
16.5 Global alignment: Needleman-Wunsch algorithm

We can’t calculate all possible alignments of a pair of sequences. (There are
�
n+m

m

�
possi-

ble alignments for a pair of sequences of length n and m.) We use dynamic programming

approaches that allow is to quickly calculate the best possible alignment (that is, the
one that gives us the highest score).

Dynamic programming is technique of solving complex problems by reducing them to a
number of much simpler subproblems that we can easily solve then re-assemble to find
the answer to the complex problem. It uses the structure of the problem itself and so
is only applicable to problems that possess a certain type of structure and to which we
can apply the Principle of Optimality: “a sub-optimal solution of a sub-problem cannot
be part of optimal solution of original problem”.

The the alignment context, the principle of optimality holds in that if we know the score
of an optimal alignment of length k then the score of the first k�1 parts of the alignment
must be optimal.

To see why this is, let F
i,j

be the score of the optimal alignment between x[1 : i] and
y[1 : j]. Let s(x

i

, y
j

) be the score for matching residue x
i

to residue y
j

and assume a
linear gap penalty (so that the penalty for adding the gap (x

i

,�) or (�, y
j

) is d). The
optimal alignment up to x

i

, y
j

either has x
i

and y
j

aligned, or y
j

aligned to a gap or x
i

aligned to a gap. For example, it looks like

I G A y
j

L G V x
i

or
I G A y

j

V x
i

� � or
G A y

j

�
L G V x

i

In any case, the first part of the alignment must be optimal (If that first k�1 parts were
not optimal, we’d find the optimal alignment for the first parts, add the kth bit on in
one of the 3 possible ways and have a better alignment for the first k parts, contradicting
our assumption that our original alignment was optimal for length k). Thus, if we know
score of the best alignment for k� 1 parts, we can extend it to the best alignment for k
parts. This observation allows us to write the problem as a recurrence relation:

F (i, j) = max

8
><

>:

F (i� 1, j � 1) + s(x
i

, y
j

),

F (i� 1, j)� d,

F (i, j � 1)� d.

The first case we have matched x
i

, y
j

, the second case we have matched x
i

to a gap and
the final case we have matched y

j

to a gap.

So we want to find F
n,m

and we have the boundary conditions F (0, 0) = 0 (start at 0),
F (i, 0) = �id and F (0, j) = �jd (linear gap penalties for initial gaps).

Note that all the above can be phrased in terms of mismatches and penalties, rather than
matches and scores. To do so, simply reverse the signs of the scores and take minimums
rather than maximums.

If we use a naive recursive method to calculate F (n,m), we still get an exponential
number of calls. But notice that there are only m⇥ n possible combinations we need to

75

calculate. We can do this in a tabular manner, calculating the matrix F from the top
left to the bottom right in a progressive fashion.

To calculate the (i, j)th entry, we only need to know the 3 entries to the left and above
it. The (i, j)th entry s then a maximum over 3 numbers. We keep a pointer to indicate
which cell the (i, j)th entry was derived from.

F (i� 1, j � 1) F (i� 1, j)

F (i, j � 1) F (i, j)

+s(x
i

, y
j

) �d

�d

Once we have filled out the matrix, we trace back from F (n,m), following the path
that led us here. That is, the score at the (n,m)th position came from one of position
(n � 1,m), (n,m � 1), or (n � 1,m � 1) by adding a gap or a match. We move to
whichever position it came from either adding the gap or the match in the process. In
doing so, we build up the alignment from right to left, eventually arriving at F (0, 0) at
which point we can reverse the alignment to get the full

Our method is thus based on three things: a recurrence relation, tabular computing and
then traceback. These methods turn an what is naively an exponential algorithm into a
quadratic algorithm (O(nm)).

Example: Align x = ATA and y = AGTTA with the following scores: the purines are A
and G, while the pyrimidines are C and T. Let s(a, b) = 2 if a = b, 1 if a is purine and
b is a purine or a is a pyrimidine and b is a pyrimidine, and -2 if a is a purine and b is a
pyrimidine or vice versa. Let the gap score be d = �2.

Solution: Filling out the matrix and drawing arrows to show where each entry is derived
from we get the following:

A G T T A

0 -2 -4 -6 -8 -10

A -2 2 0 -2 -4 -6

T -4 0 0 2 0 -2

A -6 -2 1 0 0 2

The score of the best alignment is given in the bottom right: F (3, 5) = 2. To find the
alignment with the best score, we traceback from this point. At F (2, 4) there are two
choices that produce the same score. One alignment, found by following the arrow from

76

F (2, 4) to F (1, 3) is
A � � T A
A G T T A

while the other is obtained by following the arrow from F (2, 4) to F (2, 3) and looks like

A � T � A
A G T T A

⇤

16.6 Elements of an alignment algorithm

We emphasise that these dynamic programming algorithms for sequence alignment are
based on following elements:

• a recurrence relation for the quantity we are trying to optimise, including specifi-
cation of the boundary conditions,

• tabular computing to e�ciently calculate the recurrence, and

• traceback (includes specifying rules for where to start and stop the traceback).

By altering the recurrence relation, the boundary conditions or the traceback, we will
find di↵erent types of best alignment. Local alignment is the most common form and is
defined below.

16.7 Local Alignment: Smith Waterman algorithm

The Needleman-Wunsch algorithm looks only at completely aligning two sequences.
More commonly, we want to find the best alignment for some subsequence of two se-
quences. This is the local alignment problem.

The resulting algorithm that solves this problem is very similar to the one that solve
the global alignment problem. We derive it as follows. Redefine F (i, j) to be the score
of the best su�x alignment of x1x2 . . . xi and y1y2 . . . yj , where a su�x alignment is any
alignment of x

s

x
s+1 . . . xi and y

r

y
r+1 . . . yi for some 1 s i and 1 r j. Note that

this su�x alignment could be the empty alignment with score 0.

We thus get the recursion

F
i,j

= max

8
>>>><

>>>>:

0

F (i� 1, j � 1) + s(x
i

, y
i

),

F (i� 1, j)� d,

F (i, j � 1)� d.

So instead of a letting a score for an alignment to go negative, we start a new alignment.
To find the best subsequence alignment, then, we simply look for the best score and

77

trace it back until we hit a 0. Note than we can now start and finish anywhere in the
matrix.

Example: Find the best local alignment using the score matrix and sequences given in
the previous example: x = ATA and y = AGTTA

Solution: Fill out the matrix, drawing an arrow when a cell has a predecessor to get
the following.

A G T T A

0 0 0 0 0 0

A 0 2 1 0 0 2

T 0 0 0 3 2 0

A 0 2 1 1 1 4

The score of the highest scoring local alignment is the largest entry in this matrix. We
find this at (5, 3) where F (5, 3) = 4. The sub alignment is found by tracing back from
that cell and stopping at the first cell with no predecessor (or at the first 0 encountered).
This produces the local alignment

T A
T A

⇤

78

	Introduction to stochastic processes and probability
	Primer on Probability
	Axioms of probability
	Conditional probability and independence
	Bayes' Theorem
	Random variables
	Commonly used distributions
	Bernoulli distribution
	Geometric distribution
	Binomial distribution
	Poisson distribution
	Uniform distribution (discrete or continuous)
	Normal distribution
	Exponential distribution
	Gamma distribution

	Entropy

	Inference
	Bayesian inference
	Maximum likelihood

	Simulation
	Random number generation
	Linear congruential generators
	Shift register generators

	Simulating from univariate distributions via Inversion sampling
	Stochastic processes
	Random walk
	Poisson process

	Markov chains
	Introduction to genetics and genetic terminology
	Summary of above

	Alignment
	Homology
	Pairwise alignment
	Scoring alignments
	Model of non-homologous sequences
	Model of homologous sequences

	Choosing the substitution matrix
	Scoring gaps

	Global alignment: Needleman-Wunsch algorithm
	Elements of an alignment algorithm
	Local Alignment: Smith Waterman algorithm

