8 Viewing and Projection

1. OpenGL Rendering Pipeline
2. OpenGL tools for Modeling and Viewing
3. Orthographic and Perspective Cameras
4. View Transformation
5. Specifying View Position and Orientation
6. Perspective Transformation
7. Clipping Edges after Perspective Transformation
\square Textbook Readings: Hill 5.6.1, 5.6.2; Chapter 7.1-7.4

8.1 OpenGL Rendering Pipeline

Hill Chapter 5.6.1 (review)

- User sets up state of transformation matrices in pipeline with calls like glortho, glTranslatef, glRotatef, etc
- Then user sends scene components down pipeline with glBegin(<thing>) . .glEnd() sequences, GLUT func calls, etc

- After a program sets the transformations to be used OpenGL automatically applies transformations to all vertices.
- These notes discuss various transformation stages of pipeline
\square MODEL_VIEW, PROJECTION and Viewport transformations

8 Viewing and Projection

- Learning objectives and problems to be solved
$\square \quad$ Transformations and projections needed to render a 3D scene: What are the modeling, viewing, and projection transformations and how are they applied in the rendering pipeline? How are they invoked in OpenGL?
$\square \quad$ Viewport: What is the viewport transformation, how is it used, how do we create multiple viewports?
$\square \quad$ View Transformation
- What are some different ways a view transformation can be specified, what is the matrix for the transformation, and how is it implemented in OpenGL?
- How can we specify a view attached to an object in the scene?
$\square \quad$ View Projection
- What are the transformations for orthographic and perspective projection?
- How are homogeneous coordinates used for perspective scaling?
- How are 3D objects clipped in 4D space?

Rendering Pipeline: ModelView Matrix

- Modelview matrix: combines modeling and viewing transforms.
\square Modeling transforms: M, translate, rotate, and scale applied to primitives to compose objects of 3D scene. *** Different transforms for each object.
\square Viewing transforms: V, translate and rotate applied to position the camera (eye) for viewing. $\quad * * *$ Same viewing transforms applied all objects.
$\square \mathbf{V}$ and \mathbf{M} combined into one modelview matrix, $\mathbf{M}_{\text {ModelView }}$
$\mathbf{M}_{\text {ModelView }}=\mathbf{V} \mathbf{M}=\left(R_{z_{V}} R y_{V} R x_{V} T_{V}\right)\left(T_{0} R x_{0} R y_{0} R z_{0} S_{0}\right)$ - when object 0 drawn
$\mathbf{M}_{\text {ModelView }}=\mathbf{V} \mathbf{M}=\left(R z_{V} R y_{V} R x_{V} T_{V}\right)\left(T_{1} R x_{1} R y_{1} R z_{1} S_{1}\right)$ - when object 1 drawn.
\square Transforming a 3D point *** ORDER OF MATRICES IS IMPORTANT!!!
Mathematically: model transformations applied 1st, view transformations 2nd.
Transformed $P^{\prime}=\mathbf{M}_{\text {ModelView }} P=\left(\mathbf{R z}_{\mathbf{v}} \mathbf{R y}_{\mathrm{v}} \mathbf{R x}_{\mathrm{v}} \mathbf{T}_{\mathbf{v}}\right)\left(\mathbf{T}_{0} \mathbf{R x}_{0} \mathbf{R y}_{0} \mathbf{R z}_{0}\right) \mathbf{S}_{0} P$
$=\left(\mathrm{Rz}_{\mathrm{V}} \mathrm{Ry}_{\mathrm{V}} \mathrm{Rx}_{\mathrm{v}} \mathrm{T}_{\mathrm{V}}\right)\left(\mathrm{T}_{0} \mathrm{Rx}_{0} \mathrm{Ry}_{0}\right) \mathrm{Rz}_{0} P^{(1)}$
$=\left(\mathrm{Rz}_{\mathrm{V}} \mathrm{Ry}_{\mathrm{V}} \mathrm{Rx}_{\mathrm{V}} \mathrm{T}_{\mathrm{V}}\right)\left(\mathrm{T}_{0} \mathrm{Rx}_{0}\right) \mathrm{Ry}_{0} P^{(2)}$
$=\left(\mathbf{R z}_{\mathbf{V}}\right) \mathbf{R y}_{\mathbf{V}} P^{(5)}$
$=\mathbf{R z}_{\mathbf{V}} P^{(6)}=P^{\prime}$
© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen

Rendering Pipeline: Modeling Transf.

- Modeling Transformation Examples:

- OpenGL demo - Instance (modeling) and view transformations.

Projection Matrix (cont'd)

\square In OpenGL window coords. are relative to eye position.
\square In OpenGL World Coords. are RHS and NDC are LHS, so projection transformation also inverts Z values. Allows Z clipping planes to be specified as positive distances from the eye position. For example, Z coord. of near clip plane $=Z_{\text {eye }}-Z_{\text {near }}, Z$ coord. of far clip plane $=Z_{\text {eye }}-Z_{\text {far }}$

\square Similar mapping for perspective projection (see later slides)
\square OpenGL demo - orthographic and perspective view volumes

Rendering Pipeline: Projection Matrix

- Projection matrix: specifies transformation from 3D World coordinate space to normalised 3D camera/eye coord. space.
\square Defines 3D viewing volume that will be mapped onto the 2D drawing window, i.e., the viewport (actually still in 3D viewport, because 3D \Rightarrow 2D projection occurs after 3D clipping and visibility computations during rasterization stage).
\square Projection transformation matrix, $\mathbf{M}_{\text {Proj }}$, maps 3D World Coordinate values into 3D Normalised Device Coordinates (NDC). View volume boundaries (rectangular block) mapped to $\{-1,+1\}$ cube in X, Y, and Z. 3D clipping performed most efficiently in NDC.
\square Aspect ratio (width/height ratio) of view volume must match aspect ratio of viewport to preserve correct x, y, z proportionality of objects.

Rendering Pipeline: Viewport Matrix

- Viewport transformation: specifies mapping from normalised window (3D viewing volume in NDC) to a 3D viewport.
\square After passing through the MODEL_VIEW and PROJECTION matrices, all vertex coordinates x, y and z are in range -1 to 1 .
\square Finally, these floating point values have to be mapped to integer screen coordinates (becomes input values for rasterization stage).
\square Mapping: from range $\{-1,+1\}$ usually
to range $\{0$, WINDOW_WIDTH $\}$ and $\{0$, WINDOW_HEIGHT\}
- But user can override this with a call to
glViewport(x, y, width, height); // or alternately

> glViewport(xmin, ymin, xmax-xmin, ymax-ymin);

- We used this command in the GLUT window reshape callback function.
- Viewport matrix
\square Maps NDC boundaries onto viewport boundaries (also called Device Coordinates, DC).

Rendering Pipeline: Viewport Matrix

\square In OpenGL viewport matrix includes inverting Y coordinates because viewport coordinate origin is at upper left.
\square Viewport transformation is the world-to-viewport mapping from chapter 3. Rewrite the equation from chapter 3 in homogeneous coordinates and replace w.l, w.r, w.b, w.t with $-1,1,-1,1$, respectively
\square Denote the normalised World Coordinates (NDC coords. in range $\{-1,+1\}$) by $\mathbf{x}=(x, y, z, 1)^{T}$ and the 3D screen coordinates (in range $\{-1,+1\}$) by $\mathbf{u}=(u, v, n, 1)^{\top}$ then the world-to-viewport mapping (NDC-to-DC) is:
$\left(\begin{array}{l}u \\ v \\ n \\ 1\end{array}\right)=\left(\begin{array}{cccc}\frac{v \cdot r-v \cdot l}{2} & 0 & 0 & \frac{v . r+v \cdot l}{2} \\ 0 & \frac{v \cdot t-v . b}{2} & 0 & \frac{v . t+v \cdot b}{2} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right)$

\square UDOO the transformation for device coordinates, DC, in range: $\{0,(\operatorname{maxScreenX}-1)\},(\operatorname{maxScreenY-1}), 0\},\{0,(\operatorname{maxZbuffer-1)\} :}$ © 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen

Viewport Matrix (cont'd)

- Multiple viewports code example:

4 views: perspective, front, side, and top (ortho). window $=1000 \times 1000$, viewports $=250 \times 250$. Demonstrating use of glTranslatef/g|Rotatef and gluLookAt.
I/ bottom left: perspective
glViewport(0, 250, 250, 250)
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(yfov, aspect, zNear, zFar) glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef (viewXAngle, 1.0f, 0.0f, 0.0f); glTranslatef(viewX, viewY, viewZ); drawScene();
// set orthographic projctn (all 3 vp) glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glortho(left, right, bottom, top,
zNear, zFar);
glMatrixMode(GL_MODELVIEW);
glViewport ($0,0,250,250$); glLoadIdentity(); glRotatef (-90.0f, 0.0f, 1.0f, 0.0f); glTranslatef(-10.f, 0.0f, 0.0f); drawScene();
// top right: orthographic, front view glViewport (250, 0, 250, 250); glLoadIdentity();
gluLookAt (0.0f, $0.0 f, 10.0 f$,
$0.0 f, 0.0 f, 0.0 f, 0.0 f, 1.0 f, 0.0 f) ;$ drawScene();
// bottom right: orthographic, top view glViewport (250, 250, 250, 250); glLoadIdentity();
gluLookAt ($0.0 \mathrm{f}, 10.0 \mathrm{f}, 0.0 \mathrm{f}$,
$0.0 f, 0.0 f, 0.0 f, 0.0 f, 1.0 f, 0.0 f) ;$ drawScene();

- OpenGL demo program - 1, 2, and 4 viewports

OpenGL Rendering Pipeline: Revision

- Summary: Rendering Pipeline Coordinate Spaces and Transformations
\square Note: to render multiple viewports with perhaps different view transformations and projections traverse the pipeline once for each viewport and view (redraw/resend same primitive geometry).

8.2 OpenGL Tools for Modeling, Viewing

- Set camera for parallel (orthographic) projection:
\square set matrix mode: glMatrixMode (GL_PROJECTION);
\square reset top of stack: glLoadIdentity ();
\square multiply by 3D ortho matrix (values relative to eye position, LHS coords.): glortho(left, right, bottom, top, near, far);
$\square \mathbf{C T M}_{\text {Proj }}\left[t o p\right.$ of stack] $\diamond \mathbf{C T M}_{\text {Proj }}$ post-multiplied by transf. matrix
- Position and orient camera:
\square glMatrixMode(GL_MODELVIEW); // select CTM $_{\text {ModelView }}$ stack
\square reset top of stack: glLoadIdentity ();
\square multiply by view transformation matrix, may use glTranslatef() and glRotatef(), or gluLookAt (eye.x, eye.y, eye.z, look.x, look.y, look.z, up.x, up.y, up.z);
$\square \mathbf{C T M}_{\text {ModelView }}\left[\right.$ top of stack] $\diamond \mathbf{C T M}_{\text {ModelView }}$ post-multiplied by transf. matrix

OpenGL Modeling, Viewing Tools: Hints

- Modeling, viewing, and projection functions merely set OpenGL state. Actual drawing occurs only when primitive functions are called.
- Normal order is GL_PROJECTION transf., then GL_MODELVIEW transf. (doesn't matter which is set first as long as both before drawing)
- Order of model and view transf calls (applied in opposite order):

\square identity:	$\mathbf{C T M ~}_{\text {ModelView }}$ [top] $=1$
\square view transformations:	$\mathbf{C T M}_{\text {Modelview }}[$ top] $]=\mathbf{M}_{\text {View }}$
\square push matrix stack:	$\mathrm{CTM}_{\text {Modelview }}\left[\right.$ [top] and $\mathrm{CTM}_{\text {ModelView }}$ [top-1] now both $=\mathbf{M}_{\text {View }}$
\square model $_{0}$ transformations:	: $\mathbf{T M}_{\text {ModelView }^{\text {a }} \text { [top] }}=\mathbf{M}_{\text {View }} \mathbf{M}_{\text {Model }_{0}}$
\square draw 1st object:	all vertices transformed by CTM $_{\text {Proj }}$ [top] CTM $_{\text {ModelView }}$ [top]
\square pop matrix stack	$\mathrm{CTM}_{\text {ModelView }}[$ [top] $]=\mathbf{M}_{\text {View }}$
\square push matrix stack:	$\mathrm{CTM}_{\text {Modelview }}\left[\right.$ [top] and $\mathbf{C T M ~}_{\text {ModelView }}$ [top-1] now both $=\mathbf{M}_{\text {View }}$
\square model $_{1}$ transformations:	CTM ${ }_{\text {ModelVivew }}\left[\right.$ [top] $=\mathbf{M}_{\text {View }} \mathrm{M}_{\text {Model }}$
\square draw 2nd object:	all vertices transformed by CTM $_{\text {Proj }}$ [top] CTM $_{\text {ModelView }}$ [top]
\square pop matrix stack	$\mathrm{CTM}_{\text {ModelView }}\left[\right.$ [op] $=\mathrm{M}_{\text {View }}$

- MUST set identity before projection and also before view, but NOT before any of the model transformations (why?)

OpenGL Modeling, Viewing Tools (cont'd)

- Set Model (instance) transformations:

\square glMatrixMode(GL_MODELVIEW); // select CTM ModelView stack
\square apply:
glTranslatef(tx, ty, tz);
glRotatef(angle, ux, uy, uz); // angle in degrees glScalef(sx, sy, sz);
$\square \mathbf{C T M}_{\text {ModelView }}\left[\right.$ top of stack] $\diamond \mathbf{C T M}_{\text {ModelView }}$ post-multiplied by each transf. matrix
\square use glPushMatrix() and glPopMatrix() to save/restore matrix state for different model objects (but same view transformation).

OpenGL Modeling, Viewing: Aspect Ratio

- Final pipeline transformation step (after 3D clipping) is viewport transformation.
glViewport (GLint x, GLint y,
GLsizei width, GLsizei height);
Default viewport is entire drawing window, (0,0 , winWidth, winHeight).
- Aspect ratio of view volume and viewport should be same.

- Problem: How to write a GLUT program that automatically resets the view volume aspect ratio when window (viewport) is resized?

Aspect Ratio: reshape callback function

- Solution: in GLUT, use reshape callback to adjust viewport and view volume aspect ratio after a window resize event.
$\square \underline{\text { Register reshape callback function (in main at prog. init.) }}$ void reshape (GLsizei width, GLsizei height); // prototype glutReshapeFunc(reshape); // callback registration
\square Define reshape callback function (in main prog. module) // left, right, bottom, top = class member or global variables void reshape(GLsizei width, GLsizei height) \{
glViewport(0, 0, width, height); // set viewport size
GLfloat aspect $=$ (GLfloat)width / (GLfloat)height; // NOT int!!! GLdouble center $=($ left + right $) / 2.0$;
GLdouble newHalfWidth = aspect * (top - bottom) / 2.0;
left = center - newHalfWidth; right = center + newHalfWidth; glMatrixMode(GL_PROJECTION); // reset proj matrix glLoadIdentity(); // 3D window->viewport glortho(left, right, bottom, top, zNear, zFar); // mapping drawSceneObjects();
// redraw all objects
- OpenGL demo program - viewport resize, aspect ratio resize
© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen
Slide 17

Ortho, Perspective Cameras: OpenGL

- Orthographic
\square void glortho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble zNear, GLdouble zFar)
\square View volume boundaries in World Coord units, relative to eyepoint in the look direction. Z is positive distance from eye (along negative Z axis)
\square View volume may be symmetric about look direction vector (typical).
- Perspective
\square void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble zNear, GLdouble zFar)
\square Vertical field of view angle specified in degrees.
\square Horizontal fov determined by aspect ratio $=$ width $/$ height
fovx = aspect * fovy;
\square View volume (frustum, or truncated pyramid) always symmetric about eyepoint towards the look direction.

8.4 View Transformation

- Default view transformation is identity: eye at origin looking down negative Z axis [OpenGL demo program]
- View transformation is combination of a translation that moves eye to World Coord. origin and a rotation that aligns look direction with negative Z axis (same for both projection types).

8.5 Specifying View Position \& Orientation

- List of Problems

How to write an OpenGL program that sets the view for a camera:

1. Given an camera (eye) position and a point to look at?
2. Given an eye translation and a rotation?
3. For an airplane flight simulator (simulating the view out the front window) where the simulator position and orientation are controlled via pilot commands that set the plane's pitch, yaw, and roll?
4. Mounted on a pilot's helmet (simulating the pilot's eye view such as in a virtual reality head mounted display) where the pilot can move (translate) and rotate his head within the airplane's cockpit?
5. Mounted on the end of a multi-jointed robot arm, such as the NASA Space Shuttle Canadian arm?

- You already know the answer to \#1, use gluLookAt().

But, there is no single gl, glu, or glut function for \#2-\#5!

The View Coordinate System (UVN)

a.k.a. Eye Coordinate System or Camera Coordinate System

- From the Eye and LookAt points plus the approximate Up vector, can derive UVN Coordinate system (Eye Coords.) basis vectors:
$\square \mathbf{n}=$ Normalised(Eye - LookAt)
$\square \mathbf{u}=\operatorname{Normalised}(\operatorname{Cross}(\mathbf{U p}, \mathbf{n}))$
$\square \mathbf{v}=\operatorname{Cross}(\mathbf{n}, \mathbf{u})$

Alternate definition: Burkhard's notes, 5.1 slide \#14

View Transformation Matrix (cont'd)

- Mathematical derivation of view matrix, \mathbf{V} (Hill, pp. 364-366)
\square Eye position along with vectors $\mathbf{u}, \mathbf{v}, \mathbf{n}$ define the UVN Coordinate System (Eye/camera coords) relative to World Coord. System (WCS). \mathbf{u}, \mathbf{v}, and \mathbf{n} are the basis vectors of coordinate system UVN.
\square Scene object vertices are defined relative to WCS. Therefore, \mathbf{V} must be a transformation that converts them to be relative to $\mathbf{E C S}$, i.e., $\mathbf{V}=\mathbf{M}_{\mathrm{W} \rightarrow \mathrm{E}}$
$\square 2$ ways to think about a geometric transformation:

$\square \quad$ Camera analogy: motion in each case is inverse of the other
Real world, real visual effect: objects stationary, move camera

2. Virtual world, rendering pipeline requirements: camera stationary, move objects

- OpenGL demo program - 2 ways to visualize view transformation
© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen
Slide 25

View Transformation Matrix (cont'd)

- By Hill's "theorem" (5.35) on page 245, if P is a point in System 2 and \mathbf{M} is matrix that transforms System 1's coordinate frame to System 2's, then M $P=$ coordinates of the point expressed in System 1. (see also, Burkhard's notes, 5.8 slide \#40) So, if we know $P^{(2)}=\left(p^{(2)}, p^{(2)}, 1\right)$ in System 2, i.e., relative to the basis vectors i^{\prime}, j^{\prime}, then we can solve for $P^{(1)}=\left(p^{(1)}, p^{(1)}, 1\right)$ in System 1, i.e., relative to the basis vectors i , j using, $P^{(1)}=\mathrm{M} P^{(2)}$
- But, for a viewing transformation:

\square System 1 corresponds to World Coords., System 2 to Eye Coords. (because the Eye Coordinate Frame. and 3D scene object vertices are expressed relative to World Coords).
\square Matrix \mathbf{M} with basis vectors defined by the gluLookAt () parameters is the matrix that transforms from System 2's coordinate frame to System 1's (Eye to World).
\square However, we need a solution for the inverse: from System 1 (World) to System 2 (Eye) coordinates, $P^{(2)}=\mathrm{M}^{-1} P^{(1)}$, not $P^{(1)}=\mathrm{M} P^{(2)}$.

View Transformation Matrix (cont'd)

- Review: Hill text Ch. 5.4 "Changing Coordinate Systems", pg. 244 If \mathbf{i}, \mathbf{j} are basis vectors of System 1, and i^{\prime}, j^{\prime} are basis vectors of System 2 (expressed relative to System 1), then transformation matrix M, with column vectors $\mathbf{i}^{\prime}, \mathbf{j}$ ' and the vector, \mathbf{t}, the translation of the origins, is the matrix that transforms the coordinate frame (basis vectors) of System 1 into those of System 2. I.e., columns of \mathbf{V} are the transformed System 1 coordinate frame basis vectors.
Example: $\mathbf{M}=\mathbf{T} \mathbf{R}=\left(\begin{array}{ccc}i_{x}{ }^{\prime} & j_{x}{ }^{\prime} & t_{x} \\ i_{y}{ }^{\prime} & j_{y^{\prime}} & t_{y} \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{lll}1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}i_{x} & j_{x}{ }^{\prime} & 0 \\ i_{y} & j_{y} & 0 \\ 0 & 0 & 1\end{array}\right) \quad \mathbf{R}=\left(\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)$
Verify: Transform endpoints of vectors i, j, and
 origin point by \mathbf{M}

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen
Slide 26

View Transformation Matrix (cont'd)

- Given $\mathbf{M}=\mathbf{T} \mathbf{R}$, how to find $\mathbf{M}^{-1}=(\mathbf{T} \mathbf{R})^{-1}$?
- Review: some axioms of linear algebra
$\square(A B)^{-1}=\mathbf{B}^{-1} A^{-1}$
(Hill Appendix 2, pg. 825)
\square an orthogonal matrix is a matrix such that: $\operatorname{col}_{\mathrm{i}} \cdot \operatorname{col}_{\mathrm{j}}=0, \mathrm{i} \neq \mathrm{j}$, and $\mathrm{col}_{\mathrm{i}} \cdot \operatorname{col}_{\mathrm{i}}=1 \quad$ (Hill Ch. 5, pg. 243)
\square a rotation matrix is orthogonal
$\square \mathbf{M}^{-1}=\mathbf{M}^{\mathbf{T}}$ (transpose) if \mathbf{M} is orthogonal
(Hill Ch. 5, pg. 243)
(Hill Ch. 5, pg. 243)
(also, Burkhard's notes, 5.8 , slide \#44)
\square The inverse of a translation matrix is a matrix with the translation column terms negated.
- Thus, View Transformation Matrix V, that transforms points from
World Coordinates to Eye Coordinates is

$$
\mathbf{V}=\mathbf{M}^{-1}=(\mathbf{T} \mathbf{R})^{-1}=\mathbf{R}^{-1} \mathbf{T}^{-1}=\mathbf{R}^{\mathrm{T}} \mathbf{T}^{-1}
$$

(by definition of translation)

\mathbf{V}	$=\left(\begin{array}{cccc}u_{x} & u_{y} & u_{z} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ n_{x} & n_{y} & n_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & \text {-eye }_{x} \\ 0 & 1 & 0 & \text {-eye }_{y} \\ 0 & 0 & 1 & - \text { ele }_{z} \\ 0 & 0 & 0 & 1\end{array}\right)$
	$=\left(\begin{array}{ccccc}u_{x} & u_{y} & u_{z} & - \text { eye\u } \\ v_{x} & v_{y} & v_{z} & - \text { eyev } \\ n_{x} & n_{y} & n_{z} & - \text { eyen } \\ 0 & 0 & 0 & 1\end{array}\right)$

View Transformation Matrix Summary

- The rendering pipeline processing draws geometric primitives as seen from the World Coordinate origin looking down the $-Z$ axis.
- The View Transformation Matrix V, transforms points from World Coordinates to Eye Coordinates. The result is that primitives appear as they would if the eye were at the origin looking down the $-Z$ axis.
- If a view's position and orientation are specified by a translation matrix and a rotation matrix, $\mathbf{M}=\mathbf{T} \mathbf{R}$, then the view transformation matrix \mathbf{V} is the inverse of the matrix \mathbf{M} :

$$
\mathbf{V}=\mathbf{M}^{-1}=(\mathbf{T} \mathbf{R})^{-1}=\mathbf{R}^{-1} \mathbf{T}^{-1}=\mathbf{R}^{\mathrm{T}} \mathbf{T}^{-1}
$$

- \mathbf{M} is the same as an instance transformation (modeling transformation) without any scale transformation. So, if we specify a view as part of our model, we can determine the corresponding view transformation from the inverse of the view's modeling transformation!
- We now have a solution to problems \# 1 and 2 (slide \#21). Do you think you now know the answer to problems \#3, \#4, and \#5?
© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen
Slide 29

View Transformations for Aerospace

- View specified as pitch, yaw, roll
a) pitch
\square Euler angle specification, normally applied: $\mathbf{R}_{\text {roll }} \mathbf{R}_{\text {yaw }} \mathbf{R}_{\text {pitch }}$
\square pitch $=$ angle \mathbf{n} axis makes with plane $\mathbf{Y}=0$ (horizontal)
same as rotation about \mathbf{u} axis
\square yaw $=$ angle \mathbf{u} axis makes with plane $\mathbf{Z}=0$ same as rotation about \mathbf{v} axis (also known as heading or bearing)
$\square \underline{\text { roll }}=$ angle \mathbf{u} axis makes with plane $\mathbf{X}=0$ same as rotation about \mathbf{n} axis
\square Graphics applications often use a "no-roll" camera - pitch and yaw only
$\square \mathbf{M}=\mathbf{T} \mathbf{R}_{\text {roll }} \mathbf{R}_{\text {yaw }} \mathbf{R}_{\text {pitch }}, \mathbf{V}=\mathbf{M}^{-1}$

$$
\mathbf{V}=\left(\mathbf{T} \mathbf{R}_{\text {roll }} \mathbf{R}_{\text {yaw }} \mathbf{R}_{\text {pitch }}\right)^{-1}=\mathbf{R}_{\text {pitch }}^{-1} \mathbf{R}^{-1}{ }_{\text {yaw }} \mathbf{R}_{\text {roll }}^{-1} \mathbf{T}^{-1}
$$

Alternative View Transform Specifications

- View specified as a general instance transformation
\square Calls to glRotatef () for Euler angle rotations and to glTranslatef () for a translation to orient and position the camera (but, no scale).
\square Transformation matrix \mathbf{M} that transforms System 1's coordinate frame (World Coord.) to System 2's frame (Eye Coord.) is:

$$
\mathbf{M}=\mathbf{T} \mathbf{R}_{\mathrm{x}} \mathbf{R}_{\mathrm{y}} \mathbf{R}_{\mathrm{z}}
$$

Matrix \mathbf{V}, that transforms points from World to Eye Coordinates is

$$
\mathbf{V}=\mathbf{M}^{-1}=\left(\mathbf{T} \mathbf{R}_{\mathrm{x}} \mathbf{R}_{\mathrm{y}} \mathbf{R}_{\mathrm{z}}\right)^{-1}=\mathbf{R}_{\mathrm{z}}^{-1} \mathbf{R}_{\mathrm{y}}^{-1} \mathbf{R}_{\mathrm{x}}^{-1} \mathrm{~T}^{-1}
$$

\square Note: $\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}, \mathrm{t}_{\mathrm{z}}$ are in World Coords., NOT relative to camera orientation.

- Specified as a hierarchy of instance transformations Example: camera on the gripper of a robot arm
\square Arm hierarchy, joints: base, lower arm, upper arm, gripper
\square Instance transformation of gripper
$\mathbf{M}=\mathbf{T}_{\mathrm{B}} \mathbf{R}_{\text {By }} \mathbf{T}_{\text {LA }} \mathbf{R}_{\text {LAx }} \mathbf{R}_{\text {LAy }} \mathbf{T}_{\text {UA }} \mathbf{R}_{\text {UAx }} \mathbf{R}_{\text {UAy }} \mathbf{T}_{G} \mathbf{R}_{\text {Gx }} \mathbf{R}_{\text {Gy }} \mathbf{R}_{\text {Gz }}$
\square View transformation for camera attached to gripper, $\mathbf{V}=\mathbf{M}^{-1}$
© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen
Slide 30

View Transformations Aerospace (cont'd)

- View specified as azimuth, elevation
(tilt, optional but uncommon)
\square Euler angle specification, normally applied:
$\mathbf{R}_{\text {elevation }} \mathbf{R}_{\text {azimuth }}$
$\square \underline{\text { azimuth }}=$ angle \mathbf{u} axis makes with the plane $\mathbf{Z}=0$
same as rotation about \mathbf{v} axis, same as yaw
$\square \underline{\text { elevation }}=$ angle \mathbf{n} axis makes with the plane $\mathbf{Y}=0$ (horizontal)
$\square \mathbf{M}=\mathbf{T} \mathbf{R}_{\text {elevation }} \mathbf{R}_{\text {azimuth }}$
$\mathbf{V}=\mathbf{M}^{-1}$

$$
=\left(\mathbf{T} \mathbf{R}_{\text {elevation }} \mathbf{R}_{\text {azimuth }}\right)^{-1}
$$

$$
=\mathbf{R}^{-1} \text { azimuth } \mathbf{R}^{-1} \text { elevation } \mathbf{T}^{-1}
$$

View Transformations Aerospace (cont'd)

- Question: Are these transformations really correct?
\square if $\mathbf{M}=\mathbf{T} \mathbf{R}_{\text {roll }} \mathbf{R}_{\text {yaw }} \mathbf{R}_{\text {pitch }}$
then $\mathbf{V}=\left(\mathbf{T} \mathbf{R}_{\text {roll }} \mathbf{R}_{\text {yaw }} \mathbf{R}_{\text {pitch }}\right)^{-1}=\mathbf{R}_{\text {pitch }}^{-1} \mathbf{R}^{-1}{ }_{\text {yaw }} \mathbf{R}_{\text {roll }}^{-1} \mathbf{T}^{-1}$?
if $\mathbf{M}=\mathbf{T} \mathbf{R}_{\text {elevation }} \mathbf{R}_{\text {azimuth }}$
then $\mathbf{V}=\left(\mathbf{T} \mathbf{R}_{\text {elevation }} \mathbf{R}_{\text {azimuth }}\right)^{-1}=\mathbf{R}^{-1}{ }_{\text {azimuth }} \mathbf{R}^{-1}{ }_{\text {elevation }} \mathbf{T}^{-1}$?
$\square \mathbf{M}=$ camera's instance transformation = position and orientation in World Coords. Translation by $\left(\mathrm{t}_{x}, \mathrm{t}_{\mathrm{y}}, \mathrm{t}_{\mathrm{z}}\right)^{\mathrm{T}}$ will be applied after the rotations. Result: first rotates camera about its origin and then translates in World Coordinates! [OpenGL demo program]
\square But - want to translate relative to look direction, i.e., in Eye Coordinates.
\square Examples:
- For the default view orientation: "forward" = translate ($0,0,-\mathrm{dt}$), and "pitch up" = rotate dAngle about X axis, (1, 0, 0).
- But, if camera has been rotated 90 degrees left and rolled 45 degrees, then "forward" = translate (-dt, 0, 0), and "pitch up" = rotate ??? about (?, ?, ?) axis.

ModelView Transformation Summary

- Summary: Rendering pipeline ModelView transformation
\square Vertex coordinate points automatically transformed by ModelView matrix $P^{\prime}=\mathbf{M}_{\text {ModelView }} P=(\mathbf{V} \mathbf{M}) P$ where $\mathbf{V} \stackrel{g}{ }=g$ uLookAt matrix or $\mathbf{V}=\mathbf{R v}_{\mathbf{z}}{ }^{-1} \mathbf{R v}_{\mathbf{y}}{ }^{-1} \mathbf{R v}_{\mathbf{x}}{ }^{-1} \mathbf{T}^{\mathbf{- 1}}$ and $\mathbf{M}=\mathbf{T} \mathbf{R}_{\mathbf{x}} \mathbf{R}_{\mathrm{y}} \mathbf{R}_{\mathrm{z}} \mathbf{S}$ or combination of several $\mathbf{T} \mathbf{R S}$ matrices.
\square Points are transformed so that they are relative to the Eye Coordinate system with eye point at the origin. Thus, vertices that fall within the eye's viewing volume have a negative \mathbf{Z} coordinate value (in RHS coordinate system).
- OpenGL demo program
\square transforming eye/camera relative to the World versus transforming the objects in the World relative to the eye/camera
\square flying the camera view

View Transformations Aerospace (cont'd)

- Problem: How to "fly" a view using motion relative to view direction
\square Need to convert changes in position and orientation that are specified relative to current view orientation into changes relative to World Coords.
\square "slide" function: translation ($+/$-) for back/forward, right/left, and up/down relative to current orientation. Equivalent to motion along the \mathbf{n}, \mathbf{u}, and \mathbf{v} axes in the camera's UVN coordinate system.
- Given: displacement vector $d_{2}=\left(d_{u}, d_{v}, d_{n}\right)$ in UVN Coord. System (System 2) Find: displacement vector $d_{1}=\left(d_{x}, d_{y}, d_{z}\right)$ in $\mathbf{X Y Z}$ Coord. System (System 1)
$\mathbf{M}=\left(\begin{array}{lll}u_{x} & v_{x} & n_{x} \\ u_{y} & v_{y} & n_{y} \\ u_{z} & v_{z} & n_{z}\end{array}\right)$ matrix that transforms System 1 basis vectors into System 2 basis vectors. Then, by Hill's theorem (slide \#24-25), $\mathbf{d}_{1}=\mathbf{M} \mathbf{d}_{2}$ (also, Burkhard's notes, 5.8 slide \#40)
\square For slide() and roll() functions C++ code, see Hill text pg. 368

Questions about View Transformations

1. Why does gluLookAt() fail if you try looking vertically down and set $u p=(0,1,0)$?
2. Write your own version of gluLookAt.
3. gluLookAt takes 9 float parameters. What would be the minimum number to specify the camera position and orientation?
4. What significance, if any, does the eyePoint have when specifying an orthographic view?
5. In the demo program shown in lecture you saw views in additional viewports that showed side, front, and top views as well as the main camera view of the 3D scene. Thus, the demo showed a "view" and a "view of a view". Write a program that shows two views in two viewports, a main view and another view, either a side, a front, or a top view.

Questions View Transformations (cont'd)

6. Example from NASA Ames Mars Virtual Planetary Exploration project. The project's graphics system renders a polygon mesh model of the surface of Mars. A space exploration scientist wears a virtual reality head mounted display (HMD). The rendered view is displayed on 2 small LCD screens inside the HMD. Attached to the HMD is a 6 degree-of-freedom (DOF) magnetic tracker that measures the helmet's (x, y, z) position and (pitch, yaw, roll) orientation 30 times/sec. These are measured relative to the tracking device's fixed coordinate system in the laboratory (same as World Coords.). The scientist has a 5 DOF no-roll joystick (left/right, up/down, forward/back plus 2 twist rotations for pitch and yaw). This controls the position and orientation of a virtual hover craft on which the virtual explorer is sitting on virtual Mars. Translations and rotations of the joystick are measured relative to joystick's fixed coordinate system (same as World Coords.).

Write the function that sets the hover craft transformations and the view transformation for this system. Joystick transformations applied to the hover craft should be relative to the craft's current orientation. Camera transformations applied to the view of the scene should be relative to the scientist's current head rotation and the hover craft rotation.

Perspective Projection

- Problems to be solved:
\square How can a graphics system simulate real world perspective depth (distant objects rendered smaller than near objects)?
\square How can a graphics system convert 3D objects to 2D perspective corrected objects?
\square Can this be done with a transformation matrix that can be applied in the rendering pipeline (with hardware)?

Principles of Geometric Projections

- Projection: a mapping of coordinate values from a higher dimension to lower dimension, usually $\mathrm{N} \Rightarrow \mathrm{N}-1$, e.g., $3 \mathrm{D} \Rightarrow 2 \mathrm{D}$.
- Requirements:
\square Projection surface: plane or hyperplane (linear projection) or surface such as a sphere or conic section (non-linear projection).
\square Projection rays, or projectors: lines from object projected towards projection surface.
\square Direction of projection: orientation of each projector
- Perspective projection: all projectors pass through a center of projection (3D point), but have different directions.
- Orthographic (parallel) projection: all projectors parallel to a common direction of projection.
- How to project:
\square Projection ray through object vertex intersects with the projection plane.

Principles Geometric Projections (cont'd)

\square Parallel projection: ray through object vertex (point) in the projection direction (vector) [same direction for all rays].
\square Perspective projection: ray through object vertex (point) and center of projection (point) [different direction for each ray]

nter of projection

Principles Geometric Projections (cont'd)

\square Observation about perspective projection: as center of projection moves farther and farther away, lines of projection become more nearly parallel. In the limit, when center of projection is at an infinite distance, perspective projection \equiv parallel projection.

\square Rays of light from a point source shining on an opaque object forming a shadow on a projection plane are similar to perspective projection rays.
\square Rays of light from a point source at "infinite distance" (e.g., the Sun 93×10^{6} miles from the Earth) forming a shadow are similar to parallel projection.

Perspective Projection of 3D Point (cont'd)

- Observe:
\square Perspective projection is just a scaling of a point's x and y coordinate by the factor $s_{\text {persp }}=\left(-z_{\text {neal }} / p_{z}\right)$, e.g., $x^{*}=s_{\text {persp }} p_{x}, y^{*}=s_{\text {persp }} p_{y}$
\square For all points that are farther away than $\mathrm{z}_{\text {near }},-\mathrm{p}_{\mathrm{z}}>=\mathrm{z}_{\text {near }}$.
Thus, $\mathrm{s}_{\text {persp }}=\left(-\mathrm{z}_{\text {near }} / \mathrm{p}_{\mathrm{z}}\right)<=1.0$ and the larger the magnitude of p_{z} (point's distance from the eye) the smaller the perspective scale factor: "perspective foreshortening".

Perspective Projection of 3D Point (cont'd)

- Observe:
\square Perspective projection is just a scaling of a point's x and y coordinate by the factor $\mathrm{s}_{\text {persp }}=\left(-\mathrm{z}_{\text {near }} / \mathrm{p}_{z}\right)$, e.g., $\mathrm{x}^{*}=\mathrm{s}_{\text {persp }} \mathrm{p}_{x}, \mathrm{y}^{*}=\mathrm{s}_{\text {persp }} \mathrm{p}_{\mathrm{y}}$
\square For all points that are farther away than $\mathrm{z}_{\text {near }},-\mathrm{p}_{\mathrm{z}}>=\mathrm{z}_{\text {near }}$. Thus, $s_{\text {persp }}=\left(-z_{\text {near }} / p_{z}\right)<=1.0$ and the larger the magnitude of p_{z} (point's distance from the eye) the smaller the perspective scale factor: "perspective foreshortening".

Perspective Projection of 3D Point (cont'd)

- Observe:
\square Perspective projection is just a scaling of a point's \underline{x} and y coordinate by the factor $\mathrm{s}_{\text {persp }}=\left(-\mathrm{z}_{\text {near }} / \mathrm{p}_{z}\right)$, e.g., $\mathrm{x}^{*}=\mathrm{s}_{\text {persp }} \mathrm{p}_{\mathrm{x}}, \mathrm{y}^{*}=\mathrm{s}_{\text {persp }} \mathrm{p}_{\mathrm{y}}$
\square For all points that are farther away than $\mathrm{z}_{\text {near }},-\mathrm{p}_{\mathrm{z}}>=\mathrm{z}_{\text {near }}$.
Thus, $\mathrm{s}_{\text {persp }}=\left(-\mathrm{z}_{\text {near }} / \mathrm{p}_{\mathrm{z}}\right)<=1.0$ and the larger the magnitude of p_{z} (point's distance from the eye) the smaller the perspective scale factor: "perspective foreshortening".

© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen Slide 45

Perspective Transformation and Projection

- Perspective transformation: converts 3D coordinates to perspective corrected 3D coordinates.

Perspective Projection

- Perspective projection CANNOT be used in 3D graphics pipeline!
\square Why not? Because it sets all projected z coordinates to same value, $z_{\text {near }}$ But, visible surface algorithm (Z buffer alg.) needs z depth values during rasterization stage of pipeline.

The "MODELVIEW" transformation

\square Therefore, pipeline uses perspective transformation, not perspective projection. Perspective transformation scales x, y, and z coordinates by a scale factor dependent upon $1 / z$. Then, projection is performed during rasterization stage after hidden surface removal.

Perspective Transformation (cont'd)

- Perspective transformation requirements:
x and y values must be scaled by same factor as derived in perspective projection equations.

2. \mathbf{z} values must maintain depth ordering (monotonic increasing)
3. z values must map: $-\mathbf{z}_{\text {near }} \rightarrow-1$ and $-\mathbf{z}_{\text {far }} \rightarrow+1$, view volume \rightarrow NDC cube.

- In other words, we need a transformation that given a point P results in a transformed point P^{\prime} such that P_{x}^{\prime} and P_{y}^{\prime} meet requirement 1 and $f\left(p_{z}\right)$ meets requirements 2 and 3
- Question: Is there any matrix, \mathbf{P}, such that $\mathbf{P} P=P^{\prime}$?
- Answer: Not possible because no linear combination of p_{x}, p_{y}, p_{z}, can result in a term with p_{z} in the denominator!

$$
P^{\prime}=\left(\frac{-z_{\text {near }} p_{x}}{p_{z}}, \frac{-z_{\text {near }} p_{y}}{p_{z}}, f\left(p_{z}\right)\right)
$$

$\left(\begin{array}{llll}p_{00} & p_{01} & p_{02} & p_{03} \\ p_{10} & p_{11} & p_{12} & p_{13} \\ p_{20} & p_{21} & p_{22} & p_{23} \\ p_{30} & p_{31} & p_{32} & p_{33}\end{array}\right)\left(\begin{array}{c}p_{x} \\ p_{y} \\ p_{z} \\ 1\end{array}\right)=\left(\begin{array}{c}\frac{-z_{\text {near }} p_{x}}{\sqrt{p_{z}}} \\ \frac{-z_{\text {near }} p_{y}}{\sqrt{z}} \\ f\left(p_{z}\right) \\ 1\end{array}\right)$

Perspective Transformation (cont'd)

- But, there is a matrix that can produce this result,

$$
\left(\begin{array}{llll}
p_{00} & p_{01} & p_{02} & p_{03} \\
p_{10} & p_{11} & p_{12} & p_{13} \\
p_{20} & p_{21} & p_{22} & p_{23} \\
p_{30} & p_{31} & p_{32} & p_{33}
\end{array}\right)\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right)=\left(\begin{array}{c}
-z_{\text {near }} p_{x} \\
-z_{\text {near }} p_{y} \\
f\left(p_{z}\right) p_{z} \\
p_{z}
\end{array}\right)
$$

- Then, after conversion from homogeneous to ordinary coordinates (division $\begin{aligned} & \text { by w coordinate), we get result we need, } \\ & \text { This is the homogeneous coordinate }\end{aligned} P^{\prime}=\left(\frac{-z_{\text {near }} p_{x}}{p_{z}}, \frac{-z_{\text {near }} p_{y}}{p_{z}}, \frac{-f\left(p_{z}\right)}{p_{z}}\right)$ matrix that performs perspective

$$
\begin{aligned}
& \text { transformation } \\
& \left.\qquad \mathbf{P}=\left(\begin{array}{cccc}
z_{\text {near }} & 0 & 0 & 0 \\
0 & z_{\text {near }} & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{array}\right) \quad \begin{array}{c}
\text { with } \\
\\
0=-\frac{z_{\text {far }}+z_{\text {near }}}{}, \quad b=\frac{-2 z_{\text {far }} * z_{\text {near }}}{z_{\text {far }}-z_{\text {near }}} \\
z_{\text {far }}-z_{\text {near }} \\
P^{\prime}=\left(\frac{-z_{\text {near }} p_{x}}{p_{z}}, \frac{-z_{\text {near }} p_{y}}{p_{z}},\right. \\
\mathbf{t h}_{z}
\end{array}\right) \\
& \text { So, perspective transformation can be }
\end{aligned}
$$

- So, perspective transformation can be applied via matrix multiplication in rendering pipeline (using hardware!)

Perspective Transformation (cont'd)

- Refer back to Burkhard's notes on 2D homogeneous coordinates. To convert a homogeneous coordinate point, $P_{\text {homog }}=(\mathrm{a}, \mathrm{b}, \mathrm{c})$,
to an "ordinary" point, $P_{\text {ord }}=(x, y)$, use $(\mathrm{a}, \mathrm{b}, \mathrm{c}) \rightarrow(\mathrm{a} / \mathrm{c}, \mathrm{b} / \mathrm{c})$.
\square Use same conversion for 3D homogeneous points:
$P_{\text {homog }}=(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}) \rightarrow P_{\text {ord }}=(\mathrm{x} / \mathrm{w}, \mathrm{y} / \mathrm{w}, \mathrm{z} / \mathrm{w})$. Also called perspective division.
\square Thus, for these transformed points,

$P^{*}=\mathbf{P} P=\left(\begin{array}{c} z_{\text {nar }} x \\ z_{\text {nar }} y \\ a z+b \\ -z \end{array}\right)$	P^{*} near $=\mathbf{P} P_{\text {zrear }}=\left(\begin{array}{c}z_{\text {near }} x \\ z_{\text {near }} y \\ -a z_{\text {rear }}+b \\ z_{\text {near }}\end{array}\right.$	$P *_{\text {far }}=\mathbf{P} P_{\text {fatar }}=\left(\begin{array}{c}z_{\text {near }} x \\ z_{\text {near }} y \\ -a z_{\text {far }}+b \\ z_{\text {far }}\end{array}\right.$
Using, $\quad a=-\frac{z_{\text {far }}+z_{\text {near }}}{z_{\text {far }}-z_{\text {near }}}$	$b=\frac{-2 Z_{\text {far }} * Z_{\text {near }}}{Z_{\text {far }}-Z_{\text {near }}}$	
Ordinary form of the x and y components:	Ordinary form $(a z+b) /(-z)$	of the z components:
$z_{\text {near }} \mathrm{x} / \mathrm{z}=\left(-\mathrm{z}_{\text {near }} / \mathrm{z}\right) \mathrm{x}$ $\mathrm{z}_{\text {near }} \mathrm{y} / \mathrm{z}=\left(-\mathrm{z}_{\text {near }} \mathrm{z}\right) \mathrm{y}$	$\left(-a z_{\text {near }}+\mathrm{b}\right)$ $\left(-\mathrm{a} \mathrm{z}_{\text {far }}+\mathrm{b}\right) /$	$\left.\begin{array}{r}=-1.0 \\ =+1.0\end{array}\right\}$ Check this

Perspective Transformation in OpenGL

- OpenGL perspective transformation:
combined with view volume \rightarrow NDC cube transformation.
Thus, matrix =

$$
\mathbf{P}=\left(\begin{array}{cccc}
\frac{2 z_{\text {near }}}{\text { right }- \text { left }} & 0 & \frac{\text { right }+ \text { left }}{\text { right }- \text { left }} & 0 \\
0 & \frac{2 \text { znaer }}{\text { top }- \text { bottom }} & \frac{\text { top }+ \text { bottom }}{\text { top }- \text { bottom }} & 0 \\
0 & 0 & \frac{-\left(z_{\text {far }}+z_{\text {near }}\right)}{z_{\text {far }}-\text { Znear }} & \frac{-2 Z_{\text {far }} Z_{\text {near }}}{z_{\text {far }}-\text { znear }} \\
0 & 0 & -1 & 0
\end{array}\right)
$$

- View volume corners are specified by points on a frustum (a.k.a. truncated pyramid): glFrustum(left, right, bottom, top, znear, zfar)

Perspective Transf. OpenGL (cont'd)

- gluPerspective computes these terms from its parameters (Hill, page 385):
top $=$ zNear * $\tan ((\pi / 180)$ viewAngle/2);
bottom = -top;
right = top * aspect; left = -right;
- Note: with gluperspective the view volume is always symmetric about the view direction vector. With glfrustum is is possible to specify an arbitrary, possible non-symmetric, view volume (useful for some stereo viewers).

(right, bottom, $-z_{\text {near }}$)
© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen
Slide 53

OpenGL Rendering Pipeline: Final Revision

- Rendering pipeline

- Clipping of 3D primitives performed in 4D clip space after view projection transformation (but before actual 3D \Rightarrow 2D projection). Transformed view volume is now a $\{-1,+1\}$ cube (greatly simplifies clipping algorithm).

- CanonicalView Volume (CVV)

Perspective Transformation: pseudodepth

- Z coordinate transformation: "pseudodepth"
$\square \quad$ Transformed z^{*} not linear function of z
$z^{*}=\frac{a z+b}{-z}=\frac{\left(-\frac{z_{\text {far }}+z_{\text {near }}}{z_{\text {far }}-z_{\text {near }}}\right) z+\frac{-2 z_{\text {far }} * Z_{\text {near }}}{z_{\text {far }}-z_{\text {near }}}}{-z}$
$z^{*}=\frac{\left(z_{\text {far }}+z_{\text {near }}\right) z+2 z_{\text {far }} * Z_{\text {near }}}{\left(z_{\text {far }}-z_{\text {near }}\right) z}$
$\square \quad$ This is OK (sort of) because
z^{*} meets our 2 requirements:

1. monotonic increasing, and
2. $z^{\star}=-1$ and +1 for $z=z_{\text {near }}$ and

$\square \quad$ But, can cause z-buffer precision problems! (values usually 32 bit integers)
\square WARNING: avoid

- very small $\mathrm{z}_{\text {near }} \quad$ (NEVER use $\mathrm{z}_{\text {near }}=0$)
- very large $\mathrm{z}_{\mathrm{far}}$
© 2005 Lewis Hitchner and Chia-Yen Chen http://www.cs.auckland.ac.nz/~yen
Slide 54

Canonical View Volume: Clipping

- But, there are 2 problems:

In some strange cases points that are behind the eye can have projected z values (pseudodepth) that are in front of the eye after perspective division! (because: for $P_{\text {homog }}=(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})^{\top} \rightarrow P_{\text {ord }}=(\mathrm{x} / \mathrm{w}, \mathrm{y} / \mathrm{w}, \mathrm{z} / \mathrm{w})^{\top} \mathrm{z} / \mathrm{w}$ is the same result for negative and positive values, i.e., $-z / w=z /-w$ and $-z /-w=z / w$)
2. Division is a slow operation (even in hardware). Would be nice to clip away as many primitives as possible BEFORE performing perspective division on vertices.

- Solution: Clip in 4D Homogeneous Coordinate Space (whoa!)
- First, review how clipping to $\{-1,+1\}$ NDC is performed in 3D

Check if points lie on inside or outside of each of the 6 clipping planes

- Example, test for point inside left plane: if $p_{x}>-1$, same as $\left(\mathbf{p}_{\mathrm{x}} \mathbf{+ 1}\right)>0$. Other clip planes: $\left(p_{x}-1\right)>0,\left(p_{y}+1\right)<0,\left(p_{y}-1\right)>0,\left(p_{z}+1\right)<0,\left(p_{z}-1\right)>0$.
- So, algorithm just adds or subtracts 1 and compares result to 0 .
- Very efficient and fast, especially fast in hardware!
. Assign result of boundary tests to outcode values for each end point of a line using one bit for each clip plane, left, right, bottom, top, near, far.

Canonical View Volume: Clipping (cont'd)

$\square \quad$ Outcode examples (2D figure):
Point A, outside the left and top boundaries
Point B, outside the right and top boundaries
Point C , inside all boundaries
Point D, inside all boundaries
LRBTNF

Point D, inside all boundaries
$=100100$
= 010100
= 000000
$=000000$
$=001000$
Points F, F', outside right boundary
$=010000$
3. Perform trivial accept and trivial reject tes

- trivial reject
$=$ both endpoints outside some one clip plane
= any 2 outcode bits both 1
= (outcode A \& outcode B) != 0
- trivial accept
= both endpoints inside all clip planes
$=$ all outcode bits 0
$=($ outcode C | outcode D) $==0$

4. For remaining endpoint pairs, must find intersection of line with clip planes to determine portion of line that is clipped.

Canonical View Volume: Clipping (cont'd)

- Liang-Barsky and Cyrus-Beck clippers (Hill 7.4.4, simplified)
for a single edge from point p_{0} to p_{1} :
Each edge is represented as: $p(t)=p 0+t(p 1-p 0)$
Compute outcodes; perform trivial reject and accept
If not rejected and not accepted:
Initialize: [tMin, tMax$]=[0,1]$
For each halfspace $\{x / w>-1, x / w<+1, y / w>-1, y / w<+1, z / w<+1, z / w>-1\}$
while tMin < tMax
Compute tCross where (extended) line crosses halfspace
if entering half-space
$\mathrm{tMin}=\max (\mathrm{tMin}, \mathrm{tCross})$
else

$$
\mathrm{tMax}=\min (\mathrm{tMax}, \mathrm{t} \text { Cross })
$$

if tMin > tMax
Edge is outside CVV else

Compute new edge $\{p 0, p 1\}=p(t M i n), p(t M a x)\}$,
$p 0 x=p 0 x+\operatorname{tMin}(p 1 x-p 0 x)$
$\mathrm{p} 1 \mathrm{x}=\mathrm{p} 0 \mathrm{x}+\mathrm{tMax}(\mathrm{p} 1 \mathrm{x}-\mathrm{p} 0 \mathrm{x})$
and same for y, z, and w

Canonical View Volume: Clipping (cont’d)

- Clipping to $\{-1,+1\}$ NDC in 4D

Check if points lie on inside or outside of each of the 6 clipping planes

- test for point inside left plane: if $p_{x} / p_{w}>-1$ or $p_{x}>-p_{w}$ or $\left(\mathbf{p}_{w}+\mathbf{p}_{\mathrm{x}}\right)>0$.

Other planes: $\left(\mathbf{p}_{w}-\mathbf{p}_{x}\right)>\mathbf{0},\left(\mathbf{p}_{w}+\mathbf{p}_{y}\right)<\mathbf{0},\left(\mathbf{p}_{w}-\mathbf{p}_{y}\right)>\mathbf{0},\left(\mathbf{p}_{w}+\mathbf{p}_{z}\right)<\mathbf{0},\left(\mathbf{p}_{w}-\mathbf{p}_{z}\right)>0$.
2. Assign result of tests to outcode values for each point (same as in 3D).
3. Perform trivial reject and trivial accept tests (same as in 3D).
4. Find clipped line by computing intersection point of line with each clipping plane using parametric equation for line (nearly same as in 3D), $\mathrm{p}(\mathrm{t})=\mathrm{p}_{0}+\mathrm{t}\left(\mathrm{p}_{1}-\mathrm{p}_{0}\right), 0<=\mathrm{t}<=1$

1. Endpoint $p_{0}=p\left(t_{\text {min }}=0\right)$: for each plane if it is outside the plane find t value at intersection, save largest $t_{\text {min }}$
2. Endpoint $p_{1}=p\left(t_{\max }=1\right)$: save smallest $t_{\max }$
3. If $t_{\text {max }}>t_{\text {min }}$ reject, else clip line to $\left\{t_{\text {min }}, t_{\text {max }}\right\}$
4. Compute $p_{x}(t), p_{y}(t), p_{z}(t)$, and $p_{w}(t)$.

5. Perform perspective division of clipped end points.

Questions about View Projections

- For the case of $z_{\text {near }}=1, z_{\text {far }}=10$, plot a graph of pseudodepth versus z.
- Why isn't it a good idea to always use a very small number for $z_{\text {near }}$ and a very large number for $\mathrm{z}_{\text {far }}$?
- Work out what the matrix \mathbf{P} should be for an orthographic camera.
- Assuming left = -right and bottom = -top (slide \#52), work out formulae for the scaling factors required in matrix P. Compare with Hill's formulae.
- Why does OpenGL have two separate matrices (MODELVIEW and PROJECTION)? Why can't we just multiply the P matrix into the MODELVIEW matrix (as we do with the V matrix)?
- How would you compute the two view transformations for left eye and right eye stereo views for the HMD helmet of the NASA Ames VPE project?
- Would the projection transformation for each eye's view be the same or different? If different, how would they differ?

