
8.2 How does this all work?2

Recall A is m ⇥ n so that ATA is n ⇥ n and AAT is m ⇥ m. Both of these product
matrices are square and symmetric.

So, by the result we saw earlier, ATA has n real eigenvalues and a set of n orthonormal
eigenvectors (similarly for AAT which has m of them).

Let v
i

be the eigenvectors of AAT and �
i

be the corresponding eigenvectors and order
them so that �

1

� �
2

� . . . � �
n

� 0. (It can be shown that all eigenvales here are � 0.)

Similarly, let u
i

be the eigenvectors of ATA and µ
i

be the corresponding eigenvectors
and order them so that µ

1

� µ
2

� . . . � µ
m

� 0.

It turns out that the non-zero eigenvalues of AAT are exactly the same as the non-zero
eigenvalues of ATA. Suppose there are r such non-zero eigenvalues, so that �

r+1

=
. . . = �

n

= 0 and µ
r+1

= . . . = µ
m

= 0.

r is called the rank of A (and of AT ). Clearly, r  m and r  n.

Now, for k = 1, . . . , r, it can be shown that we have

Av
k

= �
k

u
k

and ATu
k

= �
k

v
k

where �
k

=
p
�
k

=
p
µ
k

. And, also that, for k > r,

Av
k

= 0 and ATu
k

= 0.

The equations Av
k

= �
k

u
k

for k  r together with Av
k

= 0 for k > r tell us how A acts
on the orthonormal set of vectors {v

k

}. Since this set is a basis for Rn, the equations
give a complete description of the action of A, so that we can write

A =
rX

k=1

�
k

u
k

vT

k

. (5)

A similar argument shows that

AT =
rX

k=1

�
k

v
k

uT

k

.

The orthonormal vectors {v
k

} are known as the right singular vectors, the vectors {u
k

}
are known as the left singular vectors, and the scalars {�

k

} are called the singular values
of the matrix A.

The singular value decomposition allows us to understand the action of A on a vector
x as

Ax =
rX

k=1

u
k

�
k

(vT

k

x).

which can be interpreted as having three stages:

2
This section is taken, and condensed, from notes written by Sze Tan for Physics 707: Inverse

Problems.
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1. It resolves the input vector along each of the right singular vectors v
k

, the compo-
nent of the input vector along the kth singular vector being given by vT

k

x,

2. The amount along the kth direction is multiplied by the singular value �
k

,

3. The product tells us how much of the kth left singular vector u
k

is present in the
product Ax.

This is illustrated in Figure 4.
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Figure 4: E↵ect of a rectangular matrix A of size m⇥ n on a vector x. Only two of the
orthogonal eigenvectors are shown.

8.3 Structure of SVD

In the overdetermined case, in which m > n, so that we have more equations than
unknowns, we have the following structure:

A = U D VT

In the underdetermined case, in which m < n, so that we have fewer equations than
unknowns, we have the following structure:

A = U D VT

Note that, in the overdetermined case, we truncate U and D since there are at most
r  n < m non-zero singular values of A we can omit the u

i

that contribute nothing to
matrix product.

The matrix V is orthonormal, so VVT = VTV = I
n

. U is orthonormal when m � n,
but if m < n, the singular values �

j

= 0 for j = m + 1, . . . , n and the corresponding
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columns of U are also 0 so that UUT = diag(1, . . . , 1, 0, . . . , 0) where only the first m
elements of the diagonal are 1 and the elements from m+ 1 to n are zero.

Note that the SVD of matrix A is only unique up to permutations of the columns/rows.
For this reason, we insist that the singular values and corresponding singular vectors
are arranged so that the singular values are in descending order �

1

� �
2

� . . .. Even
then, some of the �

i

’s may have the same value so columns of U and V could be
permuted. Aside from these possible permuations, the representation is unique. Be
aware when calculating the SVD with various software that the you may need to enforce
this canonical representation.

8.4 Condition number of a matrix

The concept of a condition number was introduced in Section 2. This concept can
be applied to a matrices and is useful, for example, when considering solutions to the
equation Ax = b. Solutions to this equation will change greatly with small changes in
b when A has a large condition number, while the small changes in b will lead to only
small changes in the solution when the matrix has a small condition number. We can
define the condition number of a matrix as the maximum of the ratio of the relative error
in x divided by the relative error in b, where the maximum is taken over all possible x
and b.

To give a full description of how to derive the condition number of A, we would have
to introduce matrix norms which we do not have time to do here. Instead, we simply
present the result here that the condition number of A can be defined as the ratio of
the largest to the smallest non-zero singular values:

cond(A) =
�
max

�
min

.

If the smallest singular value of A is 0, A is singular (has no inverse) but the condition
number of A is still defined.

The condition number of A is considered to be large, and the matrix is ill-conditioned,
if roughly log(cond(A)) � k where k is the number of digits of precision in the matrix
entries.

Example: Find the condition number of the matrix A =


2 �3
1 �1

�

Solution: Using a matrix algebra package, find the singular values of A to be 3.864 and
0.259, so cond(A) = 3.864

0.259

⇡ 14.9. ⇤

Example: The singular values of the matrixA =


1.2969 0.8648
0.2161 0.1441

�
are approximately

1.58 and 6.33⇥10�9 so the condition number is about 2.5⇥108. This very large condition
number means that A is an ill-conditioned matrix.

Ill-conditioning means that standard approaches to solving linear systems can be very

unstable. For example, consider the linear system Ax = b where b =


0.8642
0.1140

�
. This
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has the exact solution x =


2

�2

�
.

But standard matrix software (linsolve in Matlab), gives the solution as


2.59

�3.89

�
⇥

106 which is radically wrong!

It also means that if some number in the system is measured slightly di↵erently, the
results we get can change enormously. For example, if the measurement vector b is

just slightly di↵erent, say b =


0.86419999
0.11400001

�
, then the exact solution is now close to

x =


0.9911

�0.4870

�
which represents an enormous change in the solution relative to the

small change in the original system. ⇤

8.5 Applications of SVD

We’ll see in a later section on pseudo-inverses how the SVD can be used to solve the
linear system Ax = b.

8.5.1 Image compression

See slides and assignment 1.

8.5.2 Gene expression

Abstract from relevant paper: We describe the use of singular value decomposition in
transforming genome-wide expression data from genes ⇥ arrays space to reduced diago-
nalized eigengenes ⇥ eigenarrays space, where the eigengenes (or eigenarrays) are unique
orthonormal superpositions of the genes (or arrays). Normalizing the data by filtering
out the eigengenes (and eigenarrays) that are inferred to represent noise or experimen-
tal artifacts enables meaningful comparison of the expression of di↵erent genes across
di↵erent arrays in di↵erent experiments. Sorting the data according to the eigengenes
and eigenarrays gives a global picture of the dynamics of gene expression, in which in-
dividual genes and arrays appear to be classified into groups of similar regulation and
function, or similar cellular state and biological phenotype, respectively. After normal-
ization and sorting, the significant eigengenes and eigenarrays can be associated with
observed genome-wide e↵ects of regulators, or with measured samples, in which these
regulators are overactive or underactive, respectively.
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