
Introduction to
Evolutionary Algorithms
CS369 // Computational Science

Matthew Egbert
m.egbert@auckland.ac.nz

Last lecture...

Building computational models…
… for quantitative comparison to real world systems.
… to recreate (qualitatively) an interesting natural phenomenon.
… to explore an abstraction, an idea, or set of assumptions.

Models are useful in…
… evaluating how well we understand a real-world phenomenon
… predicting real-world phenomena
… communicating ideas.
… driving the creative process of coming up with new questions or hypotheses.

Artificial Evolution
Today I will introduce evolutionary
algorithms, which are computer
algorithms that simulate evolution
allowing you to "breed" desired
systems.

We'll start by considering a few
reasons why scientists might use
these algorithms...

#1 Solving problems we couldn't
You are constructing a model of a metabolic
network in some organism. Your data about the
real world network is incomplete.

Task: select values for the free parameters so
that the system behaves similarly to the natural
system.

This would be hard (impossible?) for a human to
do, but could be a good type of problem to use a
genetic algorithm for.

Some designs are inaccessible (or at least difficult)
to by-human engineering.

Evolved FPGA Circuits
1. Tone discriminator circuit [1]

2. Oscillator (inadvertent radio) [2]

[1] Thompson, A. (1997). An evolved circuit, intrinsic in silicon, entwined with physics.
Evolvable systems: from biology to hardware, 390-405. Chicago

[2] https://www.newscientist.com/article/dn2732-radio-emerges-from-the-electronic-soup/

#2 Engineering artifacts we wouldn't (or couldn't?) design...

Evolved antennae.
"The resulting antenna often outperforms the best

manual designs, because it has a complicated
asymmetric shape that could not have been found with

traditional manual design methods."

https://en.wikipedia.org/wiki/Evolved_antenna

#3 Avoiding the bias of "by-human" engineering

Humans design understandable systems.

- Out of necessity (we kind of have to!)
- We often want to be able to predict what our

creations will do.
- Accountability

Evolution has no such constraint!

Biological systems are messy! Consider, for instance,
the brain, or gene-regulatory networks. These systems
have wide variation of components, and interaction
between components, cross talk, etc. Lack of
hierarchy, etc. etc.

Making systems understandable is a constraint. What
types of organization does it preclude?

Genetic algorithms can be used to design complex
systems that are

1. (hopefully) more similar to those produced by
natural evolution -- or at least different from those
that we would design as humans

2. still simple enough to understand

By studying the product of artificial evolution, we hope to
improve our understanding of the product of natural
evolution.

Evolutionary
Robotics
Example research areas where artificial
evolution is used include...

- bipedal walking
- soft-bodied robotics
- "emergent engineering" e.g. swarming or

collective behaviours

Again the idea:
- engineering biases different from

"by-human engineering"
- systems that are simple enough to

understand

http://www.youtube.com/watch?v=mYHK3wL11eI
http://www.youtube.com/watch?v=z9ptOeByLA4
http://www.youtube.com/watch?v=JBgG_VSP7f8
http://www.youtube.com/watch?v=dd8sIbxN4Zc

Outline
Quick refresher on basics of evolution

An evolutionary algorithm for designing
a paper airplane

Terminology: phenotype, genotype,
fitness, fitness landscape, selection,
mutation

Pseudocode for a GA.

Details of genotypes, methods for
selection, mutation, crossover etc.

..there is a population of individuals

..each individual dies

..each individual can reproduce

..there is heritable variation in the population,
meaning:

variety: some individuals are more fit (i.e.
more likely to reproduce) than others.

heritability: traits that contribute to fitness
are passed from one generation to the
next.

Evolution occurs when…
Over successive generations, the population
changes, "adapting to its environment."

A shorthand way of thinking about this is that
“fitness increases,” but this is not strictly true
and it glosses over some details.

Natural vs. artificial evolution
In natural evolution fitness is an abstraction of a
wide variety of factors that contribute to how likely
an organism is to reproduce.

These include phenotypic traits, environment, luck,
other organisms (conspecifics or predators or prey
or competitors), etc.

But in artificial evolution fitness is specified by a
person. You specify what it is to be fit!

- breeding
- genetic algorithms

Evolutionary
Algorithms
Key evolutionary dynamics (mutation, selection, reproduction,
etc.) are simulated so as to evolve a desired system…

- reaction rates to make a model of metabolic dynamics
match empirical data

- a class schedule that minimizes conflicts
- the shape of an antenna or airplane wing
- just about anything you can think of! (although in

practice it is often not so easy)

The remainder of this lecture and much of tomorrow
introduces the basics of genetic algorithms.

Along the way, we briefly consider why it can be difficult for
artificial evolution to find a solution, and a few methods that
can be used to improve chances of success.

A genetic
algorithm to
design a paper
airplane...

1. Generate 20 random sequences of folding instructions
2. Fold each piece of paper according to instructions written on them
3. Throw them all out of the window
4. Pick up the ones that went furthest, look at the instructions
5. Produce 20 new pieces of paper, writing on each bits of sequences from parent pieces

of paper, occasionally making a mistake.
6. Repeat from (2) on.

Evolving a paper airplane

Fold TL to BR towards you
Fold horizontal middle away
Fold vertical middle towards

Fold TR to BL towards you
Fold horizontal middle away
Fold vertical middle away

Selection
1. Generate 20 random sequences of folding instructions
2. Fold each piece of paper according to instructions written on them
3. Throw them all out of the window
4. Pick up the ones that went furthest, look at the instructions
5. Produce 20 new pieces of paper, writing on each bits of sequences from parent pieces

of paper, occasionally making a mistake.
6. Repeat from (2) on.

Selection
1. Generate 20 random sequences of folding instructions
2. Fold each piece of paper according to instructions written on them
3. Throw them all out of the window
4. Pick up the ones that went furthest, look at the instructions
5. Produce 20 new pieces of paper, writing on each bits of sequences from parent pieces

of paper, occasionally making a mistake.
6. Repeat from (2) on.

Mutation
1. Generate 20 random sequences of folding instructions
2. Fold each piece of paper according to instructions written on them
3. Throw them all out of the window
4. Pick up the ones that went furthest, look at the instructions
5. Produce 20 new pieces of paper, writing on each bits of sequences from parent pieces

of paper, occasionally making a mistake.
6. Repeat from (2) on.

Mutation
1. Generate 20 random sequences of folding instructions
2. Fold each piece of paper according to instructions written on them
3. Throw them all out of the window
4. Pick up the ones that went furthest, look at the instructions
5. Produce 20 new pieces of paper, writing on each bits of sequences from parent pieces

of paper, occasionally making a mistake.
6. Repeat from (2) on.

Q: What would happen without mutation?

Generation 1 Generation 2 Generation 3 Generation 4

5 5 5 5

2 5 5 9

4 4 9 9

4 5 9 9

1 9 9 9

9 9 9 9

3 5 9 9

A: The population converges (variety is lost). If
we assume that there is no randomness in
measuring fitness, the population becomes
homogenous -- all 9s.

Variation
Random mutations occur, maintaining variation in the
population.

We saw in the previous slide that the population
CONVERGED. At the end, everyone was a '9'.

Mutations counteract convergence, maintaining
variety in the population (or equivalently producing
novelty), which allows adaptation to continue.

Most mutations are deleterious (cause a decrease in
fitness), but rarely, they increase fitness.

(Only) when there are mutations, can fitness increase
above the maximum fitness of the initial population.

Generation 1 Generation 2 Generation 3 Generation 4

5 6 8 10

2 5 9 11

4 3 10 9

4 9 10 10

1 10 10 10

9 8 10 11

5 0 9 4

with mutation

Terminology
Fitness
How good a particular solution is at
solving the problem at hand.

Genotype
A specification of solution. The
genotype can be copied and mutated.

Phenotype
An instantiation of the genotype. i.e. an
attempt to solve a problem. A
phenotype can be evaluated (its
fitness can be measured)

Fitness
1. Generate 20 random sequences of folding instructions
2. Fold each piece of paper according to instructions written on them
3. Throw them all out of the window
4. Pick up the ones that went furthest, look at the instructions
5. Produce 20 new pieces of paper, writing on each bits of sequences from parent pieces

of paper, occasionally making a mistake.
6. Repeat from (2) on.

Genotype & Phenotype
1. Generate 20 random sequences of folding instructions
2. Fold each piece of paper according to instructions written on them
3. Throw them all out of the window
4. Pick up the ones that went furthest, look at the instructions
5. Produce 20 new pieces of paper, writing on each bits of instruction sequences from

parent pieces of paper, occasionally making a mistake.
6. Repeat from (2) on.

Remember:
the genotype can be copied and mutated
the phenotype can be evaluated for fitness
(sometimes there is essentially no difference between the two)

You could be…

...evolving for optimal timetables

genotype: string encoding timetable allocations
phenotype: schedule
fitness: (negative) number of clashes

Alternatively...

...or for optimal aircraft wing design

genotype: listing various wing dimensions
phenotype: actual wing (or simulation thereof..)
fitness: formula based on lift/drag/cost of wing

GA
pseudocode

pa
re

nt
s

of
fs

pr
in

g

Details
Genotypes

Mutation

Selection

Evaluating fitness

Genotypes
The most common genotype formats are...

A sequence of symbols from a finite
alphabet. This kind of genotype is most directly
comparable to the nucleotides of DNA..

...AAGAGCTTGTGAAGAGTC…

In GA's you might see binary strings..

..01010010111010110101111101111...

A sequence of real values.

e.g.: [0.0151, 0.4, 0.942…].

These values are often constrained to lie in a
certain range, e.g. between 0 and 1, but they
don't always have to be.

Trees etc.
There are many of alternative possibilities.
Trees are also commonly used in genetic
programming (GP), where the genotype is a
tree structure that can be translated into a
program (the phenotype).

Remember...
- genotypes (easy to copy & mutate)
- phenotypes (can be evaluated for fitness)

We won't spend any more time on tree-based
genotypes.

Mutation
For binary strings…

For binary encodings a good (very approximate)
rule of thumb is to have 1 mutation per bit. So
each time you generate an offspring, each bit
has a 1/N chance of being flipped where N is the
number of binary genes.

For real numbers…

For real encodings the approach is often quite
different form of “creep mutation,” where you
mutate every gene by a small amount. I use a
value selected from a Gaussian distribution with
a standard deviation of 2% of the total allowed
range of the value.

Limiting the range of genes
Mutation can cause genes to leave their allowed
range. How can you best ensure that this
doesn't happen?

Three possible solutions are the following
(presuming an allowed gene value between 0
and 1):

Clamping 1.06 → 1

Bouncing 1.06 → 0.94

Wrapping 1.06 → 0.06

Which of these is best to use can depend upon
the problem at hand, but generally bouncing and
wrapping are seen as better than clamping, as
clamping increases the number of mutations
that produce gene values at the limits, biasing
the mutation.

Q: Wrapping can also have negative effects,
can you imagine what they might be?

Crossover
Crossover is a process that occurs in nature in
which genes from parents are recombined
mixed.

You don't get all of your genes from your mom
OR your dad, you get a mix of each of their
genes – in fact a mix of each of their
chromosomes.

Cross-over for linear genotypes

Fitness landscapes
Q: What is the problem with having too low a
mutation rate?

Q: What is the problem with having too high a
mutation rate?

Q: When using creep mutation of real valued
genes, why a mutation amount from a Gaussian
distribution better than selecting from a flat
distribution?

Q: Why when mutating a bitstring is it better to
mutate each bit with p=1/N, rather than selecting
one bit at random to flip?

Q: What exactly is the disadvantage of
"wrapping" gene values to keep them within
bounds?

The fitness landscape is a useful concept that
can make it easier to think about evolutionary
algorithms…

To understand the concept of a fitness
landscape, let's first look at the concept of a
"search space"

Searching parameter space
We can think about evolution as a search process.

In this way of thinking evolution is searching for a set
of parameters (gene values) that maximise fitness.

We can thus conceive of the "search space" or
"parameter space" as the set of all parameters.

The mutation operator implies a measurement of
distance in this space.

On the right is a diagram of the search space for a
genotype with 2 binary genes, X and Y.

Each line represents a single mutation.

Every possible point in the search space has a
fitness associated with it.

Usually we don't know what it is (if we did, we
wouldn't have to run the evolutionary algorithm,
we would just pick the system with highest
fitness!

For a 2D search space, we can imagine the
fitness as another dimension (coming off the
screen), and the job of the GA is to climb the
tallest hill in this fitness landscape.

This is actually a bit easier to see in a genotype
of two continuous genes... DEMO

Thank you!

