
The Baum-Welch algorithm proceeds as follows:

Initialise: Set starting values for the parameters. Set log-likelihood to �1.

Iterate: 1. Set A and E to their pseudo count values. For each training sequence xj :

(a) Calculate fk(i) for xj from forward algorithm

(b) Calculate bk(i) for xj from backward algorithm

(c) Calculate Aj and Ej and add to A and E using Equations 2 and 3 above.

2. Set new values for a and e, based on A and E

3. Calculate log-likelihood of model

4. If change in log likelihood is small, stop, else, continue.

See lecture slides for a detailed example of applying the Baum-Welch algorithm.

18.7.1 Comments on the Baum-Welch algorithm

The Baum-Welch algorithm is guaranteed to converge to the local maximum — exactly
which local maximum it converges to depends on the initial state. Any local maximum
is not necessarily the global maximum so the algorithm should be run from multiple
di↵erent start states to check that a global maximum has been found.

Also remember that convergence is only guaranteed in the limit of an infinite number of
iterations so the exact local maximum is never achieved.

The algorithm is a type of Expectation-Maximisation (EM) algorithm that is widely
used for maximum likelihood estimation.

18.8 Sampling state paths

The probabilities fk(i) we calculate in the forward algorithm can be used to sample
possible state paths in proportion to their probability. Recall that the Viterbi algorithm
provides a method of finding the most probable state path by tracing back though the
a matrix, taking the direction that led us to the highest score at each point. We adopt
the traceback idea but apply it to the matrix fk(i) and at each step of the traceback, we
choose the state in proportion to the amount it contributed to the current probability.

Assuming an end state is not modelled, the probability of a sequence x is P (x) =P
k fk(L). So the probability that the last state is k is given by

P (⇡L = k|x) = fk(L)P
i fi(L)

.

Now, suppose we are in state l at position i + 1. We know from the forward algorithm
that

fl(i+ 1) = el(xi+1)
X

k

fk(i)akl.

99



Thus we move to state k in the ith position with probability

fk(i)aklP
j fj(i)ajl

=
el(xi+1)fk(i)akl

fl(i+ 1)
.

Depending on what you have stored in your algorithm, it may be easier to work with
either the left or right hand side of this equation.

Example: Looking again at the CpG island example, sample state paths according to
their posterior probabilities for the given sequence x = TACA.

Solution: First, get the forward matrix, f . To make it simple, don’t use the log
transform:

- T A C A
0 1

H 0 0.075 0.014625 0.007914375 0.0009567281

L 0 0.150 0.038250 0.006052500 0.0022766062

Now, P (x) =
P

k fk(L)ak0 = 0.003233334 where ak0 = 1. So simulate the 4th element

of the state path by drawing from {H,L} with probabilities {fH(4)
P (x) = 0.2958952, fL(4)P (x) =

0.7041048}, respectively. Suppose we sampled H. Then the 3rd element of the state
path is a draw from {H,L} with respective probabilities

⇢
fH(3)aHH

fH(3)aHH + fL(3)aLH
= 0.6204251,

fL(3)aLH
fH(3)aHH + fL(3)aLH

= 0.3795749

�

Suppose we sampled H again. WE now repeat the process, sampling from

⇢
fH(2)aHH

fH(2)aHH + fL(2)aLH
,

fL(2)aLH
fH(2)aHH + fL(2)aLH

�

and so on. We’ll end up with a state path, for example, LLHH. ⇤

18.9 HMM model structure

Defining the correct structure, or ‘topology’, of an HMM is crucial to good estimation but
there are no solid rules for doing so. Usually data is limited so we can’t over-parametrise
otherwise our estimation algorithms with never find decent values. So we can’t simply
allow all possible transitions and let the computer estimate the correct model. We must
decide ourselves, as much as possible, which transition we allow (so that akl > 0) and
which we disallow (by setting akl = 0).

18.9.1 Duration modeling

If we want to accurately model the length of a sequence along with the contents, we must
model an end state as well as the start state. The basic end state, which is connected to

100



every other state, and has transition probability q = 1�p produces a sequence of length
l with probability

P (L = l) = qpl�1.

This is a geometric distribution and is the discrete analogue of the exponential distri-
bution. In general, it is not a very good model for lengths and is used largely for the
convenience of its mathematical form.

Also note that the length of time an HMM spends in any one state where the probability
of leaving that state is q is geometric.

An easy way to get a more flexible and, perhaps, more realistic distribution of lengths
is to have, say, n copies of the HMM linked together an it stays in each one for a
geometrically distributed number of steps.

An example with 4 states linked together (the states here could be HMMs themselves).

p p p p

q q q q

This produces a negative binomial length distribution, so that

P (L = l) =

✓
l � 1

n� 1

◆
pl�nqn.

19 Applications of HMMs in bioinformatics

19.1 Pairwise alignment with HMMs

We saw that we could tackle the pairwise alignment problem with finite state automata.
We now tackle the problem using an HMM, which is sometimes called a stochastic FSA.

We define a pair HMM as emitting a pair of sequences (x, y) as opposed to the standard
HMMs we have considered so far that emit a single sequence.

The basic HMM which produces a global alignment has three states, X,Y and M . M
emits a match, X emits a residue from sequence x and a gap in sequence y (an insertion
in x relative to y), while Y emits a residue from y and a gap in x. Emission probabilities
for states M,X, Y are pxiyj , qxi and qyj , respectively. We also include begin and end
states, B and E. Non-zero transition probabilities are aMX = aMY = �, aXX = aY Y = ✏,
aBX = aBY = �, akE = ⌧ for any k, and akM 6= 0 for k 6= E and can be calculated using
the fact that

P
k aik = 1.

All the algorithms we saw for standard HMMs will work for these pair HMMs but we
need a little bit of accounting for the 2 sequences — instead of vk(i) or fk(i), we need to
work with vk(i, j) or fk(i, j) etc where k is one of the 3 states M , X or Y . In each case,
we keep 3 score matrices instead of 1 to keep track of which state we are in at every
point in the alignment.

101



B

X

M E

Y

�

�

1� 2� � ⌧

⌧

✏

⌧1�
✏�

⌧
✏

⌧1
�
✏�

⌧ 1� 2� � ⌧

⌧

�

�

Figure 8: A pair HMM model for global alignment. Emission probabilities for states
M, X, Y are pxiyj , qxi and qyj , respectively. Compare it to the simpler FSA in Figure
4.

Durbin et al show how the parameters in these pair HMMs work within the Viterbi
algorithm to produce exact analogues of the dynamic programming algorithms we saw
earlier.

For example, to the standard quantities we use in the Needleman-Wunsch algorithm
from the Viterbi HMM formulation of global alignment, set

s(a, b) = log
pab
qaqb

+ log 1� 2� � ⌧(1� ⌘)2

d = � log
�(1� ✏� ⌧)

(1� ⌘)(1� 2� � ⌧)

e = � log
✏

1� ⌘
.

These pair HMMs give us more than just another way of viewing the basic alignment
algorithms. Since they are couched in the language of probability, we can answer ques-
tions about alignments with more depth and nuance than we can with the standard
deterministic tools.

102


	Introduction to stochastic processes and probability
	Primer on Probability
	Axioms of probability
	Conditional probability and independence
	Bayes' Theorem
	Random variables
	Commonly used distributions
	Bernoulli distribution
	Geometric distribution
	Binomial distribution
	Poisson distribution
	Uniform distribution (discrete or continuous)
	Normal distribution
	Exponential distribution
	Gamma distribution

	Entropy

	Inference
	Bayesian inference
	Maximum likelihood

	Simulation
	Random number generation
	Linear congruential generators 
	Shift register generators

	Simulating from univariate distributions via Inversion sampling
	Stochastic processes
	Random walk
	Poisson process


	Markov chains
	Introduction to genetics and genetic terminology 
	Summary of above

	Alignment
	Homology
	Pairwise alignment
	Scoring alignments
	Model of non-homologous sequences
	Model of homologous sequences

	Choosing the substitution matrix
	Scoring gaps

	Global alignment: Needleman-Wunsch algorithm
	Elements of an alignment algorithm
	Local Alignment: Smith Waterman algorithm
	Overlap matches

	Pairwise alignment with non-linear gap penalties 
	Alignment with affine gap scores
	Linear space alignment

	Multiple sequence alignments (MSA)
	Dynamic programming
	Progressive alignment
	Building trees with distances and UPGMA
	Feng-Doolittle progressive alignment

	Hidden Markov Models
	The Viterbi algorithm for finding the most probable state path
	The forward algorithm and calculating P(x)
	The backward algorithm and calculating P(x)
	The posterior probability of being in state k at time i P(i = k|x)
	What can we do with the posterior estimates?
	Estimating the parameters of an HMM
	Baum-Welch algorithm for estimating parameters of HMM
	Comments on the Baum-Welch algorithm

	Sampling state paths
	HMM model structure
	Duration modeling


	Applications of HMMs in bioinformatics
	Pairwise alignment with HMMs
	Probability that two sequences are related
	Sampling alignments
	Probability that xi and yj are aligned

	Profile HMMs
	Estimating the parameters of a profile HMM
	Finding matches
	Alignment with a known profile HMM
	Alignment from unaligned sequences with HMMs

	Gene finding


