Example: In the human genome, the dinucleotide (that is, two base pairs next to each
other in the sequence) CG, written CpG to distinguish it from the nucleotide pair C-G,
is subject to methylation. Methylation changes the G to a T. That means we see the
CpG dinucleotide less frequently than we would expect by considering the individual
frequencies of C and G. In some functional regions of the genome, such as promoter and
start regions of genes, methylation is suppressed and CpG occurs at a higher frequency
than elsewhere. These are called CpG islands.

To detect these regions we model each region of a sequence as having either high or
low CG content. We label the regions H and L. In high CG regions, nucleotides
C and G each occur with probability 0.35 and nucleotides T and A with probability
0.15. In low CG regions, C and G are probability 0.2 and T, A are 0.3. The initial
state is H with probability 0.5 and L with probability 0.5. Transitions are given by
agg = agr = 0.5, ar;, = 0.6,arg = 0.4. Use the Viterbi algorithm to find the most
likely sequence staes given the sequence of symbols © = GGCACTGAA.

Solution: We work in the log space (base 2) so that the numbers don’t get too small.
We'll need the log values of each of the above probabilities which are best represented
as matrices: set A = logy(a) where a is the transition matrix

H L
A= H log(aHH) =-1 -1
L —1.322 —0.737

and if E = logy(e) where e is the matrix if emission probabilities then

A C G T
E= H logleg(A))=-2.737 —1515 —1.515 —2.737
L —1.737 —2.322 —2.322 —1.737

The matrix V, with row indices & and column indices ¢ (so that the (k,)th element is
Vi (1)) along with the pointers to allow traceback is

- G G C A c T G A A

0 0
H oo% —2.51 < —5.03 < —T.54 — —11.28 _ —1312 < —16.85 —18.65 < —22.39 _ —25.41
L —oco =332\ 584" 835" —10.28 « —13.34 « —15.81 « —18.87 « —21.35 «— —23.82

The first column in this matrix is simple: every sequence is in state 0 at step 0, so
Vo(0) = log(1) = 0 while other states have Vi (0) = V1(0) = log(0) = —oc.

The second column is derived from the first as follows:

Vi (1) = log(en(G)) + max {Vo(0) +log(aon), Vu (0) +log(arn), VL (0) + log(arn)} =
—1.515 4+ (V(0) + log(aom)) = —1.515 — 1 = —2.515 and similarly for V(1).

Traceback begins in the final column where we see the state that maximises the joint
probability is L. Following the pointers from this position and recording the state at
each step gives us the state path with the highest probability is 7* = HHHLLLLLL.
Note that 7* is built from right to left in the traceback procedure. ([

92

The schematic below shows how the (i 4+ 1)th column is derived from the ith column in
a Viterbi matrix. Here, there are 3 possible states, 1, 2 and 3. The 0 state is omitted in
this diagram.

column ¢ column ¢ + 1
V1 (Z) V1 (Z + 1) = 61(1'1'_;,_1) max (1)1 (i)au, (%) (i)agl, U3(i)a31)
va (i) an
a21
vs (i) 51

The same diagram shown using log units:

column 1 column 7 + 1
Vi(3) Vi(i+1) = E1(zi41) + max (Vi (i) + Aqr, Va(i) + Aa1, V3(3) + Aszr)
Vg(z) ail
ao1
V(i) @

18.2 The forward algorithm and calculating P (x)

We have seen that it is easy to calculate P(z, 7). However, we usually only observe
x so can’t directly calculate P(x, 7). We could tackle this by finding a suitable state
path, such as the Viterbi path, 7%, and calculate P(z,7*). But calculating P(z,7*) does
not adequately tell us the likelihood of observing which may have arisen from a large
number of possible state paths.

What we really want is calculate is P(z), the probability of observing = without taking
any particular state path into account. This involves marginalizing over all possible
paths: that is,

P(z) = Z P(z,m).

The number of possible state paths grows exponentially so we cannot enumerate them all
and naively calculate this sum. Instead, we use another dynamic programming algorithm
called the forward algorithm and calculate P(z) iteratively.

The forward algorithm iteratively calculates the quantity

fr(@) = P(x14,m = k),

93

the joint probability of the first i observations and the prob that m; = k. The recursion
used is that

[l +1) = e(@ip) Y frli)an, (1)
k
Initialisation ¢ = 0: fp(0) =1, fx(0) =0 for £ > 0.
Recursion i = 1,...,L: fi(i) = e;(x;) > _p, fr(i — Dag).
Termination: P(x) =", fi(L)ako.

If the end state 0 is not modelled, simply set ayo =1 to get P(z) = >, fx(L).

Here’s a diagram showing how to get the (7 4+ 1)th column from the ith column in the
forward algorithm. The example shown has three states 1, 2 and 3.

column 1 column 7+ 1
f1(7) fii+1) = er(it1) (fr(D)an + f2(i)ag + f3(i)as)
f2(7) “
a1
f3<’L) asy

Once again, we’ll need to work with the log quantities as the qualities of interest get
very small very fast. However, if we take the log of both sides of Equation 77, the log
of the sum on the right hand side does not simplify immediately.

Let F(i) = log(fx(i)) and A = log(ag;). Then Equation ?? becomes
Fy(i) = logley(z:) > fuli — Vag)] = logley(x)] +log | > exp(Fi(i — 1) + Ag)
k k

Directly calculating a sum of the form log(c) = log(e® +) requires calculating e®
and e’ which we were trying to avoid all along. Instead, note that log(e® + e?) =
log(e®(1 + €¥=?)) = log(e®) + log(1 + €*~?) = a + log(1 + €*~%). If the difference b — a
is not too large, this method never need store an extremely large or small number so is
numerically stable. This extends to finding the log of a sum of multiple logged numbers:

function logsum(x)
return x[0] + log(sum(exp(x - x[0])))

or, if you are using logs,

function log2sum(x)
return x[0] + log2(sum(2~(x - x[0]1)))

94

Example cont: For the CG island example above, use the forward algorithm to calcu-
late the probability of the sequence x+ = GGCACTGAA.

Solution: The matrix produced by the forward algorithm is given below, in log units
(base 2). The first column is based on the start state, 0. The first entry of the second
column is log(fr (1)) = log(ey(G)) + log(1/2)
- G G C A C T G A A
0 0
H oo -251 —-449 -639 -951 -1049 —-13.55 —14.53 —-17.58 —19.78
L o =332 =508 —-697 827 -10.89 1230 —-14.92 -16.33 —18.37

The log probability is thus log(P(z)) = log(271978 4+ 271837) = _17.91.

95

	Introduction to stochastic processes and probability
	Primer on Probability
	Axioms of probability
	Conditional probability and independence
	Bayes' Theorem
	Random variables
	Commonly used distributions
	Bernoulli distribution
	Geometric distribution
	Binomial distribution
	Poisson distribution
	Uniform distribution (discrete or continuous)
	Normal distribution
	Exponential distribution
	Gamma distribution

	Entropy

	Inference
	Bayesian inference
	Maximum likelihood

	Simulation
	Random number generation
	Linear congruential generators
	Shift register generators

	Simulating from univariate distributions via Inversion sampling
	Stochastic processes
	Random walk
	Poisson process

	Markov chains
	Introduction to genetics and genetic terminology
	Summary of above

	Alignment
	Homology
	Pairwise alignment
	Scoring alignments
	Model of non-homologous sequences
	Model of homologous sequences

	Choosing the substitution matrix
	Scoring gaps

	Global alignment: Needleman-Wunsch algorithm
	Elements of an alignment algorithm
	Local Alignment: Smith Waterman algorithm
	Overlap matches

	Pairwise alignment with non-linear gap penalties
	Alignment with affine gap scores
	Linear space alignment

	Multiple sequence alignments (MSA)
	Dynamic programming
	Progressive alignment
	Building trees with distances and UPGMA
	Feng-Doolittle progressive alignment

	Hidden Markov Models
	The Viterbi algorithm for finding the most probable state path

