
19.1.1 Probability that two sequences are related

For example, given a pair sequences, x and y, we can ask what probability that two
sequences are related without relying on any particular alignment. This is given by the
quantity

P (x, y) =
X

⇡

P (x, y,⇡)

where the sum is over all possible alignments, ⇡. As in the standard HMM case, we
calculate this quantity via the forward algorithm or the backward algorithm.

19.1.2 Sampling alignments

Further, instead of relying on a single alignment, we could sample possible alignments
in proportion to their probability using the techniques described in Section 18.8.

That is, we could calculate the forward fM (i, j), fX(i, j) and fY (i, j) from the forward
algorithm and then traceback to find a state path which is an alignment. The traceback
from the current state chooses the next state (M , X, or Y ) at each step according to
it’s contribution to the probability of the current state. This is exactly the technique
described in the Section 18.8.

19.1.3 Probability that xi and yj are aligned

Consider two residues, xi and yj , in our given sequences x and y. What is the probability
that they are actually aligned to each other? Write hxi, yji to mean xi and yj are aligned,
so the probability of interest is Pr(hxi, yji|x, y). We could estimate this probability
by sampling many alignments using the technique described above and counting the
proportion of times that hxi, yji.
But it turns out that we can calculate this number exactly using the general technique
of finding the posterior probability of being in a state at some time described in Section
18.4. xi is aligned to yj exactly when the HMM is in state M at (i, j). Thus

Pr(hxi, yji|x, y) = P (⇡(i, j) = M |x, y) = P (⇡(i, j) = M,x, y)

P (x, y)
=

fM (i, j)bM (i, j)

P (x, y)
.

The last equality is exactly the same as the one derived in Section 18.4 and, as usual,
the quantity P (x, y) can be calculated using either the forward or backward algorithm.

19.2 Profile HMMs

The canonical problem in genetics is to find a group of sequences that are homologous.
In particular, we are interested in finding homologous genes that share a similar function.
We say such sequences or genes belong to the same family in the sense that they share a
common ancestor and have maintained the same (or similar) functionality. They may be
the same sequence in di↵erent species or in the same species but in di↵erent parts of the
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genome (having arrived there through duplication). Sequences in the same family will
often have features in common, particularly where they share the same function and,
therefore, the same basic secondary structure.

If we can characterise these families accurately, by finding features that almost certainly
share in common and identifying regions where more variation is seen, we will be able
to better align sequences known to belong to the family and more easily identify other
members of the family. We achieve this characterisation by modelling the family using
an HMM, known as a profile HMM.

We’ll start by assuming that we are given a family of homologous sequences that are
already aligned into a multiple sequence alignment (MSA). See a very small example in
Figure 9.

VGA--HAGEY

V----NVDEV

VEA--DVAGH

VKG------D

VYS--TYETS

FNA--NIPKH

IAGADNGAGV

Figure 9: Ten columns from a given multiple alignment of seven globin sequences.

From a given alignment, we wish to characterise a typical sequence in the alignment at
each position. Once we have made this characterisation, we could use it to search for
other sequences (or parts of sequences) that fit the profile and so are candidates to be
members of this family.

We model the alignment as an HMM, where each position in the alignment is a state
with a distinct probability of emitting the various residues.

We’ll start by supposing the alignment that is largely free of gaps (by ignoring, say,
columns in the alignment that are more than 50% gaps). With each position in the
alignment, associate a state in the HMM. Call this state a match state and label the
ith match state Mi. The (ungapped) alignment is then modelled as a HMM with only
the trivial transitions, Mi to Mi+1 (with additional begin and end states). Let emission
probabilities from the i match state be eMi . A model for a MSA of length 3 looks like:

B M1 M2 M3 E

Now let’s allow gaps in the alignment. How do we handle them? To handle an insertions
(with respect to the alignment — parts of a sequence x that are not matched by anything
in the model) we introduce a new set of states Ii which matches the residues in x after i
to a gap. These states have emission probabilities eIi(a) which we set to the background
rate: eIi(a) = qa.

There is a transition from Mi to Ii, a loop at Ii, and a transition from Ii to Mi+1.
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B Mj

Ij

E

A gap of length k therefore has log-odds score

log aMiIi + log aIiMi+1 + (k � 1) log aIiIi ,

the same as an a�ne gap penalty.

A deletion relative to the model corresponds to skipping ahead in the model. To allow
transitions from every match state to every other state ahead of it in the model would
introduce too many transitions (how many would we need?) so we introduce instead a
silent delete states Di next to every match state. Silent states emit no residues. We
allow transitions aMi�1Di , aDiMi+1 and aDiDi+1 .

B Mj

Dj

E

A full model incorporates both insert and delete states and is drawn below. Notice that
we have not drawn transitions between I and D states though it simplifies computation
to allow them (we’d allow Dj ! Ij and Ij ! Dj+1).

B Mj

Dj

E

Ij

This profile HMM model is equivalent to a pair HMM model for pairwise alignment
where the given MSA is summarised into a single sequence y . So when we seek to fit a
candidate sequence x to our profile HMM, it is as though we are aligning x and y with
a pair HMM (with appropriately chosen emission probabilities).
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19.2.1 Estimating the parameters of a profile HMM

We can choose the parameters of the profile HMM using the empirical counts (Akl and
Ek(b)) with pseudo-counts added. Remember that the number of possible transitions is
limited: in our full drawn model we only allow non-zero transitions for aMiMi+1 , aMiDi+1 ,
aMiIi , aIiIi , aIiMi+1 , aDiDi+1 and aDiMi+1 . We have emissions for all possible residues at
each site so we add pseudo-counts to ensure eMi(a) > 0 for all a. Then we use the rule
we saw earlier to estimate transition and emission probabilities:

akl =
AklP
j Akj

and ek(b) =
Ek(b)P
j Ek(j)

.

A simple way of assigning pseudo-counts is to add 1 to all scores (including zero scores).
There is a lengthy discussion of which pseudo-count values to choose in the Durbin et al
book and many more sensible schemes are proposed – none are particularly complicated
but we don’t have time to cover them all here.

We assume emissions from insert states are at the background rate (that is, that rate
the residue occurs at at any position).

In the example in Figure 9, the first column has all seven sequences in the match state
with 5 Vs, and 1 each of F and I. The 17 other possible residues are not observed, so have
frequency 0. Adding a pseudo-count of 1 to each observed frequency gives us emission
probabilities eM1(V ) = 6/27, eM1(F ) = eM1(I) = 2/27 and the other 17 residues have
eM1(b) = 1/27. 6 of the 7 transitions to the next column are to the match state again
while one is to a delete state. Again, adding pseudo-countsof one gives aM1M2 = 7/10,
aM1D2 = 2/10 and aM1I1 = 1/10. Transitions from the insert and delete states are just
based on the pseudo-counts here.

19.2.2 Finding matches

Once the model has been set and the parameters estimated, we can set about seeing
whether other sequences match the family. Call M the model and x a sequence we wish
to test against the model. To do so, we align proposed sequences to the family using
the now familiar tools of the Viterbi algorithm, giving the Viterbi path ⇡⇤ (and the
associated score, P (x|⇡⇤,M)) or, better, the full probability of a sequence summed over
all alignments, P (x|M).

These scores can be used to compare the hypotheses that x belongs to family M or x
is no more like M than we would expect at random. Call R the random model and let
P (x|R) =

QL
i=1 qxi be the likelihood of x under the random model where qa is simply the

background rate of occurrence of residue a. If the log ratio log(P (x|M)/P (x|R)) > 0, x is
more likely associated with the modelled family than not. To find more certain matches,
we may chose a threshold that this ratio must exceed before we call it a member of the
family.

Note that if we wish to fit new found sequence x to the family, we can simply use the
Viterbi alignment to align it to the family and update parameters of the model.
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19.2.3 Alignment with a known profile HMM

The simplest case is when we have a known aligned family to which we have already
fitted a profile HMM and we wish to add a number of sequences to the profile. In this
case, we use the Viterbi algorithm to find the most probable alignment for the new
sequences.

The Viterbi path will consist of matches, insert and delete states. At the delete states, we
add a gap character, –, to the sequence we are aligning. At an insert state, the unaligned
residue of the sequence we are aligning is emitted, forcing a gap like character in the
already aligned profile. In the profile, we placeholder character, . , at these positions.
Note that if there are multiple insertions in di↵erent sequences at a position, there are
many ways to align them against each other. Since we believe insertions are not shared
between all members of the family, we can set an arbitrary rule for aligning them, such
as using simple left-justification.

19.2.4 Alignment from unaligned sequences with HMMs

If we do not have a pre-existing aligned family and/or profile HMM, we need to first
specify an HMM and then use the Baum-Welch algorithm to estimate the parameters.
After we have done that, we are in the same position as above and can construct the
MSA from the fitted profile HMM.

A rule of thumb for specifying the HMM in the absence of prior knowledge is to allow
M match states where M is the average length of the training sequences. In general, it
is di�cult to fit an HMM of this size. A number of heuristics have been developed to
avoid local maxima.

Clustal⌦ implements this method and is quick enough to align thousands of sequences
in reasonable time. Currently, Clustal⌦ can only be used for protein sequences. See
Fabian Sievers et al, 2011, Molecular Systems Biology 7, http://www.nature.com/msb/
journal/v7/n1/full/msb201175.html for a full description.

19.3 Gene finding

A DNA sequence can roughly be divided into two types of region: genes and non-genes
or inter-genic regions. Genes are regions that code for proteins which actually perform
biological functions in an organism so these regions are of primary interest. The role
played by intergenic regions is not yet clear and it is often referred to as ‘junk DNA’.

We are interested, then, to find a method of finding regions of a given sequence that are
genes. To do so, we need to look at how a gene is structured along a sequence. Recalling
that a sequence has a direction with one end being 5’ end, the other being the 3’ end.
Moving forward in the sequence is going from the 5’ end towards the 3’ end.

Our model of a gene has the following elements occurring in the order listed here: an
inter-genic region, a promoter region, a 5’ un-transcribed region, a series of exons and
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Figure 10: Gene structure and transcription. The DNA of the coding region is composed
of exons (coding DNA) interspersed with introns (non-coding DNA) and is flanked by
untranslated regions (UTRs). Upstream of the coding regions within the gene are DNA
sequences that control (promoter) and regulate (enhancers) gene expression. During
transcription, the initial nuclear transcript includes RNA sequence complementary to
the entire coding region and the UTRs. In a subsequent step, the introns are spliced out
to form mRNA which translocates to the cytoplasm where it is translated into protein.
Source: http://dx.doi.org/10.1093/bja/aep130 by UoA subscription

introns, a 3’ un-transcribed region, a poly-A region and then back to another inter-genic
region.

These regions are described in more detail below.

Inter-genic region: A non-coding region between genes.

Promoter: a region of DNA that facilitates the transcription of a particular gene. Pro-
moters are located near the genes they regulate, on the same strand and typically up-
stream (towards the 5’ region of the sense strand). For the transcription to take place,
the enzyme that synthesizes RNA, known as RNA polymerase, must attach to the DNA
near a gene. Promoters contain specific DNA sequences and response elements that pro-
vide a secure initial binding site for RNA polymerase and for proteins called transcription
factors that recruit RNA polymerase. These transcription factors have specific activator
or repressor sequences of corresponding nucleotides that attach to specific promoters and
regulate gene expressions.

As promoters are typically immediately adjacent to the gene in question, positions in the
promoter are designated relative to the transcriptional start site, where transcription of
RNA begins for a particular gene (i.e., positions upstream are negative numbers counting
back from -1, for example -100 is a position 100 base pairs upstream).

In eukaryotes, the process is complex and promoters may occur hundreds of base-pairs
upstream.
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In prokaryotes, the promoter consists of two short sequences at -10 (that is 10 bases up-
stream from the UTR and is called the Pribnow box which typically looks like TATAAT)
and at -35 (the -35 element, usually TTGACAT). The promoter regions are not tran-
scribed to RNA.

Untranslated regions (UTR 5’ or 3’) : These are regions immediately flanking the trans-
lated region. They are transcribed into RNA but not translated into proteins.

Exons and introns: An exon is transcribed into RNA and is further translated into a
protein. An intron is transcribed into a form of RNA and then spliced out of the RNA
sequence that finally gets translated in a protein. In any gene, there could be one or
many exons and zero or many introns. Exons and introns alternate along the sequence.

Figure 11: A figure showing how the transcribed precursor to messenger RNA includes
the UTRs, exons and introns. The introns are spliced out to form the messenger RNA.
The Exons in the mRNA are translated into proteins. Souce: http://en.wikipedia.

org/wiki/File:Pre-mRNA_to_mRNA.svg

Poly(A) signal: After the 3’ UTR on the RNA, a number of adenines (As) is added —
this is called the poly(A) tail. The poly(A) signal, or polyadenylation signal, is thus a
stretch of DNA that signals to the RNA transcription mechanism to begin the addition
of the poly(A) tail.

A method first described in Burge and Karlin 1997 (see http://www.ncbi.nlm.nih.

gov/pubmed/9149143) describes a generalized HMM incorporating all these regions. See
Figure 12 for a sketch of the structure of the HMM. The states of the HMM are N (cor-
responding to an inter-genic region), P (promotor), F (5’ UTR), E (exons), I (introns),
T (3’ UTR) and A (poly(A) signal). The multiple states for introns, I0, I1 and I2 and
exons E0, E1 and E2 indicate the relation of the reading frame of the exon to the reading
frame of the initial exon (Einit). Recall that three bases of DNA code for a single amino
acid, with each group of 3 bases call a codon. If an exon or intron does not have length
that is a multiple of 3, then the start of the next exon or intron may be out of phase
with it. A subscript of 0, 1 or 2 represents in phase or lagging 1 or 2 steps out of phase,
respectively.

The GHMM produces a set of states q = q1 . . . qn with an associated set of lengths
(durations) d = d1 . . . dn and for each state qi, it produces a sequence of length di
according to a probability model associated with the state qi. Algorithms to analyse
sequences according to this model are implemented in Genscan and GlimmerHMM.
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tal functional units of a eukaryotic gene, e.g. exon,
intron, intergenic region, etc. (see Figure legend for
details), which may occur in any biologically con-
sistent order. Note that introns and internal exons
in our model are divided according to ``phase'',
which is closely related to the reading frame. Thus,
an intron which falls between codons is considered
phase 0; after the Ærst base of a codon, phase 1;
after the second base of a codon, phase 2, denoted
I0, I1, I2, respectively. Internal exons are similarly
divided according to the phase of the previous in-
tron (which determines the codon position of the
Ærst base-pair of the exon, hence the reading
frame). For convenience, donor and acceptor splice
sites, translation initiation and termination signals
are considered as part of the associated exon.
Reverse strand states and forward strand states

are dealt with simultaneously in this model, some-
what similar to the treatment of both strands in the
GENMARK program (Borodovsky & McIninch,
1993); see the legend to Figure 3. Though somewhat
similar to the model described by Kulp et al. (1996),
our model is substantially more general in that it in-
cludes: (1) single as well as multi-exon genes; (2)
promoters, polyadenylation signals and intergenic
sequences; and (3) genes occuring on either or both
DNA strands. In addition, as mentioned previously,
partial as well as complete genes are permitted as is
the occurrence of multiple genes in the same se-
quence. Thus, the essential structure of most ver-
tebrate genomic sequences likely to be encountered
in genome sequencing projects can be described by
this model structure. The most notable limitations
are that overlapping transcription units (probably
rare) cannot be handled and that alternative spli-
cing is not explicitly addressed.
The model, essentially of semi-Markov type, is

conveniently formulated as an explicit state dur-
ation Hidden Markov Model (HMM) of the sort
described by Rabiner (1989). BrieØy, the model is
though of as generating a ``parse'' f, consisting
of an ordered set of states, ~q à fq1; q2 . . . ; qng,
with an associated set of lengths (durations),
~d à fd1; d2; . . . ; dng which, using probabilistic
models of each of the state types, generates a DNA
sequence S of length L à ⌃n

i à 1 di. The generation
of a parse corresponding to a (pre-deÆned) se-
quence length L is as follows:
(1) An initial state q1 is chosen according to

an initial distribution on the states, ~p, i.e.
pi à P{q1 à Q(i)}, where Q(j)(j à 1, . . . . , 27) is an in-
dexing of the state types (Figure 3).
(2) A length (state duration), d1, corresponding

to the state q1 is generated conditional on the value
of q1 à Q(i) from the length distribution fQ(i).

Figure 3. Each circle or diamond represents a functional
unit (state) of a gene or genomic region: N, intergenic
region; P, promoter; F, 50 untranslated region (extending
from the start of transcription up to the translation in-
itiation signal); Esngl, single-exon (intronless) gene (trans-
lation start! stop codon); Einit, initial exon (translation
start! donor splice site); Ek (04 k4 2), phase k in-
ternal exon (acceptor splice site! donor splice site);
Eterm, terminal exon (acceptor splice site! stop codon);
T, 30 untranslated region (extending from just after the
stop codon to the polyadenylation signal); A, polyade-
nylation signal; and Ik (04 k4 2), phase k intron (see
the text). For convenience, translation initiation/termin-
ation signals and splice sites are included as subcompo-
nents of the associated exon state and intron states are
considered to extend from just after a donor splice site
to just before the branch point/acceptor splice site. The
upper half of the Figure corresponds to the states (desig-
nated with a superscript á) of a gene on the forward
strand, while the lower half (designated with superscript
�) corresponds to a gene on the opposite (complemen-
tary) strand. For example, proceeding in the 50 to 30

direction on the (arbitrarily chosen) forward strand, the
components of an Eák (forward-strand internal exon)
state will be encountered in the order: (1) acceptor site,
(2) coding region, (3) donor site, while the components

of an E�k (reverse-strand internal exon) state will be
encountered in the order: (1) inverted complement of
donor site, (2) inverted complement of coding region,
(3) inverted complement of acceptor site. Only the inter-
genic state N is not divided according to strand.
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Figure 12: The structure of the (generalised) HMM used for gene finding from Burge
et al 1997. See text for details. The full HMM includes a mirror image corresponding
to the reverse strand which has been deleted here.

20 Reconstructing trees

The fastest ways of constructing trees rely on defining a distance between sequences. We
have already one method that does this: UPGMA in Section 17.3. We looked at UPGMA
in the context of multiple sequence alignment where a sensible choice of distance between
sequeces to use was D(x, y) = � logSeff (x, y). We’ll briefly look at other, more widely
used distance measures.

20.1 Defining distances between sequences

There are numerous ways of defining distances between sequences. The simplest, for an
aligned pair of sequences x and y of length L is to count the number of positions where
they di↵er, Dxy say, and define the distance to be

fxy = Dxy/L,

which is simply the fraction of sites at which they di↵er. This method works well for
related sequences where f is expected to be small, but doesn’t grow as much as we would
like as sequences become less and less related since even unrelated sequences share many
bases in common due to chance.
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The Jukes-Cantor distance is based on the simplest model of sequence evolution where
mutations between all four bases are equally likely. The distance includes a correction
for the fact that unrelated sequences will agree simply due to chance. The distance is
defined by

dxy = �3

4
log (1� 4fxy

3
).

Since the background level of dissimilarity (given by fxy) for unrelated sequences is 3
4 ,

(1� 4fxy
3 ) tends to zero as sequences become more unrelated so dxy tends to infinity for

unrelated sequences.
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