
8.7 Examples

See associated slides for population structure in Europe (Novembre et al, Nature 2008,
http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html )and
Eigenfaces.

The “eigenfaces” example in the slides was developed by Matthew Turk and Alex Pent-
land (Journal of Cognitive Neuroscience, 1991, v3 (1)). The following quote is from their
abstract:

We have developed a near-real-time computer system that can locate and
track a subject’s head, and then recognize the person by comparing charac-
teristics of the face to those of known individuals. ... The system functions
by projecting face images onto a feature space that spans the significant
variations among known face images. The significant features are known as
”eigenfaces,” because they are the eigenvectors (principal components) of the
set of faces; they do not necessarily correspond to features such as eyes, ears,
and noses. The projection operation characterizes an individual face by a
weighted sum of the eigenface features, and so to recognize a particular face
it is necessary only to compare these weights to those of known individuals.
Some particular advantages of our approach are that it provides for the abil-
ity to learn and later recognize new faces in an unsupervised manner, and
that it is easy to implement using a neural network architecture.

8.8 What is connection between PCA and SVD?

Given A such that the rows of A have zero mean, define Y = 1p
n�1

AT (which has

columns with zero mean). Then YTY = ⌃, the covariance of A. We have seen that the
principal components of A are the eigenvectors of ⌃.

Now, if we calculate the SVD of Y to get Y = UDVT , the columns of V are the
eigenvectors of YTY = ⌃. Therefore, the columns of V are the principal components
of A.

8.9 Problems with SVD and PCA

As we have seen, SVD and PCA are powerful analysis tools and SVD is a very stable
procedure. They do not, however, come free of cost.

The time complexity of SVD is O(m2n + n3) to calculate all of U,V and D (where,
typically, m � n) while faster algorithms are available when some elements of the SVD
are not required.

However, the matrices U and V are not at all sparse, where we say a matrix is sparse
when it mainly consists of zeros. Spareness is a commonly assumed property in large
systems as it reflects the observation that most e↵ects are local and do not influence all

34



parameters in the system — a large world with small neighbourhoods. Sparse matrices
are typically computationally e�cient to work with and store.

A second potential set-back is that SVD and PCA only work with data that can be (co-
herently) expressed as a two dimensional array (that is, a matrix). When data naturally
has 3 or 4 dimensions arrays (tensors), as is common in many engineering applications,
there is no perfect analogue to SVD or PCA or even eigenvectors.

Finally, when using PCA for data analysis, you should be aware of the strong assumptions
being made. In particular, dependencies in the data are assumed to be linear, which
may not be the case. PCA and SVD will always give an answer but it is up to the user
to interpret whether or not it is a valid answer to any question they are interested in.

9 Least squares
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Figure 5: Left: Relationship between cognitive test scores for 3-4 year old children
and mother’s IQ score. Right: The same data with a least squares best fit line
added. Discussed in Gelman and Hill, 2007, Cambridge University Press, data at
http://www.stat.columbia.edu/ gelman/arm/examples/child.iq/kidiq.dta

You are probably familiar with the basic idea of least squares: we have a set of mea-
surements and we want to fit a model to them. But no su�ciently simple model exactly
fits all of the points at the same time. So how choose the model that is most satisfac-
tory? The answer often given is that we chose the model that satisfies the least squares

criterion: that is, the model for which the sum of the squares of di↵erences between the
predictions from the model and the actual observations is minimised.

For example, in Figure 5, we might want to fit a linear model to the relationship between
a mother’s IQ score and her young child’s score in a cognitive test. This should be familiar
to you as the linear regression problem in statistics.

This problem arises when we have an overdetermined linear system: recall that Au = b
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is overdetermined when A is m⇥ n matrix with m > n:
2
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In this case, A�1 does not exist and there is no u that solves this problem. (We ignore
the highly unusual cases where a solution does exist.)

The goal, then, is to find the best solution u⇤ to the problem.

Example 1: Fitting m = 4 measurements by a small number n = 2 of parameters (e.g.
linear regression in statistics)

Want to find the straight line b
x

= u
1

+ u
2

x where we have observed the points b
x

at x.
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The above set of equations clearly has no solution as vector b is not a linear combination
of the two column vectors from A:

2
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For example, The line b = 1+8x through the first two points is almost certainly not the
best line:
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x

0

b0 = 1

1

b1 = 9

2 3

b3 = 9

4

b4 = 21

5

e3 = �16

But why is this not the best line: look at the error or residual , e = b �Au. For the
two points the line does not pass through the error is e

x

= b
x

� (1+8x) is large: e
3

= 16
and e

4

= 12. The Total square error, E(u) = 0 + 0 + 256 + 144 = 400 .

Notice that the total square error is given by.

E(u) = eTe ⌘k e k2= (b�Au)T(b�Au)

The Least Squares method to find the chooses a solution u⇤ that minimises E(u).

How do we find u⇤? To find the minimum of E(u), we can di↵erentiate with respect to
u, set to 0 and attempt to solve for u:

E(u) = (b�Au)T(b�Au)

= bTb� 2uTATb+ uTATAu

Di↵erentiating and setting to 0:
@E(u)

@u

= 0

=) �2ATb+ 2ATAu = 0

=) ATAu = ATb

This equation, ATAu = ATb is called the normal equation.

The least squares estimate, u⇤, is the solution to the normal equation.

Notice that ATA is square and symmetric. In some cases it may be possible to directly
find the inverse (in particular, when A has independent columns, then ATA is positive
definite and ATA is invertible in which case u⇤ = (ATA)�1ATb). In other cases, this
approach may be highly unstable, so stable numerical techniques need to be employed.

9.1 Understanding the Least Squares solution

This subsection is not examined. The main point of this section is to add some geometric
and algebraic understanding to our discussion. You are not expected to understand all
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the detail in this section, but do familiarise yourself with the concept and definition of
the projection matrix P defined below.

The equation Au = b can be seen as attempting to represent b as a linear combination
of the n columns of A. This is impossible, since the n columns of A describe, at most,
an n-dimensional plane inside the much larger m dimensional space (recall that n < m).
Thus b is unlikely to fall on that plane. The plane is called the column space of A.

column space

column a
1

column a
n

e = b�Au⇤

k e k2=k b k2 � k p k2

p = Au⇤

The best Au⇤ is the projection p

The best solution, Au⇤, is the nearest point to b on that plane. Call this point p = Au⇤.

Now, from a geometric argument, you can see that the error vector e is orthogonal
(perpendicular) to this plane. Thus AT e = 0.

Notice that 0 = ATe = AT (b�Au⇤) = ATb�ATAu⇤ =) ATb = ATAu⇤. This is
a geometric derivation of the normal equation that we earlier saw derived from calculus.

The point p (= Au⇤) is the projection of b onto the column space of A:

p = Au⇤ =


A

⇣
ATA

⌘�1

AT

�

| {z }
projection matrix P

b = Pb,

where we define the Projection matrix, P = A
�
ATA

��1

AT. P is symmetric and of size
m⇥m but the rank of P is only n (as all the factors of P in the definition above have
rank n).

9.2 Computing the Least Squares solution, u⇤

We consider three methods for computing the least squares solution to a linear sys-
tem. They are Gaussian elimination, QR Decomposition (aka Orthogonalisation) and
computation of the pseudo-inverse via SVD.

9.3 Computing u⇤ via Gaussian elimination

Given the normal equation ATAu = ATb, we may be tempted to find the solution by
Gaussian elimination, where we reduce the the matrix ATA to upper triangular form
using elementary row operations.

This solution can work but is highly unstable. To see why it is unstable, consider the
condition number of the matrix ATA. It can be shown that the condition number of
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ATA is the square of the condition number of A (if we take �
min

to be the smallest
non-zero singular value in the definition of condition number). So even if A has only
moderately widely spread singular values, ATA can have a very large condition number
and solution by row reduction can be very unstable.
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