
Example 4: Music. See Figure 2. This example taken from Tom Collins, Robin Laney,
Alistair Willis, and Paul H. Garthwaite. Chopin, mazurkas and Markov. Signifi-
cance, 8(4):154-159, 2011. doi:10.1111/j.1740-9713.2011.00519.x.

Example 5: A DNA sequence. State space is {A,C,G, T}. Need to specify transition
probabilities P

AA

, P
AC

, P
AG

etc. Then we obtain a random sequence by specifying
a starting state and recording each state visited. An example of a random sequence
looks as follows: AAGCTGCGTGTGGGGGAAGGAACTTTTGCGTGTTAGTA

The m�step transition probability is the probability of going from state i to state j in
exactly m steps, P

ij

(m) = Pr(X
n+m

= j|X
n

= m). Hence the m�step transition matrix
is P

m

= [P
ij

(m)].

A result known as the Chapman-Kolmogorov equations tells us P
m+n

= P
m

P
n

(where
the right-hand side is just standard matrix multiplication). In particular, this result
tells us that P

n

= Pn, that is, the n-step transition matrix is just the nth power of the
(one-step) transition matrix.

15 Introduction to genetics and genetic terminology

The history of life can be viewed, in a rather mundane way, as a long running and very
complex stochastic (or random) process.

At a very basic level, and after many simplifying assumptions, we can think of the
historical process explaining the relationships between species as a tree. The points
where the tree splits are speciations and the leaves of the tree are di↵erent species. The
past is back at the base or root of the tree and time increases from the root to the tips.
Information is passed along the tree (away from the root) from one generation to the
next via genetic material.

Genetic material is thought to be the only means by which biological information is
passed from parent to o↵spring. The process of copying genetic material is imperfect, so
that children will di↵er slightly from the parent. These imperfections consist of errors
in the copying, known as mutations, and can be thought of as a stochastic process.

The fundamental objects we will be studying are sequences of characters represent-
ing biological macromolecules: DNA (Deoxyribonucleic), RNA (Ribonucleic acid) and
proteins. DNA are RNA are the primary forms of genetic material. The charac-
ters in DNA and RNA sequences are drawn from 4 letter alphabets: DNA has ⌦ =
{A,C,G, T} while RNA has ⌦ = {A,C,G,U}. The A stands for adenine, C for cy-
tosine, G for guanine, T for thymine and U for uracil. These are known as nucle-
obases or simply bases, with C, T, U being pyramidines and A,G being purines. Pro-
tein sequences consist of the twenty amino acids that are represented by the alphabet
{A,R,N,D,C,E,Q,G,H, I, L,K,M,F, P, S, T,W, Y, V } (that is, all the letters except
{B, J,O, U,X,Z}). We will refer to the bases in an DNA/RNA sequence or the amino
acids in a protein sequence as residues.

66

155december2011

process. Observing composers at work and
asking them about the creative process are
complementary methods for investigating the
acquisition of compositional abilities, but the
latter method in particular is susceptible to
flights of fancy9. An algorithm for generating
stylistic compositions might be adapted to as-
sist students of music – it could offer students
an initial fragment, or an appropriate continu-
ation to a half-composed phrase. In England
and Wales alone, an estimated 50,000 students
each year respond to stylistic composition
briefs in music exams. “Compose a short Lied
in the style of Schumann” is a good example of
a stylistic composition brief.

Markov models of stylistic
composition

The use of Markov chains is an important ap-
proach to algorithmic composition. The tune
“Three Blind Mice” shows this very simply
– see box. In that example, and below, pitch
classes – that is, pitch regardless of octave
– form the state space of the Markov chain,
while the relative frequencies with which one
pitch class leads to the following pitch class
form the matrix of transition probabilities.
(Other qualities of the notes, such as duration
or timbre, could be used instead or as well.) We
will illustrate this more fully using the melody
in Figure 1. The piece of music contains all of
the natural pitch classes as well as B͖, so the
obvious choice for the state space (I) is the set
of pitch classes

I = {F, G, A, B͖, B, C, D, E}.

The transition matrix in Table 1 records all the
transitions between notes, with their relative
frequencies. For example, there are four transi-
tions from F, of which three are to G, while
the fourth is to A. This gives the first row of
the table: the transition probabilities are 3/4
from F to G, 1/4 from F to A, and 0 for other

transitions. Each row of the table corresponds
to transitions from a different pitch class. It
can be seen that most transitions are from one
pitch class to an adjacent one.

To use this matrix in a compositional
scenario we start by choosing an initial note –
say, A. We look along the A row of our table to
choose our second note; we randomly choose
between F, G, B and C, and with respective
probabilities 1/8, 1/2, 1/4 and 1/8.

Suppose we choose B. Looking along the
fifth row of Table 1, we select our third note,
making a random, equiprobable choice between
G, C, and D. And so on. We, or the computer,

can use random (or pseudo-random) numbers
to guide the choices at each note.

Every time we run the exercise, the result-
ing tune will be different . Below are three pitch
sequences generated from the Markov model
using pseudo-random numbers. For ease of
reading, each melody is split up according to
the phrase structure of the original music in
Figure 1 (to hear all of these melodies, visit
http://www.tomcollinsresearch.
net and follow the links).

1. A, G, F, G, F, G, A, B, G,
F, G, F, G, A, B, D, E,
B, C, A, F, G,
B͖, A, F, G, A, G, A, B, G, A.

2. A, G, A, B, D, C, B͖, A, F,
G, F, A, B, D, C, A, G,
A, G, F, A, F,
A, F, G, F, G, A, G, F, A, G.

3. F, A, B, G, F, G, F, G, A,
B, C, A, G, F, G, F, G,
B͖, A, G, A, G,
A, F, G, B͖, A, B, G, F, G, A.

Markov meets “Three Blind Mice”

A Markov chain is a succession of states; each state depends only on the one that preceded
it. A simple tune is a succession of notes. Assuming each note depends only on the note that
preceded it, it can be analysed as a Markov chain.

Suppose in a tune that whenever a note of pitch C occurs, it is followed half of the time
by a G, a quarter of the time by an E, and less frequently by other notes. Similar probabilities
would apply to every other note in the octave. To take a real-life example, the tune “Three
Blind Mice” can be written (ignoring octaves) as:

E D C, E D C,

G F F E, G F F E,

G C C B A B C G G,

G C C C B A B C G G,

G C C C B A B C G G G,

F E D C.

The first note, E, occurs 5 times. Three of those times it is followed by D, twice it is followed by
G, and it is never followed by any other note. D occurs 3 times. It is always followed by C.

A computer algorithm that generated a string of notes where D was always followed by C,
and where E had a 3/5 chance of being followed by D and a 2/5 chance of being followed by G,
would “compose” a “tune” that might be reminiscent of “Three Blind Mice”.

Chopin is more complex, but can still be analysed, and imitated, by Markov chain algorithms.
“Three Blind Mice” also has near or exact repetitions of three- and four-note phrases, and

longer ones as well. Sometimes these repetitions are at the same pitch, sometimes they are
transposed higher. These patterns too can be incorporated in the composing algorithm – in
nursery songs and in Chopin mazurkas.

�
 [Andante]

� �
F

3
p

	�
G A

	�

G F

	� 	�
G

	�
A B

	�
�
G,

	
A

	�
B

	� �
C

	�
D

	�
E

	
B

	�
D C,

	� �

� �
7

�
A

C

	
Bb

	�
A

	�
G,

Bb Bb

	� 	�
A G F

	 	 	 	�
G

	�
A

	�
F

	�
A

G

	 �

Figure 1. Bars 3–10 of the melody from “Lydia”, Op. 4 No. 2, by Gabriel Fauré (1845–1924).

Illustration: Tom Boulton

156 december2011

The above example of constructing a
Markov model and using it to generate pitch
sequences raises several questions. First, the
majority of classical music is polyphonic (more
than one pitch is sung/played simultane-
ously), but above we modelled a monophonic
excerpt (only one pitch is sung/played at a
time). How should the definition of “state” be
altered to build analogous Markov models for
polyphonic music? Second, when a transition
matrix is constructed using one or more pieces
of music, how can we prevent generated pas-
sages replicating substantial parts of existing
work? Third, repeated patterns play an impor-
tant role in music, so how can we ensure that a
generated passage contains repeated patterns,
be they short motifs or longer sections?

In answer to the first question, one
plausible definition of a polyphonic state is a
set of pitches, as opposed to lone pitches. For
example, the set {F, A, C} is a state that might
be followed by the state {E, G, B͖, C}. Another
plausible definition involves counting the in-
terval in semitones between simultaneous
pitches, when arranged in ascending order. For
example, there are four semitones from F to A,
and three semitones from A to C, so (4, 3) is
a state in such a state space. Determining the
best choice of state space for polyphonic music
is an open problem.

Turning to the second question – how
to avoid replicating too much of the original
composer – it is possible to retain the source
information (e.g., Fauré, Op. 4 No. 2) for
each observed state. In this way, we can im-
pose a constraint on the generation process,
stipulating that no more than four consecutive
generated states, say, may have the same source.
This constraint reduces the likelihood of the
generated passage replicating substantial parts
of existing work.

To address the third question, on repeti-
tions, we introduce another topic where music
and statistics intersect: algorithms for discov-
ering repeated patterns in music.

Pattern discovery and pattern
inheritance

It is uncontroversial that repetition plays a
central role in our perception of musical
structure: “Only by repetition can a series of
tones be characterized as something definite.
Only repetition can demarcate a series of tones

and its purpose. Repetition thus is the basis
of music as an art”10. Hence, pattern discovery
and pattern inheritance should play a central
role in the algorithmic generation of music.

A pattern discovery algorithm takes a
symbolic representation of a single piece of
music as input, and produces a list (or graphical
representation) of the repeated patterns that
occur in the piece. Bioinformatics algorithms
that were originally intended for discovering
repetitions in DNA strings are easily adapted to
monophonic music, as such music can be repre-
sented as strings of pitches and/or durations11.
However, another approach, which works as
well for polyphony as it does for monophony,
is to use a point-set (or geometric) representa-
tion of a piece in order to discover repeated
patterns12. Methods that use this approach
have been developed by Meredith, Lemström
and Wiggins, and we have extended one of
their methods to give an algorithm we call
SIACT (Structure Induction Algorithm with
Compactness Trawling)13. Output from this
algorithm is illustrated in Figure 2, where it was
applied to an excerpt from a Chopin mazurka.

Musical patterns can be shifted as a block
by a number of notes (either up or down) and
our minds will hear the repetition. Analytically,

��

��

�������	������
��
�

� ����� ��
�

� � �

� � � � � �� �

� � � � � �
�

� � � � � ��
�

� � � � � �� �

� ����� � �� � � � � � � � �� � � �� � � � � ��� � �

�

� ����� � �

� �

� � �� ��
�

� � � �� ��� ��� �

�� � �� ��
�

� � � � � �� � � �

� �

� � ��

� ����� ��� � ����
�� ��� ����

� ��� ���� ��
�

�

� �� � � � �� ��� ����

��

� ����� ��
�

� � � �� ��� ��
���

�

�	 �
 �� ��� ��� �

� � �� � �
 � � � �
 � � � ���
�

� ����� �� ��� ����
��� �� � ��

� � �� ��
 � � � ��
 � � � ��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 2. SIACT was applied to a representation of bars 1–16 of the Mazurka in B major, Op. 56 No. 1, by Chopin,
and the results were filtered and rated. Occurrences of the top three patterns are shown.

Table 1. Transition matrix for the material shown in Figure 1. The ith row and jth column records the number
of transitions from the ith to the jth state in the melody, divided by the total number of transitions from the
ith state.

Pitch class F G A B͖ B C D E

F 0 3/4 1/4 0 0 0 0 0
G 2/7 0 4/7 1/7 0 0 0 0
A 1/8 1/2 0 0 1/4 1/8 0 0
B͖ 0 0 2/3 1/3 0 0 0 0
B 0 1/3 0 0 0 1/3 1/3 0
C 0 0 1/3 1/3 0 0 1/3 0
D 0 0 0 0 0 1/2 0 1/2
E 0 0 0 0 1 0 0 0

155december2011

process. Observing composers at work and
asking them about the creative process are
complementary methods for investigating the
acquisition of compositional abilities, but the
latter method in particular is susceptible to
flights of fancy9. An algorithm for generating
stylistic compositions might be adapted to as-
sist students of music – it could offer students
an initial fragment, or an appropriate continu-
ation to a half-composed phrase. In England
and Wales alone, an estimated 50,000 students
each year respond to stylistic composition
briefs in music exams. “Compose a short Lied
in the style of Schumann” is a good example of
a stylistic composition brief.

Markov models of stylistic
composition

The use of Markov chains is an important ap-
proach to algorithmic composition. The tune
“Three Blind Mice” shows this very simply
– see box. In that example, and below, pitch
classes – that is, pitch regardless of octave
– form the state space of the Markov chain,
while the relative frequencies with which one
pitch class leads to the following pitch class
form the matrix of transition probabilities.
(Other qualities of the notes, such as duration
or timbre, could be used instead or as well.) We
will illustrate this more fully using the melody
in Figure 1. The piece of music contains all of
the natural pitch classes as well as B͖, so the
obvious choice for the state space (I) is the set
of pitch classes

I = {F, G, A, B͖, B, C, D, E}.

The transition matrix in Table 1 records all the
transitions between notes, with their relative
frequencies. For example, there are four transi-
tions from F, of which three are to G, while
the fourth is to A. This gives the first row of
the table: the transition probabilities are 3/4
from F to G, 1/4 from F to A, and 0 for other

transitions. Each row of the table corresponds
to transitions from a different pitch class. It
can be seen that most transitions are from one
pitch class to an adjacent one.

To use this matrix in a compositional
scenario we start by choosing an initial note –
say, A. We look along the A row of our table to
choose our second note; we randomly choose
between F, G, B and C, and with respective
probabilities 1/8, 1/2, 1/4 and 1/8.

Suppose we choose B. Looking along the
fifth row of Table 1, we select our third note,
making a random, equiprobable choice between
G, C, and D. And so on. We, or the computer,

can use random (or pseudo-random) numbers
to guide the choices at each note.

Every time we run the exercise, the result-
ing tune will be different . Below are three pitch
sequences generated from the Markov model
using pseudo-random numbers. For ease of
reading, each melody is split up according to
the phrase structure of the original music in
Figure 1 (to hear all of these melodies, visit
http://www.tomcollinsresearch.
net and follow the links).

1. A, G, F, G, F, G, A, B, G,
F, G, F, G, A, B, D, E,
B, C, A, F, G,
B͖, A, F, G, A, G, A, B, G, A.

2. A, G, A, B, D, C, B͖, A, F,
G, F, A, B, D, C, A, G,
A, G, F, A, F,
A, F, G, F, G, A, G, F, A, G.

3. F, A, B, G, F, G, F, G, A,
B, C, A, G, F, G, F, G,
B͖, A, G, A, G,
A, F, G, B͖, A, B, G, F, G, A.

Markov meets “Three Blind Mice”

A Markov chain is a succession of states; each state depends only on the one that preceded
it. A simple tune is a succession of notes. Assuming each note depends only on the note that
preceded it, it can be analysed as a Markov chain.

Suppose in a tune that whenever a note of pitch C occurs, it is followed half of the time
by a G, a quarter of the time by an E, and less frequently by other notes. Similar probabilities
would apply to every other note in the octave. To take a real-life example, the tune “Three
Blind Mice” can be written (ignoring octaves) as:

E D C, E D C,

G F F E, G F F E,

G C C B A B C G G,

G C C C B A B C G G,

G C C C B A B C G G G,

F E D C.

The first note, E, occurs 5 times. Three of those times it is followed by D, twice it is followed by
G, and it is never followed by any other note. D occurs 3 times. It is always followed by C.

A computer algorithm that generated a string of notes where D was always followed by C,
and where E had a 3/5 chance of being followed by D and a 2/5 chance of being followed by G,
would “compose” a “tune” that might be reminiscent of “Three Blind Mice”.

Chopin is more complex, but can still be analysed, and imitated, by Markov chain algorithms.
“Three Blind Mice” also has near or exact repetitions of three- and four-note phrases, and

longer ones as well. Sometimes these repetitions are at the same pitch, sometimes they are
transposed higher. These patterns too can be incorporated in the composing algorithm – in
nursery songs and in Chopin mazurkas.

�
 [Andante]

� �
F

3
p

	�
G A

	�

G F

	� 	�
G

	�
A B

	�
�
G,

	
A

	�
B

	� �
C

	�
D

	�
E

	
B

	�
D C,

	� �

� �
7

�
A

C

	
Bb

	�
A

	�
G,

Bb Bb

	� 	�
A G F

	 	 	 	�
G

	�
A

	�
F

	�
A

G

	 �

Figure 1. Bars 3–10 of the melody from “Lydia”, Op. 4 No. 2, by Gabriel Fauré (1845–1924).

Illustration: Tom Boulton

Figure 2: An example showing how a piece of music can be modelled as a Markov chain.
The original piece, a fragment of Lydia by Fauré, is shown at the top. Just the pitches
are considered in this simple Markov model. The transition matrix between pitches
(centre) is constructed from empirical counts of the observed transitions. Three random
realisations of the process are given at the bottom.

67

In eukaryotes (organisms with cells that have a nucleus), the three types of sequences
related to each other by the Central Dogma of Molecular Biology that states, DNA
makes RNA makes Protein. Or, more prosaically, DNA is transcribed into a type of
RNA called mRNA that is then translated into protein.

There are some good animations showing how translation and transcription work at
www.hhmi.org/biointeractive/animations/index.html, in particular see the DNA
transcription and translation animations. A Japanese anime style film of the central
dogma is also worth a look: http://www.youtube.com/watch?v=-ygpqVr7_xs.

Parts of the the DNA sequence encode information for proteins. These regions are known
as genes and must be transcribed to RNA before being built into proteins. When the
DNA is transcribed to RNA, all bases are copied exactly except that T (thymine) is
transcribed as U (uracil). Once copied, the RNA is edited at splice sites so that only
exons remain (the introns are edited out). This leaves the messenger RNA, mRNA,
which is then translated to a protein sequence (poly-peptide chain). This translation
occurs via the genetic code which translates consecutive triples of RNA bases (known as
a codon) into one of the 20 amino acids. There are 43 = 64 possible codes since there
is an alphabet of 4 bases. 60 of these code for proteins, 1 (AUG) is a start codon and
3 (UAA, UGA and UAG) are stop codons signalling the start or finish of a protein. A
particular amino acid may be encoded by just one codon (e.g. AUG!Methionine(M)) or
up to 6 (e.g. any of UUA, UUG, CUU, CUC, CUA, CUG!Leucine (L)). Once the poly-
peptide chain is formed it folds into three dimensional molecule, taking on a particular
structure.

Example: The sequence atgaggttgacgctactttgttgcacctggagggaa can be split into
codons atg agg ttg acg cta ctt tgt tgc acc tgg agg gaa which translate into the
protein sequence MRLTLLCCTWRE. ⇤
In this course, we are only interested in the primary structure of sequences, that is, the
order in which residues occur along the sequence. We will ignore the secondary, tertiary
and quaternary structure of proteins — secondary structure is the name for the regular
substructures such as alpha helices and beta sheets, the tertiary structure are the three
dimensional structures of single molecules while quaternary structure are the complex
forms taken by collections of single protein molecules. The study of these more complex
structures is known as structural bioinformatics.

When DNA is passed from one generation to the next, the copy made is not exact.
There are a number of processes that cause di↵erences to arise between the parent
and child. Recombination is one such process and involves the mixing of the maternal
and paternal copies of DNA when the gametes (eggs or sperm) are produced. Other
processes are generally thought of as mutations. The simplest are point mutations where
the o↵spring sequence di↵ers from the parent sequence by a single base (residue). This
type of mutation is called a single nucleotide polymorphism, abbreviated as SNP and
pronounced ‘snip’. Insertions (or deletions) refer to the child sequence gaining (losing)
one or more base than the parent. Larger scale mutations include: gene duplication

which is a large scale insertion where the child inherits extra copy of a region containing

68

a whole gene. Other large scale mutations include inversions (part of the sequence is
reversed end to end) and translocations (a piece of the sequence is copied out of order).

Examples of mutations: Consider the short sequence cgctcaccatgaagcgtttcactaat.
We demonstrate types of mutations showing the original sequence and a mutated version
of it below with X marking the mutation.

• Single nucleotide polymorphism (SNP)
cgctcaccatgaagcgtttcactaat

cgctcgccatgaagcgtttcactaat

.....X....................

• Insertion
cgctcacc----atgaagcgtttcactaat

cgctcacctgatatgaagcgtttcactaat

........XXXX..................

• Deletion
cgctcaccatgaagcgtttcactaat

cgct----atgaagcgtttcactaat

....XXXX..................

• Duplication (the copied region is marked with parentheses). Note that duplication
usually refers to gene duplication where whole genes are copied.
cgctcaccatgaagcgtttcacta-----------at

cgctcaccatgaagcgtttcactacaccatgaagcat

....(.........).........XXXXXXXXXXX..

• Inversion (again, this typically happens at a larger scale than shown here)
cgctcaccatgaagcgtttcactaat

cgctctaccagaagcgtttcactaat

.....XXXXX................

⇤
All these processes can be modelled and studied, with varying degrees of di�culty. We’ll
focus primarily on the question of how to align the sequences, how to identify regions
of interest in sequences (for example, genes), and given aligned sequences, how can we
reconstruct the evolutionary history (the tree) of those sequences. This last problem
will require us to model the the mutation process where we restrict ourselves to looking
at how point mutations arise.

The models we use will use are relatively simple, sometimes to the point of being down-
right crude. It is good to keep in mind the quote from the famous statistician George
Box who said, “All models are wrong but some are useful”.

69

15.1 Summary of above

• We model genetic sequences: think of them as strings of letters.

• There are 3 types of sequence, DNA, RNA or Protein.

• DNA sequences are composed of the 4 letters, or bases, {A,C,G, T}, RNA is
made of the bases {A,C,G,U} while protein sequences are made up of the 20
amino acids.

• The three types of sequence are related by the central dogma of molecular biology:
DNA is transcribed to RNA and then translated to protein.

• Protein sequences fold up into more complex structures. We will ignore this struc-
ture in this introductory course.

• DNA is copied from parent to child.

• At copying, mutations are introduced.

• Mutations may be single nucleotide polymorphisms (SNPs), insertions, deletions
or of other types.

• We use a tree to model the history of relationships between individuals (which are
represented by their sequences).

To model the complex random process of genetic mutation and inheritance, we will need
tools from applied probability and statistics. The next few sections are concerned with
introducing the main tools and concepts that we will use for our study. All of you will
have previously encountered at least some of the ideas we discuss here but, as with the
linear algebra sections, it helps to review the main points before plunging in to new
material.

70

	Introduction to stochastic processes and probability
	Primer on Probability
	Axioms of probability
	Conditional probability and independence
	Bayes' Theorem
	Random variables
	Commonly used distributions
	Bernoulli distribution
	Geometric distribution
	Binomial distribution
	Poisson distribution
	Uniform distribution (discrete or continuous)
	Normal distribution
	Exponential distribution
	Gamma distribution

	Entropy

	Inference
	Bayesian inference
	Maximum likelihood

	Simulation
	Random number generation
	Linear congruential generators
	Shift register generators

	Simulating from univariate distributions via Inversion sampling
	Stochastic processes
	Random walk
	Poisson process

	Markov chains
	Introduction to genetics and genetic terminology
	Summary of above

	Alignment
	Homology
	Pairwise alignment
	Scoring alignments
	Model of non-homologous sequences
	Model of homologous sequences

	Choosing the substitution matrix
	Scoring gaps

	Global alignment: Needleman-Wunsch algorithm
	Elements of an alignment algorithm
	Local Alignment: Smith Waterman algorithm
	Overlap matches

	Pairwise alignment with non-linear gap penalties
	Alignment with affine gap scores
	Linear space alignment

	Multiple sequence alignments (MSA)
	Dynamic programming
	Progressive alignment
	Building trees with distances and UPGMA
	Feng-Doolittle progressive alignment

	Hidden Markov Models
	The Viterbi algorithm for finding the most probable state path
	The forward algorithm and calculating P(x)
	The backward algorithm and calculating P(x)
	The posterior probability of being in state k at time i P(i = k|x)
	What can we do with the posterior estimates?
	Estimating the parameters of an HMM
	Baum-Welch algorithm for estimating parameters of HMM
	Sampling state paths
	HMM model structure
	Duration modeling

	Applications of HMMs in bioinformatics
	Pairwise alignment with HMMs
	Probability that two sequences are related
	Sampling alignments
	Probability that xi and yj are aligned

	Profile HMMs
	Estimating the parameters of a profile HMM
	Finding matches
	Alignment with a known profile HMM
	Alignment from unaligned sequences with HMMs

	Gene finding

	Reconstructing trees
	Defining distances between sequences
	Ultrametric distances
	Additive distances
	Neighbour joining
	Unrooted vs rooted trees
	Complexity of neighbour jointing and UPGMA

	Parsimony
	Weighted parsimony
	Parsimony informative sites

	Finding the maximum parsimony tree
	Exhaustive search
	Branch and bound
	Heuristic search

	Disadvantages of parsimony

	Statistical approaches to modelling evolution
	Likelihood of a given tree
	Markov processes
	Models of sequence mutation
	Jukes-Cantor model
	Kimura model
	F81 and HKY models
	GTR model
	Rate variation across sites

	Estimating the maximum likelihood tree
	Bayesian approach to phylogenetics
	Models for trees: Yule trees and the coalescent
	Yule trees
	The coalescent
	Properties of the coalescent

