Compsci 369

Compsci 369
Test 2017
Most Common Mistakes

Suppose that the columns of a matrix A are mutually orthogonal but not necessarily normalised. Then the strongest statement we can make about $A^{T} A$ is that it is

- Lower triangular
© Upper triangular
- Diagonal
- The identity

Suppose that the columns of a matrix A are mutually orthogonal but not necessarily normalised. Then the strongest statement we can make about $A^{T} A$ is that it is

- Lower triangular
© Upper triangular
- Diagonal
- The identity

The 4th hardest question: Question 1 55% correct

What is the smallest value of $x \geq 0$ for which the condition number $f(x)=e^{2 x}$ is greater than or equal to 1000 ?

- 500
(2) 1000
- e^{2000}
- $\frac{1}{2} \log (1000)$

The 4th hardest question: Question 1 55% correct

What is the smallest value of $x \geq 0$ for which the condition number $f(x)=e^{2 x}$ is greater than or equal to 1000 ?

- 500
(2) 1000
- e^{2000}
- $\frac{1}{2} \log (1000)$

Gaussian elimination reduces a square matrix to the product of

- Two orthogonal matrices
(Two orthogonal matrices and a diagonal matrix
- Two triangular matrices
- An orthogonal matrix and a triangular matrix

Gaussian elimination reduces a square matrix to the product of

- Two orthogonal matrices
(Two orthogonal matrices and a diagonal matrix
- Two triangular matrices
- An orthogonal matrix and a triangular matrix

In a Poisson process with arrivals at rate 5, what is the distribution and mean of the times between arrivals?

- Poisson with mean 5
(2) Poisson with mean 0.2
- Exponential with mean 0.2
- Exponential with mean 5

In a Poisson process with arrivals at rate 5, what is the distribution and mean of the times between arrivals?

- Poisson with mean 5
(2) Poisson with mean 0.2
- Exponential with mean 0.2
- Exponential with mean 5

The hardest question: Question 17
47% correct

Let $\left[\begin{array}{ll}0.5 & 0.5 \\ 0.3 & 0.7\end{array}\right]$ be the transition matrix of Markov chain X_{i} which takes states 1 and 2 corresponding to rows and column indices. What is $\operatorname{Pr}\left(X_{2}=1 \mid X_{0}=2\right)$?

- 0.7
c 0.6
- 0.3
- 0.36

The hardest question: Question 17
47% correct

Let $\left[\begin{array}{ll}0.5 & 0.5 \\ 0.3 & 0.7\end{array}\right]$ be the transition matrix of Markov chain X_{i} which takes states 1 and 2 corresponding to rows and column indices. What is $\operatorname{Pr}\left(X_{2}=1 \mid X_{0}=2\right)$?

- 0.7
c 0.6
- 0.3
- 0.36

