
(The following section of notes on parsimony is based on notes from http://www.fos.

auckland.ac.nz/~biosci742/4_3_2.html#4.3.4)

20.6.2 Branch and bound

Branch and bound is a method of systematically analysing all possible trees by building
up a tree one taxon (leaf) at a time and only continuing to build up a tree if it could
potentially lead to the best tree.

Given n taxa, build an initial tree, t⇤ using some method. The score of that tree is s⇤.
Now we begin to systematically build up trees one taxon at a time as follows:

Initialise: Choose 3 taxa and form the (unique) unrooted partial tree.
Add this tree to a queue.

Iterate: Choose a taxon and add to previous best partial tree (at front of queue) in
each possible position to get a k new partial trees, t1, . . . , tk
If score(ti)  s⇤, add ti to queue and order the queue by score.
If score(ti) > s⇤, discard ti.
If ti is complete (all taxa have been added) and score(ti) < s⇤, set s⇤ = score(ti).

Finish: When queue is empty, return tree with lowest score.

This becomes clearer by looking at an explicit example so refer to Figure 14.

The result is e↵ectively the same as an exhaustive search, without wasting time on
topologies that we know will be rejected.

The algorithm can be optimised by having having a good initial tree (try perhaps using
a neighbour-joining tree) and by ordering the taxa so that they are added in a way that
promoter earlier cuto↵s.

This is an improvement over exhaustive search (which is feasible for up to about 10
sequences) and is feasible for around 20-30 sequences.

20.6.3 Heuristic search

Heuristic methods search for the optimal tree but o↵er no guarantee that it will be (or
has been) found. These methods use hill-climbing to seek the optimal tree:

• choose an initial tree

• Iterate:

– modify the tree and assess it

– if the modified tree is an improvement, keep it. Else, return to the previous
tree

– stop when no improvement occurs
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Figure 14: Say we have sequences from 5 taxa. We start by building the single 3-taxon
tree using taxa A, B and C (tree a). Next the fourth taxon D is added in all three
possible positions to generate trees b1, b2, and b3. One of these trees, say b1, is chosen.
Then the fifth taxon E is added in all possible positions to give trees c1.1, c1.2, c1.3,
c1.4, and c1.5. The length of each of these five 5-taxon trees is calculated. The shortest
of these is the most parsimonious found to this point. Now return to the partial tree
b2. If the length of b2 is equal to, or greater than, that of the shortest seen so far, then
we know that adding any more taxa will only make the tree longer. If this is the case,
then we stop using b2, and don’t consider any of the trees built upon it. If b2 is shorter
than the best seen so far, then it is used as the basis of further tree building, until
the threshold length is reached. As we work through new topologies, we continuously
update our record of the shortest seen so far. Once we have exhausted all possibilities,
the shortest tree is the most parsimonious for that alignment.
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The initial tree can be chosen using stepwise attachment, a greedy algorithm that starts
by joining 3 taxa into a tree and then progressively adds further taxa by finding the best
place to attach a taxon and leaving it there. Since taxa are never moved once they have
been attached even if it becomes obvious that something has been attached in the wrong
place, this method will almost never find the best tree to start with. It will, however,
nearly always give us something better than the worst tree.

Modifications to the tree can be made by various methods of detaching and reattaching
branches in di↵erent a di↵erent place. This is known as branch swapping. An example
of one type of re-arrangement method is given in Figure 15.

Figure 15: An example of a way of modifying the tree: subtree pruning and regrafting.
An edge is chosen and the subtree at that point is removed. Another edge is chosen on
the remainder of the tree and the removed subtree is reattached at that point.

The method described above is guaranteed to find a local minimum of the parsimony
score, but may not find the global minimum as the starting tree may be too far from
the best tree.

To improve the chances of finding the best tree, the method for building the initial tree
can be randomised so the the starting point is di↵erent in every case. For example, if
the initial tree is built by stepwise attachment, the order in which the taxa are added
can be randomised. Di↵erent starting points may end up finding di↵erent local minima.

20.7 Disadvantages of parsimony

Beyond the di�culty of finding the maximum parsimony tree, parsimony has several
disadvantages.

Firstly, parsimony does not account for hidden or multiple substitutions at the same site
as it explains all substitutions with the minimum possible number of changes. So if we
observe a locus in three sequences, one with an A, the other two with a C. Reconstructing
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the parsimony tree, we will assume that the ancestral state was a C and a single mutation
had occurred to produce the A. There are clearly many other explanations for this data
set (for example, there were multiple mutations so that the ancestral state was A and
two mutations to C occurred or the was a hidden mutation where the ancestral state
was a C, there was a mutation to a G and then an A) which, although each less likely
than the single mutation, collectively are quite likely. This e↵ect means that parsimony
tends to underestimate the length of trees.

The most serious problem with maximum parsimony is long-branch attraction, a conse-
quence of the failure of the method to estimate multiple or hidden substitutions. When
a tree has some branches with significantly greater length than other branches, MP will
underestimate how many substitutions have occurred on the long branches. Homoplasies
(parallel or convergent substitutions) will cause MP to underestimate the evolutionary
di↵erence between the branch tips. Conversely it will over-estimate the degree to which
those tips have shared an evolutionary past. The long branches will be joined erroneously
as near- or sister-clades, that is they will “attract” one another. Using longer genomic
sequences in the analysis will only increase the number of variable sites exhibiting ho-
moplasies, without improving the phylogenetic signal. As a consequence of this, MP is
statistically inconsistent, that is, the chance of obtaining the wrong answer increases as
more data are used. It can be positively misleading. See Figure 16.

Figure 16: The tree on the left is the true tree. It has a pair of sequences (A, and B)
which are highly diverged. Reconstructing the tree from these sequences using Maximum
Parsimony (MP) results in the wrong tree (right). The two highly diverged sequences
look closer to each other than they should due to chance mutations.

So while parsimony is simple to understand as a heuristic, relatively quick to implement
and compute and will do a good job of reconstruction when substitutions are rare, it does
not explain the process of sequence evolution well (no physical model of the process) and
is prone to failing when there are hidden and multiple substations, especially when there
are long branches (highly diverged sequences) in the tree. A further problem is that
the maximum parsimony tree is just a single tree that contains no information about
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uncertainty — we aren’t sure which splits in the tree we are certain about or which splits
could be rearranged to produce an equally likely (or very near to equal) tree.

We thus seek a method of reconstructing a tree that is based on statistical principles,
one that will find the most likely tree taking into account a model of the process that
gave rise to the data. The method should also give us an idea of the uncertainty in the
reconstruction. Indeed, we will look at methods that provide us with many di↵erent
possible trees that all represent feasible reconstructions of the evolutionary relationships
between sequences.

21 Statistical approaches to modelling evolution

Distance and parsimony based methods for tree reconstruction are based on a number of
assumptions that often do not hold. Distance methods are simple and fast to implement
but are only guaranteed to reconstruct the correct tree under very restrictive circum-
stances. Parsimony is not based on a realistic model of evolution and, as we have seen,
is statistically inconsistent (it reconstructs the wrong tree even with infinite data).

Our approach then will be similar to the approach we have taken in other parts of the
course: we will model the process of sequence evolution, and based on that model we will
write down the likelihood of a tree. We will then seek to find the maximum likelihood
tree and finally look at Bayesian approaches to finding the best tree.

We model only the substitution process in which one base is replaced by another, for
example A ! T or A ! C. We will ignore the (more complicated) processes of insertions,
deletions, recombination etc.

21.1 Likelihood of a given tree

Consider a tree with four leaves and sequence at each leaf consisting of a single site. An
example of such a tree with four sequences, labeled A, B, C, and D is shown in Figure
17. The values of the sequences are C, C, T and T , respectively.

The maximum parsimony tree for these sequences groups A and B together and has a
parsimony score of 1. But how likely is it? Inherent in the parsimony idea is that only
one mutation occurred on the tree and it must have occurred along the branch between
the two ancestral nodes. That mutation was from a C to a T (or vice-versa) implying
that the unknown ancestral values at the ancestral nodes were also C and T , as shown
on the left in Figure 17.

Ideally, we would account for all possibilities for the ancestral values: they could be
any of (A,A), (A,C), . . . (T, T ). All possibilities are shown in Figure 18. That is, if the
unknown ancestral states are X and Y , then we could look at the likelihood of the tree
for each possible combination ofX and Y and sum these together. This is the principle of
marginalisation introduced in Section 11.4: we want to know the probability of the tree
and the data, but have some other random variables floating about too (the ancestral
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Figure 17: The parsimony tree on the left with the ancestral states reconstructed. Under
parsimony, this is considered to be the one true tree. Under likelihood methods, we want
to decide how likely the tree is given the data (observed values at the leaves). That
requires summing over all possible ancestral values (shown in 18).

states X and Y ) which we deal with by simply summing over all possible values to get

P (Tree and data) =
X

x2X

X

y2Y
P (Tree and data, x, y)

It turns out that once we have a tree with values for the site known at all nodes (not
just the leaves), we can calculate the likelihood with relative ease. That is, we know how
to calculate P (Tree and data, x, y) for any value of x and y, a sketch of which is given
in Figure 19.
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Figure 18: All possible ancestral value for the tree considered in Figure 17. The
likelihood of the tree is the sum of the likelihoods of the tree and the ancestral values,
where the sum is over all ancestral values. That is, to find the likelihood of the tree in
on the right in Figure 17, we need to find the likelihood of each of the trees in this figure
and sum them up.
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Figure 19: The likelihood for a tree with data at the leaves and imputed ancestral data
is given by a product of the probabilities of mutating between the di↵erent values along
each branch: that is the probability of mutating from C to G along the branch of length
t1 multiplied by the probability of mutating from C to G along the branch of length t2
multiplied by the probability of mutating from G to A along the branch of length t3 and
so on. How these probabilities are calculated in developed in Section 21.2
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