotations of the joystick are
measured relative to joystick‘s fixed coordinate system (same as World Coords.).

Write the function that sets the hover craft transformations and the view
transformation for this system. Joystick transformations applied to the hover craft
should be relative to the craft’s current orientation. Camera transformations applied
to the view of the scene should be relative to the scientist’s current head rotation
and the hover craft rotation.

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 38

Perspective Projection
� Problems to be solved:

� How can a graphics system simulate real world perspective depth
(distant objects rendered smaller than near objects)?

� How can a graphics system convert 3D objects to 2D perspective
corrected objects?

� Can this be done with a transformation matrix that can be applied in the
rendering pipeline (with hardware)?

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 39

Principles of Geometric Projections
� Projection: a mapping of coordinate values from a higher

dimension to lower dimension, usually N � N-1, e.g., 3D � 2D.
� Requirements:

� Projection surface: plane or hyperplane (linear projection) or surface
such as a sphere or conic section (non-linear projection).

� Projection rays, or projectors: lines from object projected towards
projection surface.

� Direction of projection: orientation of each projector
� Perspective projection: all projectors pass through a center of projection (3D

point), but have different directions.
� Orthographic (parallel) projection: all projectors parallel to a common direction

of projection.

� How to project:
� Projection ray through object vertex intersects with the projection plane.

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 40

Principles Geometric Projections (cont’d)
� Parallel projection: ray through object vertex (point) in the projection

direction (vector) [same direction for all rays].
� Perspective projection: ray through object vertex (point) and center of

projection (point) [different direction for each ray]

Perspective

center of projection projection plane

Orthographic (parallel)projection plane

� direction of projection

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 41

Principles Geometric Projections (cont’d)
� Observation about perspective projection: as center of projection

moves farther and farther away, lines of projection become more nearly
parallel. In the limit, when center of projection is at an infinite distance,
perspective projection � parallel projection.

� Rays of light from a point source shining on an opaque object forming a
shadow on a projection plane are similar to perspective projection rays.

� Rays of light from a point source at “infinite distance” (e.g., the Sun 93x106

miles from the Earth) forming a shadow are similar to parallel projection.

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 42

Perspective Projection of a 3D Point

� What are the coordinates (x*, y*, z*) of the point P = (px, py, pz) when projected onto the
view plane (z near clipping plane)?

Similar triangles: ABC and ADE
Ratios of similar sides are equal.

y* / z* = py / pz

Therefore: y* = z* (py / pz)
Substituting -N = -znear for z*
get y* = (-znear/pz) py
and x* = (-znear/pz) px

Z

Y

z* = -znear

y*

py

pz

A

C

D

E

B

eye point,
center of projection

(origin in Eye Coords.)

z near
clip plane

projection ray vertex
pointprojected

vertex
point

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 43

Perspective Projection of 3D Point (cont’d)
� Observe:

� Perspective projection is just a scaling of a point’s x and y coordinate by
the factor spersp = (-znear/pz), e.g., x* = spersp px, y* = spersp py

� For all points that are farther away than znear , -pz >= znear.
Thus, spersp= (-znear/pz) <= 1.0 and the larger the magnitude of pz (point’s
distance from the eye) the smaller the perspective scale factor:
“perspective foreshortening”.

dy = (p1y – p2y) = 3dy* = (p*1y – p*2y)
= spersp dy
= (0.4) 3 = 1.2

spersp = 0.4
Z

Y

znear = 4
pz = -10

p2y = 3

p1y = 6

p*1y = 2.4

p*2y = 1.2

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 44

Perspective Projection of 3D Point (cont’d)
� Observe:

� Perspective projection is just a scaling of a point’s x and y coordinate by
the factor spersp = (-znear/pz), e.g., x* = spersp px, y* = spersp py

� For all points that are farther away than znear , -pz >= znear.
Thus, spersp= (-znear/pz) <= 1.0 and the larger the magnitude of pz (point’s
distance from the eye) the smaller the perspective scale factor:
“perspective foreshortening”.

dy = (p1y – p2y) = 3dy* = (p*1y – p*2y)
= spersp dy
= (0.2) 3 = 0.6

spersp = 0.2
Z

Y

znear = 4 pz = -20

p2y = 3

p1y = 6

p*1y = 1.2

p*2y = 0.6

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 45

Perspective Projection of 3D Point (cont’d)
� Observe:

� Perspective projection is just a scaling of a point’s x and y coordinate by
the factor spersp = (-znear/pz), e.g., x* = spersp px, y* = spersp py

� For all points that are farther away than znear , -pz >= znear.
Thus, spersp= (-znear/pz) <= 1.0 and the larger the magnitude of pz (point’s
distance from the eye) the smaller the perspective scale factor:
“perspective foreshortening”.

OpenGL demo program

dy = (p1y – p2y) = 3
dy* = (p*1y – p*2y)

= spersp dy
= (0.1) 3 = 0.3

spersp = 0.1
Z

Y

znear = 4 pz = -40

p2y = 3

p1y = 6

p*1y = 0.6

p*2y = 0.3

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 46

Perspective Projection
� Perspective projection CANNOT be used in 3D graphics pipeline!

� Why not? Because it sets all projected z coordinates to same value, znear
But, visible surface algorithm (Z buffer alg.) needs z depth values during
rasterization stage of pipeline.

� Therefore, pipeline uses perspective transformation, not perspective
projection. Perspective transformation scales x, y, and z coordinates by a
scale factor dependent upon 1/z. Then, projection is performed during
rasterization stage after hidden surface removal.

Modeling
Transformation

View
Transformation

Projection
Transformation

Viewport
Transformation

Scene primitives
(polygons, points, lines, etc.
Includes GLUT “primitives”.)

Display

The “MODELVIEW” transformation

Clipping Illumination

Rasterization

Need z depth values here.
Projection onto view plane

(znear plane) performed here
after visible surface alg.

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 47

y

xz

Perspective Transformation and Projection
� Perspective transformation: converts 3D coordinates to

perspective corrected 3D coordinates.
� Deforms the scene

� We want perspective projection to look like this
� But, we actually perform it in a 2 step process:

� Perspective transformation: 3D � 3D
� Orthographic projection: 3D � 2D

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 48

� Perspective transformation requirements:
1. x and y values must be scaled by same factor as derived in perspective

projection equations.
2. z values must maintain depth ordering (monotonic increasing)
3. z values must map: -znear � -1 and -zfar � +1, view volume � NDC cube.

� In other words, we need a transformation that given a point P results in a
transformed point P’ such that P’x
and P’y meet requirement 1 and
f(pz) meets requirements 2 and 3.

� Question: Is there any matrix, P,
such that P P = P’ ?

� Answer: Not possible because
no linear combination of px, py, pz,
can result in a term with
pz in the denominator!

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−

−

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

1
)(133323130

23222120

13121110

03020100

z

z

ynear

z

xnear

z

y

x

pf
p

pz
p

pz

p

p

p

pppp

pppp

pppp

pppp

Perspective Transformation (cont’d)

��
�

�
��
�

� −−=)(,,' z
z

ynear

z

xnear
pf

p
pz

p
pz

P

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 49

Perspective Transformation (cont’d)
� But, there is a matrix that

can produce this result,

� Then, after conversion from homogeneous to ordinary coordinates (division
by w coordinate), we get result we need,

� This is the homogeneous coordinate
matrix that performs perspective
transformation with

then

� So, perspective transformation can be
applied via matrix multiplication in rendering pipeline (using hardware!)

��
�

�
��
�

� −−−=
z

z

z

ynear

z

xnear

p
pf

p
pz

p
pz

P
)(

,,'

nearfar

nearfar

nearfar

nearfar

zz
zz

b
zz
zz

a
−

−=
−
+−= ∗2

,

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−

=

0100
00

000
000

ba

z

z

near

near

P

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−
−

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

z

zz

ynear

xnear

z

y

x

p

ppf

pz

pz

p

p

p

pppp

pppp

pppp

pppp

)(
133323130

23222120

13121110

03020100

��
�

�
��
�

� +−−−=
z

z

z

ynear

z

xnear

p
bpa

p
pz

p
pz

P'
)(

,,

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 50

� Verify that the matrix meets our requirements:

� After multiplying by matrix P, we get these strange results!

� What to do about the homogeneous coordinates, w � 1.0 ???
Up till now we’ve ignored w term in P = (x, y, z, w)Twhen w = 1.0.

�
�
�
�
�

�

�

�
�
�
�
�

�

�

+−
==

near

near

near

near

znearnear

z

bza

yz

xz

PP* P

�
�
�
�
�

�

�

�
�
�
�
�

�

�

+−
==

far

far

near

near

zfarfar

z

bza

yz

xz

PP* P

Perspective Transformation (cont’d)

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−

=

0100
00

000
000

ba

z

z

near

near

P

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−
=

1
near

znear
z

y

x

P

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

1
z

y

x

P

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−
=

1
far

zfar
z

y

x

P

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−
+

==

z

bza

yz

xz

PP*
near

near

P

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 51

Perspective Transformation (cont’d)
� Refer back to Burkhard’s notes on 2D homogeneous coordinates. To convert

a homogeneous coordinate point, Phomog = (a, b, c),
to an “ordinary” point, Pord = (x, y), use (a, b, c) � (a/c, b/c).
� Use same conversion for 3D homogeneous points:

Phomog = (x, y, z, w) � Pord = (x/w, y/w, z/w). Also called perspective division.
� Thus, for these transformed points,

� Using,

Ordinary form of the Ordinary form of the z components:
x and y components: (a z + b) / (-z)
znear x / z = (-znear/z) x (-a znear + b) / znear = -1.0
znear y / z = (-znear/z) y (-a zfar + b) / zfar = +1.0

nearfar

nearfar

nearfar

nearfar

zz
zz

b
zz
zz

a
−

−=
−
+−= ∗2

,

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−
+

==

z

bza

yz

xz

PP
near

near

P*

�
�
�
�
�

�

�

�
�
�
�
�

�

�

+−
==

near

near

near

near

znearnear

z

bza

yz

xz

PP P*

�
�
�
�
�

�

�

�
�
�
�
�

�

�

+−
==

far

far

near

near

zfarfar

z

bza

yz

xz

PP P*

Check this out!

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 52

Perspective Transformation in OpenGL
� OpenGL perspective transformation:

combined with view volume � NDC cube transformation.
Thus, matrix =

� View volume corners are specified by points
on a frustum (a.k.a. truncated pyramid):
glFrustum(left, right,

bottom, top,
znear, zfar)

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−
−

−
−
+−

−
+

−

−
+

−

=

0100

2)(
00

0
2

0

00
2

nearfar

nearfar

nearfar

nearfar

near

near

zz
zz

zz
zz

bottomtop
bottomtop

bottomtop
z

leftright
leftright

leftright
z

P

(left, top,-znear)

(right, bottom,-znear)

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 53

Perspective Transf. OpenGL (cont’d)
� gluPerspective computes these terms from its parameters

(Hill, page 385):
top = zNear * tan((�/180)viewAngle/2);
bottom = -top;
right = top * aspect; left = -right;

� Note: with gluPerspective the view volume is always symmetric about the
view direction vector. With glFrustum is is possible to specify an arbitrary,
possible non-symmetric, view volume (useful for some stereo viewers).

(left, top,-znear)

(right, bottom,-znear)

(left, top,-znear)

(right, bottom,-znear)

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 54

Perspective Transformation: pseudodepth
� Z coordinate transformation: “pseudodepth”

� Transformed z* not linear function of z

� This is OK (sort of) because
z* meets our 2 requirements:
1. monotonic increasing, and
2. z* = -1 and +1 for z = znear and

z = zfar, respectively.

� But, can cause z-buffer precision problems! (values usually 32 bit integers)
� WARNING: avoid

� very small znear (NEVER use znear = 0)
� very large zfar

z
zz
zz

z
zz
zz

z
baz

z
nearfar

nearfar

nearfar

nearfar

−
−

−+�
�

�
�
�

�

−
+−

=
−

+=

∗2

*

()
()zzz

zzzzz
z

nearfar

nearfarnearfar

−
++= ∗2

*

znear zfar

= z*

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 55

OpenGL Rendering Pipeline: Final Revision
� Rendering pipeline

� Clipping of 3D primitives performed
in 4D clip space after view projection
transformation (but before actual 3D
� 2D projection). Transformed view
volume is now a {-1, +1} cube
(greatly simplifies clipping algorithm).

� CanonicalView Volume (CVV)

Modeling
Transformation

View
Transformation

Projection
Transformation

Viewport
Transformation

Scene primitives

Display

The “MODELVIEW” transformation

Clipping Illumination

Rasterization

Master
Coord. Space

World Coord.
Space

Camera or Eye
Coord. Space

Normalised
Coord. Space

(NDC)

Device
Coord. Space

(DC)

Perspective
Division

4D Homogeneous
Clip Coordinates

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 56

Canonical View Volume: Clipping
� But, there are 2 problems:

1. In some strange cases points that are behind the eye can have projected z
values (pseudodepth) that are in front of the eye after perspective division!
(because: for Phomog = (x, y, z, w)T � Pord = (x/w, y/w, z/w)T z/w is the same result
for negative and positive values, i.e., -z/w = z/-w and -z/-w = z/w)

2. Division is a slow operation (even in hardware). Would be nice to clip away as
many primitives as possible BEFORE performing perspective division on vertices.

� Solution: Clip in 4D Homogeneous Coordinate Space (whoa!)
� First, review how clipping to {-1, +1} NDC is performed in 3D

1. Check if points lie on inside or outside of each of the 6 clipping planes
� Example, test for point inside left plane: if px > -1, same as (px+1) > 0.

Other clip planes: (px–1) > 0, (py+1) < 0, (py–1) > 0, (pz+1) < 0, (pz–1) > 0.
� So, algorithm just adds or subtracts 1 and compares result to 0.
� Very efficient and fast, especially fast in hardware!

2. Assign result of boundary tests to outcode values for each end point of a line
using one bit for each clip plane, left, right, bottom, top, near, far.

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 57

Canonical View Volume: Clipping (cont’d)
� Outcode examples (2D figure): L R B T N F

Point A, outside the left and top boundaries = 1 0 0 1 0 0
Point B, outside the right and top boundaries = 0 1 0 1 0 0
Point C, inside all boundaries = 0 0 0 0 0 0
Point D, inside all boundaries = 0 0 0 0 0 0
Points E, E’, outside bottom boundary = 0 0 1 0 0 0
Points F, F’, outside right boundary = 0 1 0 0 0 0

3. Perform trivial accept and trivial reject tests:
� trivial reject

= both endpoints outside some one clip plane
= any 2 outcode bits both 1
= (outcode A & outcode B) != 0

� trivial accept
= both endpoints inside all clip planes
= all outcode bits 0
= (outcode C | outcode D) == 0

4. For remaining endpoint pairs, must find intersection of line with clip
planes to determine portion of line that is clipped.

A

B

D C

E

F

E’

F’

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 58

Canonical View Volume: Clipping (cont’d)
� Clipping to {-1, +1} NDC in 4D

1. Check if points lie on inside or outside of each of the 6 clipping planes
� test for point inside left plane: if px/pw > -1 or px > -pw or (pw+px) > 0.

Other planes: (pw–px) > 0, (pw+py) < 0, (pw–py) > 0, (pw+pz) < 0, (pw–pz) > 0.

2. Assign result of tests to outcode values for each point (same as in 3D).
3. Perform trivial reject and trivial accept tests (same as in 3D).
4. Find clipped line by computing intersection point of line with each

clipping plane using parametric equation for line (nearly same as in 3D),
p(t) = p0 + t(p1 – p0), 0 <= t <= 1
1. Endpoint p0 = p(tmin=0): for each plane

if it is outside the plane find t value at
intersection, save largest tmin

2. Endpoint p1 = p(tmax=1): save smallest tmax

3. If tmax > tmin reject, else clip line to {tmin, tmax}
4. Compute px(t), py(t), pz(t), and pw(t).

5. Perform perspective division of clipped end points.

A

B

E

D C D

p(tmax=1)

p(tmin=0)

p(tmax=1)

p(tmax=1)

p(tmin=0)

p(tmin=0)

tmin=0.6

tmin=0.4

tmax=0.2

tmin=0.5

tmin=0.1

tmin=0.8

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 59

Canonical View Volume: Clipping (cont’d)
� Liang-Barsky and Cyrus-Beck clippers (Hill 7.4.4, simplified)

for a single edge from point p0 to p1:
Each edge is represented as: p(t) = p0 + t(p1 – p0)
Compute outcodes; perform trivial reject and accept.
If not rejected and not accepted:
Initialize: [tMin, tMax] = [0,1]
For each halfspace {x/w > – 1, x/w < +1, y/w > – 1, y/w < +1, z/w < +1, z/w > – 1}

while tMin < tMax
Compute tCross where (extended) line crosses halfspace
if entering half-space

tMin = max(tMin, tCross)
else

tMax = min(tMax, tCross)
if tMin > tMax

Edge is outside CVV
else

Compute new edge {p0, p1} = p(tMin), p(tMax)},
p0x = p0x + tMin(p1x – p0x)
p1x = p0x + tMax(p1x – p0x)
and same for y, z, and w

t = 1

t = 0
P0

P1
x/w = -1
x = -w

)()(0011

01

xwxw

xw

pppp
pp

tCross
−−−

−−=

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 60

Questions about View Projections
� For the case of znear=1, zfar=10, plot a graph of pseudodepth versus z.
� Why isn’t it a good idea to always use a very small number for znear and a

very large number for zfar?
� Work out what the matrix P should be for an orthographic camera.
� Assuming left = -right and bottom = -top (slide #52), work out formulae for

the scaling factors required in matrix P. Compare with Hill’s formulae.
� Why does OpenGL have two separate matrices (MODELVIEW and

PROJECTION)? Why can’t we just multiply the P matrix into the
MODELVIEW matrix (as we do with the V matrix)?

� How would you compute the two view transformations for left eye and right
eye stereo views for the HMD helmet of the NASA Ames VPE project?

� Would the projection transformation for each eye’s view be the same or
different? If different, how would they differ?

