
CS369 Computational Science
Evolutionary Algorithms II

Matthew Egbert 2017

A First Evolutionary Algorithm
This is the same pseudocode as last lecture.

POP_SIZE = 30
N_GENES = 10
N_GENERATIONS = 100

parents[POP_SIZE,N_GENES];
offspring[POP_SIZE,N_GENES];

INITIALIZE THE POPULATION
for i in range(0,POP_SIZE) :
 for j in range(0,N_GENES) :
 parents[i,j] = appropriate_random_value()

EVOLVE. Each time around the outer loop is one "generation"
for generation_i in range(0,N_GENERATIONS) :

 ## evaluate the fitness of every individual
 fitnesses = [eval_fitness(indiv) for indiv in parents]

 for offspring_i in range(0,N_GENES) :
 ## randomly pick 2 individuals from parents
 ## selecting preferentially for the fitter ones
 parent_a, parent_b = biased_random_selection_of_two_parents()

 ## recombine to make 1 offspring, and mutate the offspring
 offspring[offspring_i] = mutate(recombine(parent_a,parent_b))

 ## overwrite the parents with the offspring, (throwing
 ## away the previous generation in the process)
 parents[:] = offspring[:]

The example code above had the magic function eval_fitness(indiv), which takes an

individual's genes as an argument, generates a phenotype from that individual, and then evaluates
the fitness of that phenotype. Sometimes the phenotype is essentially the same thing as the
phenotype, but more frequently, the genotype encodes the phenotype and there are various ways
that the encoding can be accomplished. This encoding, the genotype to phenotype map heavily
influences the shape of the fitness landscape, and the shape of the fitness landscape heavily
influences the likelihood of your GA finding a good solution. A good rule of thumb is that where
possible, a small change in the genotype should create a small change in fitness. When we view
evolution as a "hill-climbing" search of parameter space, we can see that GAs take advantage of
regularities in the search space.

Selection

In the pseudocode above, we had a "magic" function,

biased_random_selection_of_two_parents(). This function determines which

individuals get to reproduce. This selection process can be accomplished in a variety of different
ways.

• Tournament selection is perhaps the simplest method. Two individuals are selected at

random. The fitter of the two gets to be a parent (this can be done N-times to pick N parents
for).

• Truncation selection uses the top X% of the population as parents.

• Fitness proportionate selection. Say the fitnesses of an example small population are 2, 5,

3, 7 and 4, then select parents with the probability 2/21, 5/21, 3/21, 7/21, 4/21 (as
2+5+3+7+4 = 21).

◦ Q: What if fitnesses are e.g. 1020, 1010, 1025, 1017? A: then there will be very little

selection pressure to improve (roughly even chances of reproduction for everyone)

• Rank selection ignores absolute differences in scores, focusing purely on the rank of the

individual in the population. Even below average in population has a chance of
reproduction.

Elitism is an optional property of GAs, where the best-performing individual found so far is
guaranteed to remain in the population (until there exists a more fit individual.)

Q: Which of the above inherently accomplish elitism (i.e. without any additional code to do so) (a)
when fitness is a deterministic function of the genotype and (b) when the evaluation of fitness
includes stochastic terms?

Population Convergence and Demes

Another dynamic that we can observe in the simulation is population convergence, where the
variety of the population goes down. Q: How does the shape of the fitness landscape affect
population convergence? A: A local peak causes the population to converge (this is sometimes used
to signal the end of the evolution), and a flat or "neutral" area causes the population to become more
diverse. When the variety of the population is too low, evolution can be slow, and it can more easily
get stuck in local optima.

Q: What other factors influence population convergence?

It is often the case that the population quickly becomes fairly genetically converged, and thereafter
tends to search just one small part of the search space.

Multiple populations may search multiple corners, and a common approach when using GAs is to
run multiple independent evolutionary runs (each is hopefully searching a different part of the
genotype space).

But maybe it would be better if these different populations could interbreed a little bit, to share the
beneficial mutations when they have found them, etc.

A "deme" (in evolutionary biology) refers to an isolated sub-population. Generally individuals
within a deme will interbreed with other individuals within that deme, but occasionally there will be
some intermixing between demes. There are a variety of ways one can include demes in GAs.
Perhaps the simplest is to store your individuals as a list, and to only let individuals reproduce with
individuals that are nearby on that list +/- 1 or +/- 2.

Generational vs. Steady State GAs

The pseudocode we looked at above is a generational GA, as it replaces one entire generation with
the generation of its offspring. Some natural systems work like this, but other have co-existent
generations / no-clear distinction between generations. We can create steady-state GAs that have
coexisting (and potentially competing) offspring and parents. One way to do so is to use
tournament selection to evaluate two parents, and to replace the less fit parent with the offspring
of the two. The population size remains constant, but over time everyone is replaced -- or are they?

The following is pseudocode for the Microbial Genetic Algorithm, an algorithm that was designed
with simplicity in mind. It incorporates demes, tournament selection, and elitism, but the
generation of offspring is a bit different than we have seen above -- in that it is inspired by the
transferral of genetic material between living organisms as observed in some bacteria.

POP_SIZE = 30
N_GENES = 8
N_TOURNAMENTS = 500

INITIALIZE THE POPULATION
population = np.random.rand(POP_SIZE,N_GENES)

EVOLVE. Each time around the outer loop is one "tournament"
for tournament_i in range(N_TOURNAMENTS) :
 ## parent selection (with DEMES)
 parent_a_index = get_random_index()
 parent_b_index = (parent_a_index + random.choice([­1,1])) % POP_SIZE

 # evaluate both parents for fitness and identify a winner and a loser
 a_fitness = evaluate(population[parent_a_index])
 b_fitness = evaluate(population[parent_b_index])

 if a_fitness > b_fitness :
 winner_i = parent_a_index
 loser_i = parent_b_index
 else :
 winner_i = parent_b_index
 loser_i = parent_a_index

 ## overwrite some of the loser's genome with some of the winner's genome
 ## an alternative form of recombination
 for g_i in range(N_GENES) :
 if np.random.rand() < 0.7 :
 population[loser_i,g_i] = population[winner_i,g_i]
 ## mutate the loser
 mutate(loser)

Further reading
David Goldberg 1989 "Genetic Algorithms in Search, Optimization and Machine Learning"
Addison Wesley

Melanie Mitchell and Stephanie Forrest "Genetic Algorithms and Artificial Life". Artificial Life v1
no3 pp 267-289, 1994.

Melanie Mitchell "An Intro to GAs" MIT Press 1998

Z Michalewicz "GAs + Data Structures = Evolution Programs" Springer Verlag 1996

Harvey I. (2011) The Microbial Genetic Algorithm. In: Kampis G., Karsai I., Szathmáry E. (eds)
Advances in Artificial Life. Darwin Meets von Neumann. ECAL 2009. Lecture Notes in Computer
Science, vol 5778. Springer, Berlin, Heidelberg

	A First Evolutionary Algorithm
	Further reading

