
21.3.1 Jukes-Cantor model

The simplest model is the Jukes-Cantor model (1969) which has equal rates of mutation
between all bases so that qij = 1 for i 6= j,
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In this case, � = 1/3 so
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The equilibrium of this process is ⇡ = (1/4, 1/4, 1/4, 1/4).

The transition matrix P (t) = exp(Qt) for the Jukes-Cantor model has o↵-diagonal en-
tries
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and diagonal entries
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21.3.2 Kimura model

The Kimura model (1980) distinguishes between transitions (A  ! G and C  ! T
state changes) and transversions (state changes from a purine to pyrimidine or vice
versa). The model assumes base frequencies are equal for all characters. This transi-
tion/transversion bias is governed by the  parameter and the Q matrix is:
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The normalized Q is obtained by setting � = 1
2+ . This model has one free parameter,

. The transition probabilities are:
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21.3.3 F81 and HKY models

In 1981, Joe Felsenstein proposed a model that extends the Jukes-Cantor model to allow
for unequal equilibrium base frequencies, that is ⇡ for which ⇡a 6= ⇡b. This is known
as the F81 model. The F81 model has 3 parameters, one less than the number of
equilibrium base frequencies since there is the restriction that

P
i ⇡i = 1.

In 1985, the F81 model was extended to incorporate the Kimura model, so allows di↵erent
rates for transitions and transversions as well as unequal base frequencies. The resulting
model is known as the HKY model and has rate matrix of the form:
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where the diagonal elements are defined in the usual way so that the row sums are zero.
The transition matrix P can be calculated analytically for this model but it is omitted
here.

21.3.4 GTR model

In 1986, the most general reversible model was developed which can have an arbitrary
stationary distribution, and given the restriction of reversibility, 6 parameters for ad-
justing the rates of mutation between bases. The rate matrix is

Q = �
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The diagonal elements are calculated in the normal way.

Where the normalization is � = 1/[2(a⇡A⇡C+b⇡A⇡G+c⇡A⇡T +d⇡C⇡G+e⇡C⇡T +⇡G⇡T )]

This model has 9 parameters to be specified: the parameters of the equilibrium distri-
bution, ⇡ = (⇡A, . . . ,⇡T ), (since

P
i ⇡i = 1, this only counts for 3 parameters) and the

parameters a, b, c, d, e, f > 0. Note the form of the Q matrix here is chosen so that ⇡ is
indeed the equilibrium distribution, that is, as t ! 1, every row of P (t) ! ⇡. Recall
that P (t) = exp(tQ), where exp() is the matrix exponential.

The same modelling tools can be used when the bases are the 20 amino acids, the
di↵erence being that the Q matrix is now 20⇥ 20.

21.4 Estimating the maximum likelihood tree

According to the substitution model we are using, the best tree is the one which max-
imises the likelihood L(T ) = Pr(D|T ) under that model. This is called the maximum
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likelihood tree. Since there is no way to analytically find the maximum likelihood tree
under general model of mutation, we can use similar techniques to those used for maxi-
mum parsimony to find something close to the maximum likelihood tree.

That is, we can start at some tree and use a stochastic search to propose new trees which
are accepted if they have a higher likelihood. Note that we have the added complication
when dealing with likelihoods that branch lengths now influence the likelihood of a tree,
so for each tree topology, the branch lengths need to be optimised.

The hill-climbing algorithm we introduced in the context of parsimony trees is restated
here for likelihood trees:

• choose an initial tree and calculate its likelihood.

• Iterate:

– modify the tree and calculate its likelihood.

– if the modified tree has a higher likelihood then the unmodified tree, keep it.
Else, return to the previous tree

– stop when no or minimal increase in likelihood occurs

Modifications to the tree can either change the tree topology (shape) or the length of
the branches. The same topology changing operations as we used in the equivalent
parsimony algorithm, such as SPR, can be extended to work with trees with explicit
branch lengths as we have here. Modifications that change only the branch lengths are
also used in this context.

135


	Introduction to stochastic processes and probability
	Primer on Probability
	Axioms of probability
	Conditional probability and independence
	Bayes' Theorem
	Random variables
	Commonly used distributions
	Bernoulli distribution
	Geometric distribution
	Binomial distribution
	Poisson distribution
	Uniform distribution (discrete or continuous)
	Normal distribution
	Exponential distribution
	Gamma distribution

	Entropy

	Inference
	Bayesian inference
	Maximum likelihood

	Simulation
	Random number generation
	Linear congruential generators 
	Shift register generators

	Simulating from univariate distributions via Inversion sampling
	Stochastic processes
	Random walk
	Poisson process


	Markov chains
	Introduction to genetics and genetic terminology 
	Summary of above

	Alignment
	Homology
	Pairwise alignment
	Scoring alignments
	Model of non-homologous sequences
	Model of homologous sequences

	Choosing the substitution matrix
	Scoring gaps

	Global alignment: Needleman-Wunsch algorithm
	Elements of an alignment algorithm
	Local Alignment: Smith Waterman algorithm
	Overlap matches

	Pairwise alignment with non-linear gap penalties 
	Alignment with affine gap scores
	Linear space alignment

	Multiple sequence alignments (MSA)
	Dynamic programming
	Progressive alignment
	Building trees with distances and UPGMA
	Feng-Doolittle progressive alignment

	Hidden Markov Models
	The Viterbi algorithm for finding the most probable state path
	The forward algorithm and calculating P(x)
	The backward algorithm and calculating P(x)
	The posterior probability of being in state k at time i P(i = k|x)
	What can we do with the posterior estimates?
	Estimating the parameters of an HMM
	Baum-Welch algorithm for estimating parameters of HMM
	Comments on the Baum-Welch algorithm

	Sampling state paths
	HMM model structure
	Duration modeling


	Applications of HMMs in bioinformatics
	Pairwise alignment with HMMs
	Probability that two sequences are related
	Sampling alignments
	Probability that xi and yj are aligned

	Profile HMMs
	Estimating the parameters of a profile HMM
	Finding matches
	Alignment with a known profile HMM
	Alignment from unaligned sequences with HMMs

	Gene finding

	Reconstructing trees
	Defining distances between sequences
	Ultrametric distances
	Additive distances
	Neighbour joining
	Unrooted vs rooted trees
	Complexity of neighbour jointing and UPGMA

	Parsimony
	Weighted parsimony
	Parsimony informative sites

	Finding the maximum parsimony tree
	Exhaustive search
	Branch and bound
	Heuristic search

	Disadvantages of parsimony

	Statistical approaches to modelling evolution
	Likelihood of a given tree
	Markov processes
	Models of sequence mutation
	Jukes-Cantor model
	Kimura model
	F81 and HKY models
	GTR model

	Estimating the maximum likelihood tree


