8.6 Principal Components Analysis (PCA)

PCA is a common technique for identifying patterns in high-dimensional data. It trans-
forms the original correlated measurements into uncorrelated measurements. One of the
main uses of PCA is as a dimension reduction tool, in which only the directions in which
the data varies the most are considered. This can lead to enormous simplifications of
the data and provide insights for a wide variety of data. PCA is alternatively known
as the Karhunen-Loéve transform (KLT'), the Hotelling transform or proper orthogonal
decomposition (POD)

These new coordinate axes (along which the data varies the most) are are known as
principal components and are, by construction, orthogonal.

A useful visualisation tool to aid your understanding of PCA is at http://setosa.io/ev/principal-
component-analysis/.

Suppose we have a m X n matrix of measurement data A. For example, n trials where
m properties were measured in each trial. Then, if a; are the measurements from the
ith trial,
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For example, A could be n = 100 observations of the position of an object measured in
m = 3 dimensions.

In the following, assume that the rows of A have been centred, so that the mean of each
row is 0 (each rows of A corresponds to a dimension in the original data). If this is not
already the case, it can be achieved by subtracting the mean of each row of A from each
element of that row. That is, set element

n
aij = aij — y_aij/n
i=1

to centre the rows of A. This is a critical assumption and allows us to concentrate on
the variance.

Each observation A is just the m-vector a;. The idea of PCA is to chose a new basis
uy,...,u, to express the data points (the a;’s) so that the variance of the measurements
is greatest in the direction of uy, the next greatest variance is in the direction of uy and
so on, down to ug. Ideally, k < m.

Define the covariance matriz of A by

1
n—1

>

1
AAT ~ ZAAT.
n
Then X is an m X m matrix where the diagonal terms of 3 are the variance of the ith

dimension of the measurement, while the off-diagonal terms of 3 are the covariances
between different measurements.
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It turns out that the best basis to choose are the k eigenvectors of 3 corresponding its
k largest eigenvalues. These are known as the principal components of A. Call them
ui,...,u; and form the matrix

Uy, =[ug,...,ug

From results we have seen earlier about symmetric matrices, this an orthogonal matrix.
We include the subscript k as we may decide to truncate this matrix by including only the
eigenvectors corresponding to the largest eigenvalues. That is, if 3 has K eigenvectors
and associated eigenvalues, and the largest k eigenvalues are substantially larger than
the remaining K — k, it is reasonable to form Uy containing only the most significant k
eigenvectors.

We can now represent the original measurements, A, in this this new co-ordinate system.
The amount of measurement vector a; in direction u; is given by u;—ai: this is the jth
coordinate of a; in this new coordinate system. So if we consider just the two dimension
space defined by the top two principal components, a; has coordinates

T T
T u u; a;
=[] - 3]
We usually consider this space independently of how it relates to the original m-dimensional

space but we can consider it as embedded in the original space. To find the coordinates
of a point in this embedded space, define the projection matrix, P by

-
uy

L
U,

Pk:UkU;Cr:[ul u ... uk] .
T
u
so that each measurement vector a; is projected via Pja;.
One interpretation of PCA is that the projection Py is chosen to minimise the projection
error 377, [laj — Pray|?
Example: Find the principal components of the data matrix A where
-4 3 -5 18 6 -5
A= 2 6 -2 10 1 -1
7T 11 3 6 9 3

Find the amount of the first principal component in the first measurement vector of A
(that is, the first column), and calculate the projection matrix for projecting A onto the
first two principal components.

Solution: First, centre the rows of A so that each row has mean zero. Call this centred
matrix B.

—6.1667 0.8333 —7.1667 15.8333  3.8333 —7.1667
B=| -0.6667 3.3333 —4.6667 7.3333 —1.6667 —3.6667
0.5 4.5 —-3.5 —0.5 2.5 —-3.5
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Now form the covariance matrix for the centred data matrix, 3 = %BBT:

406.8333 176.3333 52.5
Y =—-| 176.3333 103.3333 36.0
52.5000  36.0000 51.5

This matrix has eigenvalues 99.31, 9.46 and 3.561 corresponding to eigenvectors

0.8987  0.2829  0.3352
[ug,up,us] = | 0.4158 —0.3062 —0.8564 | = U.
0.1396 —0.9090  0.3928

These eigenvectors are the principal components of A (and of B).

The amount of the first principal component in a; is

—4
uj a; = [0.8987,0.4158,0.1396] | 2 | = —1.756.
7

To project A into the coordinate system defined by the first two principal components,
form the projection matrix,

0.8987  0.2829 0.8877 0.2870
P, = UyUj = | 0.4158 —0.3062 0.8987 04158 = 0.1396 0.2870 0.2666

0.1396 —0.9090 0.2829  —0.3062 —0.9090 —0.1316 0.3368

8.7 Examples

See associated slides for population structure in Europe and Eigenfaces.

The “eigenfaces” example in the slides was developed by Matthew Turk and Alex Pent-
land (Journal of Cognitive Neuroscience, 1991, v3 (1)). The following quote is from their
abstract:

We have developed a near-real-time computer system that can locate and
track a subject’s head, and then recognize the person by comparing charac-
teristics of the face to those of known individuals. ... The system functions
by projecting face images onto a feature space that spans the significant
variations among known face images. The significant features are known as
"eigenfaces,” because they are the eigenvectors (principal components) of the
set of faces; they do not necessarily correspond to features such as eyes, ears,
and noses. The projection operation characterizes an individual face by a
weighted sum of the eigenface features, and so to recognize a particular face
it is necessary only to compare these weights to those of known individuals.
Some particular advantages of our approach are that it provides for the abil-
ity to learn and later recognize new faces in an unsupervised manner, and
that it is easy to implement using a neural network architecture.
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