
13 Simulation

In a statistical setting there are a number of reasons we may wish to simulate from a
distribution or a stochastic process. We may wish to get a feeling for how the process
behaves or estimate some quantity that we cannot calculate analytically. An example
of the latter case arises in Bayesian statistics, where the aim is to find the posterior
distribution f(✓|x). This can be very di�cult for two main reasons:

• The normalising constant (P (D), above) involves a p�dimensional integral (where
p is the number of parameters of the model, that is, ✓ = (✓1, ✓2, . . . , ✓p)) which is
often impossible to calculate analytically.

• Even if we are able to find f(✓|x), if we want to find the marginal distribution for
some part of ✓ this may again involve a high-dimensional integral.

Both of these reasons boil down to the fact that integration is hard.

To get around this problem, our approach will be to obtain a sample of values, {✓(i)} for
i = 1, . . . , n, from the distribution of interest and use this sample to estimate properties
of the distribution.

For example, the mean of the distribution is E[✓] =
P

✓2⌦ ✓Pr(✓). We can estimate this

from the sample set by E[✓] ⇡ ✓̄ = 1
n

P
n

1 ✓
(i). This is called the sample mean of ✓, and

is indicated by the bar over the variable. The sample mean is an estimator of the mean.
More generally, we estimate the mean of a function of ✓ by E[g(✓)] ⇡ ḡ(✓) = 1

n

P
n

1 g(✓
(i)).

How good are these estimates? Since each sample ✓(i) is a random variable, ḡ is a random
variable. That is, each time we obtain a di↵erent sample of values of ✓, we will get a
di↵erent value for ḡ. Clearly, as n, the size of the sample, increases our estimate will
become more accurate but by how much?

It turns out that under quite general conditions, the main being that the samples, ✓(i)

are independent of each other, ḡ is normally distributed with mean E[g] and variance
var(ḡ) = var(g)/n. When stated formally, this is known as a central limit theorem.

Thus, if we have a method of simulating lots of independent samples, we can quickly get
extremely accurate estimates of the quantities we are interested in.

Note that we can estimate more complex things than simple means using these methods.
For example, we can estimate the shape of distributions by drawing a histogram of the
sampled points.

So our attention turns to how we can generate this random sample. First we consider
how we can generate or simulate randomness at all using (deterministic) computers.

13.1 Random number generation

All simulation relies on a ready supply of random numbers. There are currently no known
methods to generate truly random numbers with a computer without measuring some

57



physical process. There are, however, many fast and e�cient methods for generating
pseudo-random numbers that, for most applications, are completely su�cient. The fact
that these are based on algorithms that are repeatable makes them superior to physically
based rngs for scientific simulation purposes.

We do not go into the mathematical details of pseudo-random number generators here
as most major languages have libraries that implement perfectly adequate algorithms.
It is worth considering briefly what we want in a RNG. The following quality criteria
are taken from L’Ecuyer in the Handbook of Computational Statistics, 2004.

The RNG must:

• have a very long period so that no repetitions of the cycle occur;

• be e�cient in memory and speed;

• repeatable so that simulations can be reproduced;

• portable between implementations;

• have e�cient jump-ahead methods so that a number of virtual streams of random
numbers can be created from a single stream for use in parallel computations; and,

• have good statistical properties approximating the uniform distribution on [0, 1].

It is relatively simple to come up with rngs that satisfy the first of these criteria, yet
the last is where the di�culties occur. The performance of rngs can be tested via the
diehard test suite (or more recently, the dieharder suite). See http://www.phy.duke.

edu/

~

rgb/General/dieharder.php.

13.1.1 Linear congruential generators

The most basic rngs are probably the linear congruential generators that have the form
X

n+1 = (aX
n

+ b) mod m where the constants a, b and m need to be chosen. We divide
the number by m to get it in the range [0, 1], that is, set U

i

= Xi
m

.

These have poor statical properties, however, and should be avoided for simulations.

13.1.2 Shift register generators

All numbers in computers are stored as a group of bits (32 bits or 64 bits). Shift regis-
ter generators work directly with this representation to produce a sequence of random
numbers. Start with a seed U0 = 0.b01b02 . . . b0L (where L = 32 or L = 64). Then
get U

i

= 0.b
i1bi2 . . . biL by b

ij

= f
j

(b(i�1)1, b(i�1)2, . . . , b(i�1)L) where f
j

is some function

f : {0, 1}L ! {0, 1}.
Example: For L = 4, set f1 = b(i�1)3XOR b(i�1)4 and f

j

= b(i�1)(j�1) otherwise. Starting
with 0101 we get the following sequence:

58

http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.phy.duke.edu/~rgb/General/dieharder.php


0101

1010

1101

1110

1111

0111

0011

0001

1000

0100

0010

1001

1100

0110

1011

0101

⇤
An rng that extends this idea is the so-called Mersenne Twister which is the statisticians
rng of choice for simulation. Most languages have an implementation of this algorithm.
See the wikipedia page http://en.wikipedia.org/wiki/Mersenne_twister for more
details.

The Mersenne Twister is implemented in the Colt library for Java (see https://acs.

lbl.gov/software/colt/). It is the default rng in the Python random library.

13.2 Simulating from univariate distributions via Inversion sampling

Simulation from discrete or continuous distributions with cumulative density function
F (X) relies on the following result which tells us that all we need to simulate draws
from an arbitrary univariate distribution is a draw from U(0, 1) and use the inverse of
the cdf:

Result (Inversion method): If U ⇠ U(0, 1), then X = F�1(U) produces a draw from
X where F�1 is the inverse of X.

Thus when the cdf is known and we can find the inverse, sampling from the distribution
is easy, as the following example shows.

Example (simulating an exponential random variable): if X ⇠ Exp(�), then
F (x) =

R
x

�1 f(t)dt =
R
x

�1 �e��tdt = 1� e��x.

It is simple to see (by setting u = 1�e��y and solving for y) that F�1(u) = � log(1�u)/�.

Since 1 � U ⇠ U(0, 1) when U ⇠ U(0, 1), we can use this expression to generate ex-
ponential random variables by generating the uniform random variable u and setting
x = � log(u)/�. ⇤
Note that with discrete random variables, a inverse of F is ambiguously defined (since

59

http://en.wikipedia.org/wiki/Mersenne_twister
https://acs.lbl.gov/software/colt/
https://acs.lbl.gov/software/colt/


0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

cd
f

0.
72

1.273

Figure 1: Sampling an Exp(1) random variable using the inversion method. A uniform
sample u ⇠ U(0, 1) is drawn. Here u = 0.72 shown on the vertical axis. This is mapped,
via the cdf, to x ⇠ Exp(1) to produce x = � log(1�u) = 1.272 shown on the horizontal
axis.

F is a step function). It is possible to extend the definition of an inverse to derive the
following method for simulating discrete random variables.

Inversion sampling from a discrete distribution: If X is discrete with P (X =
x
i

) = p
i

, we generate U ⇠ U(0, 1) and set X = x1 if u < p1 and X = x
i

if
P

i�1
j=1 pj <

u <
P

i

j=1 pj .

Example: Use the inversion method to obtain samples from X ⇠ Binomial(n = 5, p
= 0.3).

Solution: The possible values X can take are (0, 1, 2, 3, 4, 5) with probabilities f(x) =
(0.168, 0.360, 0.309, 0.132, 0.028, 0.002), respectively (from Section 11.5.3). Obtain the
cdf by taking the cumulative sum of these probabilities: F (X) = (0.168, 0.528, 0.837,
0.969, 0.998, 1.000). Now obtain samples from X by sampling u ⇠ U(0, 1) and finding
the index of the smallest value of the cdf which is larger than u. E.g. if u = 0.439,
x = 1 since F (0) = 0.168 < u < F (1) = 0.528, Similarly, if u = 0.972, x = 4 since
F (3) < u < F (4). ⇤

60


	Introduction to stochastic processes and probability
	Primer on Probability
	Axioms of probability
	Conditional probability and independence
	Bayes' Theorem
	Random variables
	Commonly used distributions
	Bernoulli distribution
	Geometric distribution
	Binomial distribution
	Poisson distribution
	Uniform distribution (discrete or continuous)
	Normal distribution
	Exponential distribution
	Gamma distribution

	Entropy

	Inference
	Bayesian inference
	Maximum likelihood

	Simulation
	Random number generation
	Linear congruential generators 
	Shift register generators

	Simulating from univariate distributions via Inversion sampling
	Stochastic processes
	Random walk
	Poisson process



