Evolutionary Algorithms Il
Fitness Landscapes, Demes, Genotype-to-Phenotype Maps

CS369 // Computational Science

Matthew Egbert
m.egbert@auckland.ac.nz

Last lecture

Basics of evolutionary algorithms

- random mutation
- directed selection

Terminology

- genotype / phenotype
- fitness

Q: What are some problems and advantages
associated with having a low mutation rate?

Q: What are some problems and advantages
associated with having a high mutation rate?

Q: When using creep mutation of real valued
genes, why a mutation amount from a Gaussian
distribution better than selecting from a flat
distribution?

Q: Why when mutating a bitstring is it better to
mutate each bit with p=1/N, rather than selecting
one bit at random to flip?

Q: What exactly is the disadvantage of
"wrapping" gene values to keep them within
bounds?

Q: What happens when the evaluation of fithess
is a bit random (e.qg. different wind conditions in
the paper-airplane example)?

Genotype to
Phenotype Map

30
E = 10
GA N GENERATIONS = 100

pSQUdOCOde parents[POP SIZE,N GENES];

of fspring[POP_SIZE,N_GENES];

INITIALIZE THE POPULATION
for 1 in range(0,POP SIZE)
for j in range(0,N GENES) :
parents[i,]] = appropriate random value()

EVOLVE. Each time around the outer loop is one "generation"
for generation i in range(0,N GENERATIONS) :

evaluate the fitness of every individual
fitnesses = “eval_ﬁitnesskindiv} for indiv in parents]

for offspring 1 in range(0,N GENES)
randomly pick 2 individuals from parents
selecting preferentially for the fitter ones
parent_a, parent b = biased random selection of two parents()

recombine to make 1 offspring, and mutate the offspring
of fspring[offspring 1] = mutate(recombine(parent a,parent b))

overwrite the parents with the offspring, (throwing
away the previous generation in the process)
:] = offspring|:

What happens in
natural evolution?

Evaluating Fitness

1. Given a genotype, generate a phenotype that can
be evaluated for fitness. O
2. Evaluate fitness.
O

What is the best way to set up the encoding of the o
phenotype known as the genotype-to-phenotype map?

We have seen in the demo that evolutionary algorithms
can be thought of as "climbing hills" in the fitness
landscape.

Some landscapes are more easily climbed than others.
smooth hill vs. a "manhattan skyline"

A rule of thumb: a small change in the genotype should
create a small change in fithess

Example G—P Mapping

Let's imagine that the phenotype is an
integer between 0 and 7, and the
genotype is three bits...

malll

To mutate from

phenotype 3—4,
you would need
three mutations!

Binary Phenotype
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

Selection

30
E = 10
GA N GENERATIONS = 100

pSQUdOCOde parents[POP SIZE,N GENES];

of fspring[POP_SIZE,N_GENES];

INITIALIZE THE POPULATION
for 1 in range(0,POP SIZE)
for j in range(0,N GENES) :
parents[i,]] = appropriate random value()

EVOLVE. Each time around the outer loop is one "generation"
for generation i in range(0,N GENERATIONS) :

evaluate the fitness of every individual
fitnesses = [eval fitness(indiv) for indiv in parents]

for offspring i1 in range(0,N GENES)

randomly pick 2 individuals from parents

selecting preferentially for the fitter ones

parent a, parent b = biased random selection of two parents()

recombine to make 1 offspring, and mutate the offspring
of fspring[offspring 1] = mutate(recombine(parent a,parent b))

overwrite the parents with the offspring, (throwing
away the previous generation in the process)
:] = offspring|:

Selection Methods

Truncation selection uses the top X% of the
population as parents.

1. Remove the poorest performing Y% of the
population.

2. From the remaining population, select
parents at random, and generate enough
offspring to replace all of the removed
individuals.

Tournament selection is just as simple, but
maybe it can better take advantage of any
information the population has about a local
gradient.

1. Select two individuals at random. The fitter
of the two gets to be a parent.
2. Repeat N-times to pick N different parents.

The random selection of individuals for the
tournament may sometimes miss information
about the local gradient...fitness proportionate
selection is one attempt to take advantage the
entire population's "knowledge about the
gradient”

Q: What if fitnesses are e.g. 1020, 1010, 1025,
10177

A: then there will be very little selection pressure to
improve (roughly even chances of reproduction for
everyone)

Rank selection ignores absolute differences in
scores, focusing purely on the rank of the individual
in the population. Even below average in
population has a chance of reproduction.

Fitness proportionate selection

If the fitnesses of an example small population
were 2, 5, 3, 7 and 4, then you would select
parents with the probability 2/21, 5/21, 3/21,
7121, 4/21 (as 2+5+3+7+4 = 21).

Rank selection

If the fitnesses of an example small population
were 2, 5, 3, 7, 4 then you might select parents
with probabilities 0/10, 3/10, 1/10, 4/10, 2/10 (as
the sum of all of the possible ranks, 0+3+1+4+2
=10)

Elitism

Elitism is an optional property of GAs, where
the best-performing individual found so far is

guaranteed to remain in the population (until

there exists a more fit individual.)

Sometimes elitism is implicit in the GA.
Sometimes it is an explicitly added feature.

Assuming that fithess evaluations are a
deterministic function of the genotype...

Q: Which of the selection methods just
presented implicitly include elitism?

Q: ...and how does this change if fitness
evaluations include some stochasticity?

Convergence and
Demes

Convergence

Q: How does the shape of the fitness landscape
affect population convergence?

A: A local peak causes the population to
converge (this is sometimes used to signal the
end of the evolution), and a flat or "neutral" area
causes the population to become more diverse.
When the variety of the population is too low,
evolution can be slow, and it can more easily get
stuck in local optima.

Q: What other factors influence population
convergence?

DEMO

Demes

For GAs to work well, you want some variety, but not
total randomness...

...not so small you get stuck in local optima.

...not so big that the search becomes a random search.
(i.e. that you are not responding to patterns / gradients
in the fithess landscape).

... not so small that the algorithm takes forever.

Demes are a way to increase / maintain some variety in
the population.

A "deme" (in evolutionary biology)
refers to an isolated sub-population.

Generally individuals within a deme
will interbreed with other individuals
within that deme, but occasionally
there will be some intermixing between
demes.

There are a variety of ways one can
include demes in GAs. Perhaps the
simplest is to store your individuals as
a list, and to only let individuals
reproduce with individuals that are
nearby on that list +/- 1 or +/- 2.

10

11

12

13

Generational vs. Steady State GAs

The pseudocode we looked at above is a
generational GA, as it replaces one entire
generation with the generation of its offspring.

Some natural systems work like this, but other
have co-existent generations / no-clear
distinction between generations.

We can create steady-state GAs that have
coexisting (and potentially competing) offspring
and parents.

Let's look at an example...

Microbial GA

INITIALIZE THE POPULATION
population = np.random.rand(POP SIZE,N GENES)

EVOLVE. Each time around the outer loop is one "tournament"
for tournament i in range(N_TOURNAMENTS) :
parent selection (with DEMES)
parent a index = get random index()
parent _ b index = (parent a_ ~index + random.choice([-1,1])) % POP_SIZE

evaluate both parents for fitness and identify a winner and a loser
a fitness = evaluate(population[parent a index])
b fitness = evaluate(population[parent b index])

if a fitness > b fitness :

winner i = parent a index D E M O
loser 1 = parent b index

else :
winner i = parent b index
loser 1 = parent a ~index

overwrite some of the loser's genome with some of the winner's genome
an alternative form of recombination
for g i in range(N_GENES) :
if np.random.rand() < 0.7 :
population[loser i,g i] = population[winner i,g i]
mutate the loser
mutate(loser)

Optional Exercises

Available on cs369 website...

CS369 Computational Science
Evolutionary Algorithms
Optional Exercise
Matthew Egbert 2017

Hands-on experience can really help you to remember what you have learned. For this reason |
recommend that you gain some experience working with genetic algorithms by writing one of your
own. This exercise is optional and not graded, but if you have questions along the way, feel free to
email me or swing by my office.

Task #1. Write a genetic algorithm that maximises the sum of a set of N real-valued genes that are

capped between (say) 0 and 1. You could start with the a minimal version of the microbial genetic
algorithm and extend it with demes, or modify it to use alternative forms of sexual recombination
rather than the microbial mechanism of overwriting the loser's genome with part of the parent's
genome. This exercise is also a good place to investigate the different methods for limiting the
allowed values of genes (clamping, wrapping and bouncing). In particular, what are the effects of
wrapping?

Task #2. A different task is to evolve a solution to the following card problem.

You have 10 cards numbered from 1 to 10. You have to choose a way of dividing them into 2 piles,
so that the cards in Pile_0 sum to a number as close as possible to 36, and the product of the
remaining cards in Pile_1 is a number as close as possible to 360.

Why would no-body ever actually use a GA to solve this particular problem in real life?

Can you conduct any experiments that give you insight into the fitness landscape of this problem?

Thank you!

