
16.7 Local Alignment: Smith Waterman algorithm

The Needleman-Wunsch algorithm looks only at completely aligning two sequences.
More commonly, we want to find the best alignment for some subsequence of two se-
quences. This is the local alignment problem.

The resulting algorithm that solves this problem is very similar to the one that solve
the global alignment problem. We derive it as follows. Redefine F (i, j) to be the score
of the best su�x alignment of x1x2 . . . xi and y1y2 . . . yj , where a su�x alignment is any
alignment of x

s

x
s+1 . . . xi and y

r

y
r+1 . . . yi for some 1  s  i and 1  r  j. Note that

this su�x alignment could be the empty alignment with score 0.

We thus get the recursion

F
i,j

= max

8
>>>><

>>>>:

0

F (i� 1, j � 1) + s(x
i

, y
i

),

F (i� 1, j)� d,

F (i, j � 1)� d.

So instead of a letting a score for an alignment to go negative, we start a new alignment.
To find the best subsequence alignment, then, we simply look for the best score and
trace it back until we hit a 0. Note than we can now start and finish anywhere in the
matrix.

Example: Find the best local alignment using the score matrix and sequences given in
the previous example: x = ATA and y = AGTTA

Solution: Fill out the matrix, drawing an arrow when a cell has a predecessor to get
the following.

A G T T A

0 0 0 0 0 0

A 0 2 1 0 0 2

T 0 0 0 3 2 0

A 0 2 1 1 1 4

The score of the highest scoring local alignment is the largest entry in this matrix. We
find this at (5, 3) where F (5, 3) = 4. The sub alignment is found by tracing back from
that cell and stopping at the first cell with no predecessor (or at the first 0 encountered).
This produces the local alignment

T A
T A

⇤

78



16.7.1 Overlap matches

As an example of how easy it is to establish di↵erent types of alignment algorithm we
consider a special type of alignment known as an overlap alignment.

When we expect one sequence to completely contain another or that they overlap, we
want a global type alignment that does not penalize the unmatched overhanging ends.
The boundary conditions are F (i, 0) = F (0, j) = 0 for all i, j, the recurrence relation is
just the global recurrence and we start the traceback at the position on the boundary
where a maximum is achieved, F (i,m) or F (n, j). The traceback stops when the other
border is reached, F (i, 0) or F (0, j).

16.8 Pairwise alignment with non-linear gap penalties

In our pairwise alignment discussion, we only considered linear gap penalties. As we
noted earlier, linear penalties are a poor model for biological sequence data where we
expect gaps (that is, insertions or deletions) to be quite rare but if there is a gap it may
be multiple bases in length. Thus, an a�ne penalty, which penalises the start of the gap
more heavily than any extension to the gap is favoured.

For an arbitrary gap penalty, �(k), we can continue to use a similar dynamic program-
ming approach as before, but a direct adoption of that approach results in a much slower
algorithm. Let’s investigate: With a general gap penalty, �(k), the recurrence relation
becomes

F
i,j

= max

8
><

>:

F (i� 1, j � 1) + s(x
i

, y
j

),

F (k, j) + �(i� k), k = 0, . . . , i� 1,

F (i, k) + �(j � k), k = 0, . . . , j � 1.

This means that to calculate the value of each cell in the matrix F (i, j) we need to
consider i + j + 1 other cells — the i previous cells in the row, the j previous cells in
the column, and the one adjacent diagonal cell — rather than the 3 as we had with the
linear gap penalty (see Figure below). This results in a O(n3) algorithm rather than a
O(n2)

To calculate an unknown cell of F , the scores for gaps of all possible lengths need to
be calculated meaning that a calculation for each previous cell in the row and column
needs to be made:

A G T T A

0 -2 -4 -6 -8 -10

A -2 2 0 -2 -4 -6

T -4 0 0 ?

A

79



16.9 Alignment with a�ne gap scores

In the case of an a�ne gap score (which has the form �(k) = �d� (k� 1)e ) it turns out
that we can, once again, construct a O(n2) dynamic programming algorithm to solve the
alignment problem. The only di�culty is that we now have to keep track of 3 possible
states corresponding to 3 cases:

1. Let M(i, j) be the best score of the alignment up to (i, j) given that x
i

is aligned
to y

j

. This case looks like
A C C xi
A C G yj

2. Let I
x

(i, j) be the best score of the alignment up to (i, j) given that x
i

is aligned
to a gap. This case looks like
A C C xi
G yj - -

3. Let I
y

(i, j) be the best score of the alignment up to (i, j) given that y
j

is aligned
to a gap. This case looks like
C C xi -

A C G yj

Given those definitions, and assuming that a gap cannot directly follow an insertion (that
is, we can’t go directly from I

x

to I
y

or vice versa), we have the following recurrence
relations:

M(i, j) = max

8
><

>:

M(i� 1, j � 1) + s(x
i

, y
j

),

I
x

(i� 1, j � 1) + s(x
i

, y
j

),

I
y

(i� 1, j � 1) + s(x
i

, y
j

);

I
x

(i, j) = max

(
M(i� 1, j)� d,

I
x

(i� 1, j)� e;
and,

I
y

(i, j) = max

(
M(i, j � 1)� d,

I
y

(i, j � 1)� e.

It should be clear that we can calculate this recursion e�ciently using tabular compu-
tation where we have 3 arrays: one for each of M , I

x

and I
y

. We can use a similar
back-tracking mechanism to find the best alignment once we have calculated the scores.

This results in an quadratic time and space algorithm once again but the coe�cient of
the quadratic term is greater for this algorithm than the linear gap penalty one. For
example, the space requirement here is 3n2 while it is only n2 with a linear gap penalty.

The above recursions can be very neatly represented as a finite state automaton, or FSA.

In an FSA, each of the three possibilities, match, insertion in x or insertion in y, corre-
sponds to a state (drawn as circles).

80



M
(+1,+1)

I
x

(+1, 0)

I
y

(0,+1)

�d

s(x
i

, y
j

)

s(x
i

, y
j

)

�e

s(x
i

, y
j

)
�e

�d

Figure 4: A finite state automaton describing the a�ne gap alignment recurrence re-
lation. The pairs of numbers below the state names indicate how we increment the
position in sequence x and y.

The transitions each carry a score, as indicated next to the arrow.

The new value for the state variable at (i, j) is the maximum of the scores corresponding
to the transitions coming into the state. Each transition score is given by is given by
the value of the source state at the o↵sets specified by the �(i, j) pair of the target state
plus the specified score increment.

An alignment corresponds to a path through the states.

V L S P A D - K

H L - - A E S K

m m Ix Ix m m Iy m

These automata are known in computer science as Moore machines.

We’ve already seen one type of FSA: a Markov chain can be represented as a stochastic
FSA. We’ll look at another stochastic FSA, the hidden Markov model or HMM, shortly.

16.10 Linear space alignment

If sequences are large, even a quadratic algorithm can be di�cult to work with. We
can’t improve the speed of the algorithm but we can reduce the amount of memory we
need (currently at that is O(n2) too).

81



If all we require is the score of the best alignment, we immediately see that we don’t
need to keep the whole matrix until the end of the alignment. In the case of global
alignment, the score of the best alignment is given by the entry F (m,n). To calculate
any score in the ith row, all we need to know is the (i � 1)th row, so we only need to
keep the a single row of the matrix in memory. A similar argument can be made for the
score of the best local alignment.

If we actually want the best alignment, it turns out that we can still produce a linear
space algorithm. We employ a divide and conquer approach. Suppose we could find a
cell, (i⇤, j⇤) what we knew to lie on the optimal alignment. Then we could divide the
alignment problem into two halves: from (0, 0) to (i⇤, j⇤) then from (i⇤, j⇤) to (m,n). In
the best case, this reduces the amount of storage space require by 2. This process can
be iterated, so (i⇤⇤, j⇤⇤) is found to reduce the space required for the (0, 0) to (i⇤, j⇤)
section and so on. It turns out that given an i⇤, a suitable j⇤ can be found. We omit
the details here (they are not too di�cult) but details and references are given towards
the end of chapter 2 in the Durbin et al book.

82


	Introduction to stochastic processes and probability
	Primer on Probability
	Axioms of probability
	Conditional probability and independence
	Bayes' Theorem
	Random variables
	Commonly used distributions
	Bernoulli distribution
	Geometric distribution
	Binomial distribution
	Poisson distribution
	Uniform distribution (discrete or continuous)
	Normal distribution
	Exponential distribution
	Gamma distribution

	Entropy

	Inference
	Bayesian inference
	Maximum likelihood

	Simulation
	Random number generation
	Linear congruential generators 
	Shift register generators

	Simulating from univariate distributions via Inversion sampling
	Stochastic processes
	Random walk
	Poisson process


	Markov chains
	Introduction to genetics and genetic terminology 
	Summary of above

	Alignment
	Homology
	Pairwise alignment
	Scoring alignments
	Model of non-homologous sequences
	Model of homologous sequences

	Choosing the substitution matrix
	Scoring gaps

	Global alignment: Needleman-Wunsch algorithm
	Elements of an alignment algorithm
	Local Alignment: Smith Waterman algorithm
	Overlap matches

	Pairwise alignment with non-linear gap penalties 
	Alignment with affine gap scores
	Linear space alignment

	Multiple sequence alignments (MSA)
	Dynamic programming
	Progressive alignment
	Building trees with distances and UPGMA


