
18.3 The backward algorithm and calculating P(x)

The backward algorithm is similar and if we run it to the end, we again calculate P (x).
This starts from the end of the sequence and works back to the beginning. Define

bk(i) = P (x(i+1):L|⇡i = k)

the probability observing the last part of a sequence, xi+1, xi+2, . . . , xL conditional on
starting in state k at time i.

Once again, this is calculated using tabular computation:

Initialisation i = L: bk(L) = ak0 for all k.

Recursion i = L� 1, . . . , 1: bk(i) =
P

l aklel(xi+1)bl(i+ 1).

Termination: P (x) =
P

l a0lel(x1)bl(1).

If we don’t model the end of the sequence, ak0 = 1.

Here’s a diagram showing how to get the ith column from the (i + 1)th column in the
backward algorithm. The example shown has three states 1, 2 and 3.

column i column i+ 1

b1(i) = a11e1(xi+1)b1(i+ 1) + a12e2(xi+1)b2(i+ 1) + a13e3(xi+1)b3(i+ 1) b1(i+ 1)

b2(i+ 1)

b3(i+ 1)a11

a12
a13

The log version of the algorithm is (writing Bk(i) = log bk(i)):

Initialisation i = L: Bk(L) = Ak0 for all k (or Bk(L) = 0 if end not modelled)

Recursion i = L� 1, . . . , 1: Bk(i) = log [
P

l exp(Akl + El(xi+1) +Bl(i+ 1))].

Termination: P (x) = log [
P

l exp(A0l + El(x1) +Bl(1))].

18.4 The posterior probability of being in state k at time i P (⇡i = k|x)

The final product of this backward algorithm is not usually what we are interested in (we
use the forward algorithm to calculate that) but the combined forward and backward

96

algorithms allow us to calculate the joint probability of the all observations and the prob
that ⇡i = k

P (x,⇡i = k) = P (x1:i,⇡i = k)P (xi+1:L|x1:i,⇡i = k) since P (A,B) = P (A)P (B|A)

= P (x1:i,⇡i = k)P (xi+1:L|⇡i = k) by Markov property

= fk(i)bk(i)

Of more interest is the posterior probability P (⇡i = k|x) which we obtain directly by

P (⇡i = k|x) = fk(i)bk(i)

P (x)
,

where the denominator is calculated either from the forward or backward algorithm.

18.5 What can we do with the posterior estimates?

We saw that the Viterbi path, ⇡⇤, is the most likely single path. But usually the most
likely path is not very likely at all — there may be many other paths the are nearly as
likely. We can use the posterior P (⇡i = k|x) to get some other likely paths.

The first is ⇡̂, the maximum posterior path, where

⇡̂i = argmax
k

P (⇡i = k|x).

Note that ⇡̂ is often not a legal path through the state space as it may include transitions
that are not allowed.

The second is when we are interested in some function of the states, g(k). In these cases,
we calculate the the posterior expectation of g at a particular position,

G(i|x) = Ek[g(⇡i|x)] =
X

k

P (⇡i = k|x)g(k).

In particular, if g is an indicator function, that is, g takes the value 1 for some subset of
states and 0 for all others, Ek[g(⇡i|x)] is just the posterior probability that ⇡i is in the
specified subset.

18.6 Estimating the parameters of an HMM

So far we have assumed we know the structure of the HMM and the associated parameter
values (the transition probabilities akl and emission probabilities ek(b)). In general,
we don’t know either of these. What we usually do is decide on a model (based on
our knowledge of the system) and then estimate the parameters of the model. Let
✓ = {akl, ek(b)} be the set of all parameters of the model.

Then we are interested in finding the set of parameters that maximizes the (log) likeli-
hood

l(x1, . . . , xn|✓) = logP (x1, . . . , xn|✓) =
nX

j=1

logP (xj |✓).

97

The likelihood of the jth sequence, P (xj |✓), is just what we have been referring to as
P (xj) up to this point as we had always assumed the parameter values, ✓, were known.
Writing it as P (xj |✓) simply emphasises the fact that we think of it now as a function
of the unknown ✓.

If we knew the state paths for a long sequence (or many short sequences), we could
estimate the parameters simply by using the empirical proportions of transitions and
emissions as our probabilities:

âkl =
AklP
iAki

and êk(b)
Ek(b)P
j Ek(j)

where A and E are empirical counts. Note that, as some transitions or emissions probably
wouldn’t occur in smaller datasets, it is advisable add a small number of ‘pseudo-counts’
to the empirical counts so that none are zero). But assuming we know the state paths
is unrealistic, so we proceed assuming we have only observed sequences x1, x2, . . . , xn.

18.7 Baum-Welch algorithm for estimating parameters of HMM

The Baum-Welch algorithm is an iterative algorithm that attempts to maximize the
(log) likelihood of an HMM. Unlike earlier algorithms we have seen, it is not exact, so
the estimate it finds is not guaranteed to be the best. It may also get stuck in local
maxima, so di↵erent starting points are necessary.

The idea of the algorithm is to pick a starting value for ✓ = (a, e). Probable paths for
this value of ✓ are found. From these probable paths, a new value for ✓ is found by
calculating A and E. This process repeats until the likelihood of ✓ converges on some
value (that is, no change or a very small change is seen in l(x1, . . . , xn|✓) from one step
to the next).

In one version of the algorithm, the probable paths used are the Viterbi paths for each
sequence and the values A and E are calculated from these paths. This seems reasonable
and can produce satisfactory results but it does not converge to the maximum likelihood
estimate.

It turns out that we can avoid actually imputing a probable path by directly calculating
the probability that the transition from k to l occurs at position i in x:

P (⇡i = k,⇡i+1 = l|x, ✓) = fk(i)aklel(xi+1)bl(i+ 1)

P (x)
.

Thus, to get a the expected value of Akl, we simply sum over all possible values of i. A
similar argument can be made for E. The expected values for Akl and Ekl are then:

Akl =
X

j

1

P (xj)

X

i

f j
k(i)aklel(x

j
i+1)b

j
l (i+ 1) (2)

Ek(b) =
X

j

1

P (xj)

X

i:xj
i=b

f j
k(i)b

j
k(i) (3)

98

The Baum-Welch algorithm proceeds as follows:

Initialise: Set starting values for the parameters. Set log-likelihood to �1.

Iterate: 1. Set A and E to their pseudo count values. For each training sequence xj :

(a) Calculate fk(i) for xj from forward algorithm

(b) Calculate bk(i) for xj from backward algorithm

(c) Calculate Aj and Ej and add to A and E using Equations ?? and ??
above.

2. Set new values for a and e, based on A and E

3. Calculate log-likelihood of model

4. If change in log likelihood is small, stop, else, continue.

99

