
12 Inference

Let’s consider how we pose and tackle problems in a statistical framework. Suppose we
have a statistical model for some real process (from biology, physics, sociology, psychol-
ogy etc...). By having a model, we mean that given a set of control parameters, ✓, we
can predict the outcome of the system, D. For example, our model may be that each
element of D is a draw from one of the distributions we described above so the control
parameters ✓ are just the parameter(s) of that distribution. Note that the model of the
process may include our (imperfect or incomplete) method of measuring the outcome.

In an abstract sense, then, we can consider the model as a black box with input vector
✓ (the parameters) and output vector D, the data.

Parameter vector
✓

Model of system
Data
D

The model gives us the forward probability density of the outcome given the parameter,
that is, P (D|✓). This density is the called the likelihood, although, as we see below, we
don’t usually consider it as a density in the usual way.

This model is not deterministic. The data D can be seen as a random sample from the
probability distribution defined by the model (and parameters). Changing the value of
the parameters typically does not change the possible outcomes of the model but it will
change the shape of the probability distribution, making some outcomes more likely,
others less likely.

Example: Suppose we are interested the number of buses stopping at a bus stop over
the course of an hour. We watch for the hour between 8am and 9am every weekday
morning for 2 weeks. We observe the outcomes D = (10, 7, 5, 6, 12, 9, 10, 5, 14, 7). A
sensible model here might be the Poisson distribution where we say that the number
of bus arrivals in an interval is Poisson distributed with parameter �. Our parameter
vector contains just the single parameter ✓ = (�) and our data vector contains the 10
observed outcomes D = (D1, D2, . . . , D10) = (10, 7, 5, 6, 12, 9, 10, 5, 14, 7).

We derive the likelihood as follows.

The probability of observing the data D for a given value of � is P (D|�). Let’s assume
that each observation is independent of others then P (D|�) =
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probability of observing this series of outcomes is just the product of the probabilities
of observing each particular outcome.

The likelihood of a single observation is given by the probability distribution function
for the Poisson since D
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And so the likelihood of observing the full data D is just

P (D|�) =
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⇤
Note that the likelihood is a probability density function for D. But D is typically fixed
in the sense that we make the observations which remain fixed through-out the analysis.
We will be interested in considering the likelihood as a function of the parameters ✓. The
likelihood is not a probability density function for ✓ since, in general

R
✓2⇥ P (D|✓) d✓ 6= 1.

12.1 Bayesian inference

The statistical problem essentially comes down to one of observing the outcome, D and
wanting to recover the parameters ✓.

That is, we want to estimate ✓ given D. We summarise our estimate of ✓ as a probability
distribution, conditional on having observed D: P (✓|D). This is called the posterior

distribution of ✓.

From Bayes’ theorem, we can express the posterior in terms of the likelihood:

P (✓|D) =
P (D|✓)P (✓)

P (D)
,

where P (D|✓) is the likelihood, P (✓) is the prior distribution of ✓ and P (D) is a
normalisation constant.

The prior p(✓) summarises what we know about a parameter before making any obser-
vations.

The posterior, p(✓|D) summarises what we know about ✓ after observing the data.

The likelihood tells us about the likeliness of the data under the model for any value
of ✓. Recall that we consider the likelihood a function of ✓ rather than a probability
density for D; to emphasise this fact, people often write it explicitly as a function of ✓:
L(✓) = P (D|✓).
Bayes’ theorem tells us how we update our beliefs given new data. Our updated beliefs
about ✓ are encapsulated in the posterior, while are initial beliefs are encapsulated in the
prior. Bayes’ theorem simply tells us that that we obtain the posterior by multiplying the
prior by the likelihood (and dividing by P (D) which we can think of as a normalisation
constant).

Note that we need the normalisation constant as the posterior is a probability distri-
bution for ✓, so its density must integrate to 1, i.e.,

R
✓2⇥ f(D|✓) d✓ = 1. Thus the

normalisation constant is P (D) =
R
✓2⇥ P (D|✓)P (✓) d✓. Typically this integral is hard

to calculate so we try to find that will avoid having to calculate it.

Example: In the example above, we found an expression for the likelihood. To find
an expression for the posterior, we need to decide on a prior distribution. Suppose we
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had looked up general info about bus stops in the city and found that the busiest stop
had an average of 30 buses an hour while the quietest had an average of less than 1 bus
per hour. We use this prior information to say that any rate parameter � producing an
average of between 0 (� = 0) and 30 (� = 30) buses an hour is equally likely. This leads
us to the prior � ⇠ U(0, 30). The density of this prior is f(�) = 1/30 for 0  �  30.

To get the posterior density, we use the formula above:

f(�|D) =
f(D|�)f(�)

P (D)
=
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The normalisation constant P (D) is the integral of the numerator over all possible values
of �:
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⇤
While it is possible to calculate this particular integral analytically, for most posterior
distributions analytical integration is either very di�cult or impossible. We’ll investigate
methods for avoiding calculating di�cult integrals like this in later sections.

12.2 Maximum likelihood

It is often di�cult or inconvenient to deal with the posterior distribution (when the prior
is hard to specify or the normalisation constant is impossible to calculate). In these cases,
we can still use our probabilistic model by concentrating solely on the likelihood function.
The aim here is typically to find the parameters that maximise the likelihood function.
That is, those parameters under which the observed data is most likely. We call this
parameter estimate the maximum likelihood estimate and write it as

✓̂ = argmax
✓

f(D|✓) = argmax
✓

L(✓;D)

This function can be maximise using standard tools from calculus (taking the derivative
and setting it to zero – it is often easier to work with the log of the likelihood function
as they both share a maximum) or using numerical techniques such as hill-climbing.

Many methods in statistics are based on maximum likelihood including regression,
�2�tests, t�tests, ANOVA and so on.

Example: In the bus example above, we could find the maximum likelihood estimator
for � by di↵erentiating the log-likelihood, log(L(�;D)) with respect to �, setting the
result to zero and solving. Note that we often work with the log-likelihood rather than
the likelihood for a couple of reasons: it is often easier algebraically and it helps avoid
numerical under-flow when the likelihood itself is very small.
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