
11.5 Commonly used distributions

In this course, we’ll primarily be discussing bioinformatics where some commonly used

discrete probability distribution functions are: Bernoulli, geometric, binomial, uniform

and Poisson. Commonly used continuous distributions are uniform, normal (Gaussian),

exponential, and gamma. Those are briefly described below. For more thorough de-

scriptions, refer to any decent statistics text or, more simply, the relevant Wikipedia

entries.

11.5.1 Bernoulli distribution

A random variable X with a Bernoulli distribution takes values 0 and 1. It takes the

value 1 on a ‘success’ which occurs with probability p where 0  p  1. It takes value

0 on a failure with probability q = 1 � p. Thus it has the single parameter p. If X is

Bernoulli, E[X] = q ·0+p ·1 = p and Var(X) = E[X2
]�E[X]

2
= q ·02+p ·12�p2 = pq.

11.5.2 Geometric distribution

X has a geometric distribution when it is the number of Bernoulli trials that fail before

the first success. It therefore takes values in {0, 1, 2, 3, . . .}. If the Bernoulli trials have

probability p of success, the pdf for X is P (X = x) = (1� p)xp. If X is geometric,

E[X] =

q

p
and Var(X) =

q

p2
.

Note that the Geometric distribution can be defined instead as the total number of trials

required to get a single success. This version of the geometric can only take values in

{1, 2, 3, . . .}. The pdf, mean and variance all need to be adjusted accordingly.

11.5.3 Binomial distribution

X has a binomial distribution when it represents the number of successes in n Bernoulli

trials. There are thus two parameters required to describe a binomial random variable:

n, the number of Bernoulli trials undertaken, and p, the probability of success in the

Bernoulli trials. The pdf for X is

f(x) = P (X = x) =

✓
n

x

◆
px(1� p)n�x

for x = 0, 1, 2, . . . , n.

where

�
n

x

�
=

n!
x!(n�x)! . For a binomial variable X,

E[X] = np and V ar[X] = np(1� p) = npq.

We write X ⇠ Bin(n, p) when X has a binomial distribution with parameters n and p.
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11.5.4 Poisson distribution

The Poisson distribution is used to model the number of rare events that occur in a

period of time. The events are considered to occur independently of each other. The

distribution has a single parameter, �, and probability density function

f(x) = exp(��)
�x

x!
for x = 0, 1, 2, 3, . . . .

If X is Poisson,

E[X] = � and V ar[X] = �.

We write X ⇠ Poiss(�) when X has a Poisson distribution with parameter �.

11.5.5 Uniform distribution (discrete or continuous)

Under the uniform distribution, all possible values are equally likely. So if X is discrete

and takes n possible values, P (X = x
i

) = 1/n for all x
i

.

If X is continuous and uniform over the interval [a, b], the density function is f(x) = 1
b�a

.

In this case, write X ⇠ U([a, b]).

11.5.6 Normal distribution

The Normal, or Gaussian, distribution, with mean µ and variance �2
, (µ 2 R;� > 0)

has density function

f(x) =
1

�
p
2⇡

exp

⇢
� 1

2�2
(x� µ)2

�

We write X ⇠ N(µ,�2
).

The normal distribution is a widely used distribution in statistical modelling for a number

of reasons. A primary reason is that it arises as a consequence of the central limit theorem

which says that (under a few weak assumptions) the sum of a set of identical random

variables is well approximated by a normal distribution. Thus when random e↵ects all

add together, they often result in a normal distribution. Measurement error terms are

typically modelled as normally distributed.

11.5.7 Exponential distribution

The Exponential distribution describes the time between rare events so always takes

non-negative values. It has a single parameter, � known as the rate and has density

function

f(x) = �e��x,

where x � 0. If X is exponentially distributed,

E[X] =

1

�
and Var(X) =

1

�2
.

Write X ⇠ Exp(�).

51



11.5.8 Gamma distribution

The Gamma distribution arises as the sum of a number of exponentials. It has two

parameters, k and ✓, called the shape and scale, respectively. These parameters can be

used to specify the mean and variance of the distribution.

f(x) =
1

✓k�(k)
xk�1

exp(�x/✓) for x > 0,

where �(k) =
R1
0 tk�1e�t dt is the gamma function (the extension of the factorial func-

tion, k!, to all real numbers). The mean and variance of a gamma distributed random

variable X is

E[X] = k✓ and Var(X) = k✓2.

Write X ⇠ Gamma(k, ✓).

Note that the gamma distribution has di↵erent parametrisations which result in di↵erent

looking (but mathematically equivalent) expressions for the density, mean and variance

— be sure to check which parametrisation is being used.
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