20.2 Ultrametric distances

UPGMA produces the correct tree (i.e., produces the tree along which the sequences
actually evolved) if the sequences evolved according to a molecular clock in which se-
quences evolved at a constant rate over the whole tree. In that case, the number of
mutations is proportional to the temporal distance of a node to the ancestor.

In these cases, the distances are said to be ultrametric and UPGMA will reconstruct the
correct tree. The ultrametric condition is that d;; is ultrametric when, for and points
i,7, k, the distances d;j;, d;i, d;, are either all equal or two are equal and the remaining
one is smaller.

More simply, in an ultrametric tree, the distance from the root to the leaves is the same
for every leaf. So if all leaf nodes are sampled at the same time and the ultrametric
property holds, the tree displaying the distances will have all the leaf nodes at the same
level.

& 4

The tree on the left is ultrametric, the tree on the right is not.

In most cases, the ultrametric assumption is not a good one, as different regions of
sequences vary at different rates and different lineages of the tree may have different
rates of mutation. Thus, UPGMA will not reconstruct the correct tree in most cases.

20.3 Additive distances

A less stringent condition is that distances are additive. A tree is said to have additive
edge lengths if the distance between two leaves is the sum of the edge lengths connecting
them. You can show that ultrametric distances are additive but the reverse does not
hold. In an additive tree, the four point condition is satisfied, in which any four leaves
can be relabelled so that d(z,y) + d(u,v) < d(z,u) + d(y,v) = d(z,v) + d(y, 2).

A set of additive distance can be thought of as tree-like — there is a tree that correctly
displays those distance as branch lengths.

So the question is, given a set of additive distances, can we reconstruct the correct tree?

20.4 Neighbour joining

The answer turns out to be yes, and the algorithm that lets us achieve this is known as
neighbour joining (NJ). NJ is similar to UPGMA but instead of simply using a pairwise
evolutionary distance matrix, NJ takes that matrix as a starting point and then builds
a rate-corrected distance matrix before proceeding to join nearest neighbours.

112

First, note that to find the nearest neighbour on a tree, it is not sufficient to simply
calculate the smallest distance.

Example: Consider the tree

0.1 0.1]
0.1l 0.1l
B C
0.5 0.5
o o
A D

from which we derive the pairwise distance matrix

A B C D
A/0 06 08 1.2

,_ B 0 04 08
e 0 06
D 0

If we try to reconstruct the tree using UPGMA, the first step is to choose the pair with
the smallest distance and join them. That has us choosing B and C first as sharing a
common ancestor before anything else. This immediately leads to the the wrong tree
topology. O

To find the nearest neighbour instead of just the node at the smallest distance, we need
to subtract the average distance to all other leaves. Let D;; = d;; — (r; + r;j) where

1
ri = g g 2 i
keL

and L is the number of leaves (sequences). Note that the denominator in calculating r is
deliberately one less than the number of items summed. It can be shown (with a bit of
work, omitted here) that the pair of leaves 4, j for which D;; is minimal are neighbouring
leaves.

This leads us to the NJ algorithm, which progressive builds up a tree T' by keeping a list
of active nodes L and finding the closest amongst them.

Neighour joining algorithm
1. Let T be the set of all leaf nodes and set L =T
2. Iterate until |L| = 2:

(a) Calculate (or update) D from the distance matrix d.

113

(b) Pick 4, j for which D;; is minimal.

(c) Define k so that dim = 3(din, + djm — dij) for all m € L.

(d) Add k to T with edges joining to i and j with lengths d;; = %(dij + 7 — 1)
and d;i = d;j — d.

(e) Set L=L—{i,5} + k.

3. |L| = 2, so add remaining edge connect %, j with length d;;.

To see this works, consider the reverse process where we strip away leaves from an
additive tree by removing neighbouring pairs. Find leaves i, j with parent k. Remove
1,7 and add k to the list of leaves, defining dj,, = %(dlm + djm — di;) where m is some
other leaf node.

Example: Perform neighbour joining on the distance matrix from the previous example

A B C D
A/0 06 08 1.2

,_ B 0 04 08
e 0 0.6
D 0

Solution: We first need to calculate D for which we will need r. Here L = 4, so
1 1
r4 = §(dAB +dap +dap) = 5(0.6 +0.8+1.2)=26/2=1.3.

Get other elements of r similarly so r = (1.3,0.9,0.9,1.3).

From r and d we can thus calculate

A B C D

A/f—- —-16 —-14 -14

Bl- - -14 -14
b= c|l- - - —16

D\—- _ — —

D is symmetric and the diagonal is irrelevant so only need calculate either the elements
of the upper or lower traingle.

The minimum value of the rate-adjusted matrix is found at AB and CD. Choose AB to
merge into new node E. The length of the edge from A to E is dag = %(dAB +ra—rp) =
%(0.6 +1.3—-0.9) = 0.5 while the distance from B to E is found by dup = dap —dag =
0.6 — 0.5 = 0.1. Check these branch lengths against the values in the original tree: they
match.

A and B can now be removed from the leaf set and replaced with E and a new rate
adjusted matrix D derived. Completing a further iteration and the final step reconstructs
the original tree. O

114

Figure 13: Example from wikipedia http://en.wikipedia.org/wiki/Neighbor_
joining: Starting with a star tree in which all leaf nodes are active (A). The ma-
trix D is calculated and used to choose a pair of nodes for joining, in this case f and g.
These are joined to a newly created node, u, as shown in (B). The part of the tree shown
as dotted lines is now fixed and will not be changed in subsequent joining steps. The
distances from node u to the nodes a-e are computed from the formula given in the text.
This process is then repeated, using a matrix of just the distances between the nodes,
a,b,c,d,e, and u, and a new D matrix derived from it. In this case u and e are joined to
the newly created v, as shown in (C). Two more iterations lead first to (D), and then to
(E), at which point the algorithm is done, as the tree is fully resolved.

115

20.4.1 Unrooted vs rooted trees

Notice that the neighbour-joining algorithm produces a tree with no root. That is, we
known branch lengths (in terms of distance between sequences — roughly, the number
of changes along a branch) but we don’t know the actual times of the nodes, so we don’t
know the position of the root. A tree with no root is an unrooted tree and a tree with a
known root position is called a rooted tree.

In some cases we can determine the position of the root by including a known out-
group in the analysis. For example, if we have samples from 20 hominids, we could
include a chimp as an out-group since we know that the hominids all share a recent
common ancestor before the most recent common ancestor of hominids and chimps. In
this example, we would place the root on the branch separating the chimp from the
hominids.

The number of trees, rooted or unrooted is huge. If we have n taxa, there are
(2n —5)!
2n=3(n — 3)!
unrooted trees and
(2n — 3)!
2n=2(n — 2)!
rooted trees. So when n = 5, we have 15 unrooted and 105 rooted trees, but for n = 10
there are about 2 million unrooted and 3.5 million rooted trees.

20.4.2 Complexity of neighbour jointing and UPGMA

UPGMA has time and space complexity of O(n?) while neighbour-joining has the same
space complexity but time complexity of O(n?).

However, these are worst case complexities, and there are various heuristics that result
in average time performance for neighbour-joining appears somewhat better than O(n?).

116

	Introduction to stochastic processes and probability
	Primer on Probability
	Axioms of probability
	Conditional probability and independence
	Bayes' Theorem
	Random variables
	Commonly used distributions
	Bernoulli distribution
	Geometric distribution
	Binomial distribution
	Poisson distribution
	Uniform distribution (discrete or continuous)
	Normal distribution
	Exponential distribution
	Gamma distribution

	Entropy

	Inference
	Bayesian inference
	Maximum likelihood

	Simulation
	Random number generation
	Linear congruential generators
	Shift register generators

	Simulating from univariate distributions via Inversion sampling
	Stochastic processes
	Random walk
	Poisson process

	Markov chains
	Introduction to genetics and genetic terminology
	Summary of above

	Alignment
	Homology
	Pairwise alignment
	Scoring alignments
	Model of non-homologous sequences
	Model of homologous sequences

	Choosing the substitution matrix
	Scoring gaps

	Global alignment: Needleman-Wunsch algorithm
	Elements of an alignment algorithm
	Local Alignment: Smith Waterman algorithm
	Overlap matches

	Pairwise alignment with non-linear gap penalties
	Alignment with affine gap scores
	Linear space alignment

	Multiple sequence alignments (MSA)
	Dynamic programming
	Progressive alignment
	Building trees with distances and UPGMA
	Feng-Doolittle progressive alignment

	Hidden Markov Models
	The Viterbi algorithm for finding the most probable state path
	The forward algorithm and calculating P(x)
	The backward algorithm and calculating P(x)
	The posterior probability of being in state k at time i P(i = k|x)
	What can we do with the posterior estimates?
	Estimating the parameters of an HMM
	Baum-Welch algorithm for estimating parameters of HMM
	Comments on the Baum-Welch algorithm

	Sampling state paths
	HMM model structure
	Duration modeling

	Applications of HMMs in bioinformatics
	Pairwise alignment with HMMs
	Probability that two sequences are related
	Sampling alignments
	Probability that xi and yj are aligned

	Profile HMMs
	Estimating the parameters of a profile HMM
	Finding matches
	Alignment with a known profile HMM
	Alignment from unaligned sequences with HMMs

	Gene finding

	Reconstructing trees
	Defining distances between sequences

