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Last lecture...

Building computational models…
… for quantitative comparison to real world systems.
… to recreate (qualitatively) an interesting natural phenomenon.
… to explore an abstraction, an idea, or set of assumptions.

Models are useful in…
… evaluating how well we understand a real-world phenomenon
… predicting real-world phenomena
… communicating ideas.
… driving the creative process of coming up with new questions or hypotheses.



Artificial Evolution
Today I will introduce evolutionary 
algorithms, which are computer 
algorithms that simulate evolution 
allowing you to "breed" desired 
systems.

We'll start by considering a few 
reasons why scientists might use 
these algorithms...



#1 Solving problems we couldn't
You are constructing a model of a metabolic 
network in some organism. Your data about the 
real world network is incomplete.

Task: select values for the free parameters so 
that the system behaves similarly to the natural 
system.

This would be hard (impossible?) for a human to 
do, but could be a good type of problem to use a 
genetic algorithm for.



Some designs are inaccessible (or at least difficult) 
to by-human engineering.

Evolved FPGA Circuits
1. Tone discriminator circuit [1]

2. Oscillator (inadvertent radio) [2]

[1] Thompson, A. (1997). An evolved circuit, intrinsic in silicon, entwined with physics. 
Evolvable systems: from biology to hardware, 390-405. Chicago

[2] https://www.newscientist.com/article/dn2732-radio-emerges-from-the-electronic-soup/

#2 Engineering artifacts we wouldn't (or couldn't?) design...

Evolved antennae.
"The resulting antenna often outperforms the best 

manual designs, because it has a complicated 
asymmetric shape that could not have been found with 

traditional manual design methods." 

https://en.wikipedia.org/wiki/Evolved_antenna



#3 Avoiding the bias of "by-human" engineering

Humans design understandable systems.

- Out of necessity (we kind of have to!)
- We often want to be able to predict what our 

creations will do.
- Accountability

Evolution has no such constraint!

Biological systems are messy! Consider, for instance, 
the brain, or gene-regulatory networks. These systems 
have wide variation of components, and interaction 
between components, cross talk, etc. Lack of 
hierarchy, etc. etc.

Making systems understandable is a constraint. What 
types of organization does it preclude?

Genetic algorithms can be used to design complex 
systems that are 

1. (hopefully) more similar to those produced by 
natural evolution -- or at least different from those 
that we would design as humans

2. still simple enough to understand

By studying the product of artificial evolution, we hope to 
improve our understanding of the product of natural 
evolution.



Evolutionary 
Robotics
Example research areas where artificial 
evolution is used include...

- bipedal walking 
- soft-bodied robotics 
- "emergent engineering" e.g. swarming or 

collective behaviours

Again the idea:
- engineering biases different from 

"by-human engineering"
- systems that are simple enough to 

understand 

http://www.youtube.com/watch?v=mYHK3wL11eI
http://www.youtube.com/watch?v=z9ptOeByLA4
http://www.youtube.com/watch?v=JBgG_VSP7f8
http://www.youtube.com/watch?v=dd8sIbxN4Zc


Outline
Quick refresher on basics of evolution

An evolutionary algorithm for designing 
a paper airplane

Terminology: phenotype, genotype, 
fitness, fitness landscape, selection, 
mutation

Pseudocode for a GA.

Details of genotypes, methods for 
selection, mutation, crossover etc.



..there is a population of individuals

..each individual dies

..each individual can reproduce

..there is heritable variation in the population, 
meaning:

variety: some individuals are more fit (i.e. 
more likely to reproduce) than others.

heritability: traits that contribute to fitness 
are passed from one generation to the 
next.

Evolution occurs when…
Over successive generations, the population 
changes, "adapting to its environment." 

A shorthand way of thinking about this is that 
“fitness increases,” but this is not strictly true 
and it glosses over some details.



Natural vs. artificial evolution
In natural evolution fitness is an abstraction of a 
wide variety of factors that contribute to how likely 
an organism is to reproduce. 

These include phenotypic traits, environment, luck, 
other organisms (conspecifics or predators or prey 
or competitors), etc.

But in artificial evolution fitness is specified by a 
person. You specify what it is to be fit!

- breeding
- genetic algorithms



Evolutionary 
Algorithms
Key evolutionary dynamics (mutation, selection, reproduction, 
etc.) are simulated so as to evolve a desired system…

- reaction rates to make a model of metabolic dynamics 
match empirical data

- a class schedule that minimizes conflicts 
- the shape of an antenna or airplane wing
- just about anything you can think of! (although in 

practice it is often not so easy)

The remainder of this lecture and much of tomorrow 
introduces the basics of genetic algorithms. 

Along the way, we briefly consider why it can be difficult for 
artificial evolution to find a solution, and a few methods that 
can be used to improve chances of success.



A genetic 
algorithm to 
design a paper 
airplane...



1. Generate 20 random sequences of folding instructions
2. Fold each piece of paper according to instructions written on them
3. Throw them all out of the window
4. Pick up the ones that went furthest, look at the instructions
5. Produce 20 new pieces of paper, writing on each bits of sequences from parent pieces 

of paper, occasionally making a mistake.
6. Repeat from (2) on.

Evolving a paper airplane

Fold TL to BR towards you
Fold horizontal middle away
Fold vertical middle towards
 

Fold TR to BL towards you
Fold horizontal middle away
Fold vertical middle away
 



Selection
1. Generate 20 random sequences of folding instructions
2. Fold each piece of paper according to instructions written on them
3. Throw them all out of the window
4. Pick up the ones that went furthest, look at the instructions
5. Produce 20 new pieces of paper, writing on each bits of sequences from parent pieces 

of paper, occasionally making a mistake.
6.  Repeat from (2) on.



Selection
1. Generate 20 random sequences of folding instructions
2. Fold each piece of paper according to instructions written on them
3. Throw them all out of the window
4. Pick up the ones that went furthest, look at the instructions
5. Produce 20 new pieces of paper, writing on each bits of sequences from parent pieces 

of paper, occasionally making a mistake.
6.  Repeat from (2) on.



Mutation
1. Generate 20 random sequences of folding instructions
2. Fold each piece of paper according to instructions written on them
3. Throw them all out of the window
4. Pick up the ones that went furthest, look at the instructions
5. Produce 20 new pieces of paper, writing on each bits of sequences from parent pieces 

of paper, occasionally making a mistake.
6. Repeat from (2) on.



Mutation
1. Generate 20 random sequences of folding instructions
2. Fold each piece of paper according to instructions written on them
3. Throw them all out of the window
4. Pick up the ones that went furthest, look at the instructions
5. Produce 20 new pieces of paper, writing on each bits of sequences from parent pieces 

of paper, occasionally making a mistake.
6. Repeat from (2) on.



Q: What would happen without mutation?

Generation 1 Generation 2 Generation 3 Generation 4

5 5 5 5

2 5 5 9

4 4 9 9

4 5 9 9

1 9 9 9

9 9 9 9

3 5 9 9

A: The population converges (variety is lost). If 
we assume that there is no randomness in 
measuring fitness, the population becomes 
homogenous -- all 9s.



Variation
Random mutations occur, maintaining variation in the 
population.

We saw in the previous slide that the population 
CONVERGED. At the end, everyone was a '9'.

Mutations counteract convergence, maintaining 
variety in the population (or equivalently producing 
novelty), which allows adaptation to continue.

Most mutations are deleterious (cause a decrease in 
fitness), but rarely, they increase fitness.

(Only) when there are mutations, can fitness increase 
above the maximum fitness of the initial population.

Generation 1 Generation 2 Generation 3 Generation 4

5 6 8 10

2 5 9 11

4 3 10 9

4 9 10 10

1 10 10 10

9 8 10 11

5 0 9 4

with mutation



Terminology
Fitness
How good a particular solution is at 
solving the problem at hand.

Genotype
A specification of solution. The 
genotype can be copied and mutated.

Phenotype
An instantiation of the genotype. i.e. an 
attempt to solve a problem. A 
phenotype can be evaluated (its 
fitness can be measured)



Fitness
1. Generate 20 random sequences of folding instructions
2. Fold each piece of paper according to instructions written on them
3. Throw them all out of the window
4. Pick up the ones that went furthest, look at the instructions
5. Produce 20 new pieces of paper, writing on each bits of sequences from parent pieces 

of paper, occasionally making a mistake.
6.  Repeat from (2) on.



Genotype & Phenotype
1. Generate 20 random sequences of folding instructions
2. Fold each piece of paper according to instructions written on them
3. Throw them all out of the window
4. Pick up the ones that went furthest, look at the instructions
5. Produce 20 new pieces of paper, writing on each bits of instruction sequences from 

parent pieces of paper, occasionally making a mistake.
6.  Repeat from (2) on.

Remember:
the genotype can be copied and mutated
the phenotype can be evaluated for fitness
(sometimes there is essentially no difference between the two)



You could be…

...evolving for optimal timetables

genotype: string encoding timetable allocations
phenotype: schedule
fitness: (negative) number of clashes

Alternatively...

...or for optimal aircraft wing design

genotype: listing various wing dimensions
phenotype: actual wing (or simulation thereof..)
fitness: formula based on lift/drag/cost of wing



GA 
pseudocode
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Details
Genotypes

Mutation

Selection

Evaluating fitness



Genotypes
The most common genotype formats are...

A sequence of symbols from a finite 
alphabet. This kind of genotype is most directly 
comparable to the nucleotides of DNA.. 

...AAGAGCTTGTGAAGAGTC…

In GA's you might see binary strings..

..01010010111010110101111101111...

A sequence of real values. 

e.g.: [0.0151, 0.4, 0.942…]. 

These values are often constrained to lie in a 
certain range, e.g. between 0 and 1, but they 
don't always have to be.



Trees etc.
There are many of alternative possibilities. 
Trees are also commonly used in genetic 
programming (GP), where the genotype is a 
tree structure that can be translated into a 
program (the phenotype).

Remember...
- genotypes (easy to copy & mutate)
- phenotypes (can be evaluated for fitness)

We won't spend any more time on tree-based 
genotypes.



Mutation
For binary strings…

For binary encodings a good (very approximate) 
rule of thumb is to have 1 mutation per bit. So 
each time you generate an offspring, each bit 
has a 1/N chance of being flipped where N is the 
number of binary genes. 

For real numbers…

For real encodings the approach is often quite 
different form of “creep mutation,” where you 
mutate every gene by a small amount. I use a 
value selected from a Gaussian distribution with 
a standard deviation of 2% of the total allowed 
range of the value. 



Limiting the range of genes
Mutation can cause genes to leave their allowed 
range. How can you best ensure that this 
doesn't happen?

Three possible solutions are the following 
(presuming an allowed gene value between 0 
and 1): 

Clamping 1.06 → 1

Bouncing 1.06 → 0.94

Wrapping 1.06 → 0.06

Which of these is best to use can depend upon 
the problem at hand, but generally bouncing and 
wrapping are seen as better than clamping, as 
clamping increases the number of mutations 
that produce gene values at the limits, biasing 
the mutation. 

Q: Wrapping can also have negative effects, 
can you imagine what they might be?



Crossover
Crossover is a process that occurs in nature in 
which genes from parents are recombined 
mixed.

You don't get all of your genes from your mom 
OR your dad, you get a mix of each of their 
genes – in fact a mix of each of their 
chromosomes.



Cross-over for linear genotypes



Fitness landscapes
Q: What is the problem with having too low a 
mutation rate?

Q: What is the problem with having too high a 
mutation rate?

Q: When using creep mutation of real valued 
genes, why a mutation amount from a Gaussian 
distribution better than selecting from a flat 
distribution?

Q: Why when mutating a bitstring is it better to 
mutate each bit with p=1/N, rather than selecting 
one bit at random to flip?

Q: What exactly is the disadvantage of 
"wrapping" gene values to keep them within 
bounds?

The fitness landscape is a useful concept that 
can make it easier to think about evolutionary 
algorithms…

To understand the concept of a fitness 
landscape, let's first look at the concept of a 
"search space"



Searching parameter space
We can think about evolution as a search process. 

In this way of thinking evolution is searching for a set 
of parameters (gene values) that maximise fitness. 

We can thus conceive of the "search space" or 
"parameter space" as the set of all parameters. 

The mutation operator implies a measurement of 
distance in this space.

On the right is a diagram of the search space for a 
genotype with 2 binary genes, X and Y. 

Each line represents a single mutation.





Every possible point in the search space has a 
fitness associated with it.

Usually we don't know what it is (if we did, we 
wouldn't have to run the evolutionary algorithm, 
we would just pick the system with highest 
fitness!

For a 2D search space, we can imagine the 
fitness as another dimension (coming off the 
screen), and the job of the GA is to climb the 
tallest hill in this fitness landscape.

This is actually a bit easier to see in a genotype 
of two continuous genes... DEMO



Thank you!


