
20.5 Parsimony

Parsimony is form of Occam’s razor. It postulates that the best tree is the one that
requires the fewest changes along it to explain all sequences. This best tree is called the
most parsimonious tree or the (maximum) parsimony tree.

The main algorithm that we discuss here is not actually a method for constructing the
maximum parsimony tree but rather provides a way of calculating the cost of any given
tree. We must then search over trees to find the tree of minimal cost.

Example: suppose we have four sequences AAG,AAA,GGA and AGA. Consider the
two trees given below.

AAG AAA GGA AGA

AAA AGA
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AAG AGA AAA GGA

AAA AAA

1 1

AAA

2

The number of mutations on each branch is shown to the left of the branch. The tree
topology on the left has requires 3 mutations to explain the given sequences, while
the tree on the right requires 4 mutations to explain the same sequences. The more
parsimonious tree is therefore the one on the left. The sequences given at the internal
vertices and the positions of the mutations could be altered in these examples but the
total parsimony score for each tree would remain the same. ⇤
An algorithm to compute the parsimony cost of a tree is given below. This finds the
minimum number of substitutions to explain given sequences and tree. It assumes that
all changes have equal cost. A similar algorithm accounts for the case where di↵erent
substitutions have di↵erent costs. The algorithm is given in terms of rooted trees but
the parsimony score is independent of the position of the root so this algorithm applies
to unrooted trees.

Parsimony (Fitch 1971)

Number the nodes, in descending order, so that the root node is 2n � 1. Let u be the
site for which we are considering the cost. Let B be the parsimony cost.

Initilise Set Bu = 0 and k = 2n� 1.

Recursion To obtain the set Rk:

If k is a leaf node: Set Rk = xku.

If k is not a leaf: compute Ri and Rj for child nodes of k. Set Rk = Ri \ Rj if
Ri \Rj 6= ;. Otherwise, set Rk = Ri [Rj and set Bu = Bu + 1.
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Stop Return Bu, the minimal cost of the tree at site u.

A traceback procedure can be used to construct possible ancestral states. Starting at
the root, choose a residue from R2n�1 and go to the daughter nodes. Having chosen a
residue at Rk, pick the same residue from the child set Ri if possible, otherwise choose
a random reside of Ri.

The total cost for a tree and sequences is the sum of costs over all positions in the
sequence. That is, if we have sequences of length L and Bi is the parsimony score for
site i, then the total parsimony score for the tree and sequences is

B =
LX

i=1

Bi.

Example: Given the following tree with just a single site at the 4 leaves we want to
calculate the parsimony cost. Label the nodes as shown. There is just a single site so
set u = 1.

1: A 2: G 3: C 4: C

5 6

x
7

We set B = 0 and k = 7. Now try to find R7.

7 is not a leaf node, so recurse down to its children. Want to find R5 and R6. 5 is not
a leaf node so recurse down to its children. 1 is a leaf node so set R1 = {A}. Similarly,
R2 = {G}. Now, R1\R2 = ; so we set R5 = R1[R2 = {A,G} and B = B+1 = 0+1 = 1.

In a similar manner we get R3 = {C} and R4 = {C} so R6 = R3 \R4 = {C}.
Now, since R5 \R6 = ; we set R7 = R5 [R6 = {A,C,G} and B = B + 1 = 2.

Thus we have the sets Rk as follows:

R1 ⌘ {A} R2 ⌘ {G} R3 ⌘ {C} R4 ⌘ {C}

{A,G} {C }

x
{A,C,G}
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From these sets, we can traceback from the root, picking possible ancestral states that
would give us the parsimony score for the tree. For example, at the root choose A, which
forces us to choose A at node 5. Clearly, at node 6, we only have the choice of C.

A G C C

A C

x
A

⇤

20.5.1 Weighted parsimony

The basic parsimony idea easily extends to the case where instead of counting each
mutation equally, di↵erent costs apply to di↵erent mutations.

Let S(a, b) be the cost of mutating from a to b and again calculate the parsimony score
at a single site u.

Initilise Set k = 2n� 1.

Recursion If k is a leaf node: Set Sk(a) = 0 when a = xku and Sk(a) = 1 otherwise.

If k is not a leaf: Compute Si(a) and Sj(a) for all a and children i and j of k. Set

Sk(a) = min
b

(Si(b) + S(a, b)) + min
b

(Sj(b) + S(a, b)) .

Stop Return
Bu = min

a
S2n�1(a).

The total cost of the tree is

B =
LX

u=1

Bu

Weighted parsimony reduces to the standard parsimony algorithm when S(a, a) = 1 and
S(a, b) = 0 if a 6= b.

A traceback procedure to recover the ancestral states is again available by keeping track
of which residue, b, gave the minimum at each step. For exact details of the traceback,
see Durbin et al.
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20.5.2 Parsimony informative sites

Many sites in an alignment will have the same parsimony score on every tree. For
example, consider sites that have the same residue for all taxa (an invariant site). This
will have a parsimony score of 0 regardless of the tree. Sites that have di↵erent scores on
di↵erent trees are known as parsimony informative. It is easy to show that parsimony
informative sites have at least two characters that each occur in two or more taxa.

In the detailed example given above, the site studied (which would be written as the
column AGCC in a multiple sequence alignment for the 4 taxa) is not parsimony infor-
mative since there is only one site that appears more than once. If we instead considered
the site corresponding to the column AACC, it would be parsimony informative.

20.6 Finding the maximum parsimony tree

The number of substitutions on a tree (the parsimony score) is sometimes called the
length of a tree. This corresponds to the molecular clock idea where, under a constant
rate mutation model, we will only see more substitutions if we wait for a longer time.

Thus finding the maximum parsimony tree is equivalent to finding the shortest tree.
We’ll consider a number of methods for finding the maximum parsimony tree for a given
set of sequences.

20.6.1 Exhaustive search

Finding the maximum parsimony tree is a very hard problem computationally. Naive
methods which attempt to score all possible unrooted trees fail when the number of
sequences is even moderate due the huge number of possible trees.

We therefore need to resort to more clever methods and heuristic search algorithms.

The simplest of the smarter search algorithms are based on the idea of branch-and-bound.
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