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A First Evolutionary Algorithm
This is the same pseudocode as last lecture.

POP_SIZE = 30
N_GENES  = 10
N_GENERATIONS = 100

parents[POP_SIZE,N_GENES];
offspring[POP_SIZE,N_GENES];

## INITIALIZE THE POPULATION
for i in range(0,POP_SIZE) :
    for j in range(0,N_GENES) :
        parents[i,j] = appropriate_random_value()

## EVOLVE. Each time around the outer loop is one "generation"
for generation_i in range(0,N_GENERATIONS) :

    ## evaluate the fitness of every individual
    fitnesses = [eval_fitness(indiv) for indiv in parents]

    for offspring_i in range(0,N_GENES) :
        ## randomly pick 2 individuals from parents
        ## selecting preferentially for the fitter ones
        parent_a, parent_b = biased_random_selection_of_two_parents()

        ## recombine to make 1 offspring, and mutate the offspring
        offspring[offspring_i] = mutate( recombine(parent_a,parent_b) )

    ## overwrite the parents with the offspring, (throwing 
    ## away the previous generation in the process)
    parents[:] = offspring[:]

The example code above had the magic function eval_fitness(indiv), which takes an 

individual's genes as an argument, generates a phenotype from that individual, and then evaluates 
the fitness of that phenotype. Sometimes the phenotype is essentially the same thing as the 
phenotype, but more frequently, the genotype encodes the phenotype and there are various ways 
that the encoding can be accomplished. This encoding, the genotype to phenotype map heavily 
influences the shape of the fitness landscape, and the shape of the fitness landscape heavily 
influences the likelihood of your GA finding a good solution. A good rule of thumb is that where 
possible, a small change in the genotype should create a small change in fitness. When we view 
evolution as a "hill-climbing" search of parameter space, we can see that GAs take advantage of 
regularities in the search space. 



Selection

In the pseudocode above, we had a "magic" function, 

biased_random_selection_of_two_parents(). This function determines which 

individuals get to reproduce. This selection process can be accomplished in a variety of different 
ways. 

• Tournament selection is perhaps the simplest method. Two individuals are selected at 

random. The fitter of the two gets to be a parent (this can be done N-times to pick N parents 
for). 

• Truncation selection uses the top X% of the population as parents.

• Fitness proportionate selection. Say the fitnesses of an example small population are 2, 5, 

3, 7 and 4, then select parents with the probability 2/21, 5/21, 3/21, 7/21, 4/21 (as 
2+5+3+7+4 = 21).

◦ Q: What if fitnesses are e.g. 1020, 1010, 1025, 1017? A: then there will be very little 

selection pressure to improve (roughly even chances of reproduction for everyone)

• Rank selection ignores absolute differences in scores, focusing purely on the rank of the 

individual in the population. Even below average in population has a chance of 
reproduction.

Elitism is an optional property of GAs, where the best-performing individual found so far is 
guaranteed to remain in the population (until there exists a more fit individual.)

Q: Which of the above inherently accomplish elitism (i.e. without any additional code to do so) (a) 
when fitness is a deterministic function of the genotype and (b) when the evaluation of fitness 
includes stochastic terms?

Population Convergence and Demes

Another dynamic that we can observe in the simulation is population convergence, where the 
variety of the population goes down. Q: How does the shape of the fitness landscape affect 
population convergence? A: A local peak causes the population to converge (this is sometimes used 
to signal the end of the evolution), and a flat or "neutral" area causes the population to become more
diverse. When the variety of the population is too low, evolution can be slow, and it can more easily
get stuck in local optima.

Q: What other factors influence population convergence?

It is often the case that the population quickly becomes fairly genetically converged, and thereafter 
tends to search just one small part of the search space.

Multiple populations may search multiple corners, and a common approach when using GAs is to 
run multiple independent evolutionary runs (each is hopefully searching a different part of the 
genotype space).



But maybe it would be better if these different populations could interbreed a little bit, to share the 
beneficial mutations when they have found them, etc.

A "deme" (in evolutionary biology) refers to an isolated sub-population. Generally individuals 
within a deme will interbreed with other individuals within that deme, but occasionally there will be
some intermixing between demes. There are a variety of ways one can include demes in GAs. 
Perhaps the simplest is to store your individuals as a list, and to only let individuals reproduce with 
individuals that are nearby on that list +/- 1 or +/- 2.

Generational vs. Steady State GAs

The pseudocode we looked at above is a generational GA, as it replaces one entire generation with 
the generation of its offspring. Some natural systems work like this, but other have co-existent 
generations / no-clear distinction between generations. We can create steady-state GAs that have 
coexisting (and potentially competing) offspring and parents. One way to do so is to use 
tournament selection to evaluate two parents, and to replace the less fit parent with the offspring 
of the two. The population size remains constant, but over time everyone is replaced -- or are they?

The following is pseudocode for the Microbial Genetic Algorithm, an algorithm that was designed 
with simplicity in mind. It incorporates demes, tournament selection, and elitism, but the 
generation of offspring is a bit different than we have seen above -- in that it is inspired by the 
transferral of genetic material between living organisms as observed in some bacteria.

POP_SIZE = 30
N_GENES  = 8
N_TOURNAMENTS = 500

## INITIALIZE THE POPULATION
population = np.random.rand(POP_SIZE,N_GENES)

## EVOLVE. Each time around the outer loop is one "tournament"
for tournament_i in range(N_TOURNAMENTS) :
    ## parent selection (with DEMES)
    parent_a_index = get_random_index()
    parent_b_index = ( parent_a_index + random.choice([­1,1]) ) % POP_SIZE

    # evaluate both parents for fitness and identify a winner and a loser
    a_fitness = evaluate(population[parent_a_index])
    b_fitness = evaluate(population[parent_b_index])

    if a_fitness > b_fitness :
        winner_i = parent_a_index
        loser_i  = parent_b_index
    else :
        winner_i = parent_b_index
        loser_i  = parent_a_index

    ## overwrite some of the loser's genome with some of the winner's genome
    ## an alternative form of recombination
    for g_i in range(N_GENES) :
        if np.random.rand() < 0.7 :
            population[loser_i,g_i] = population[winner_i,g_i]
        ## mutate the loser
        mutate(loser)
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