
5.2 Review of eigenvectors and eigenvalues

• � is an eigenvalue of A if determinant |A� �I| = 0

• This determinant is a polynomial in � of degree n: so it has n roots �1,�2, . . . ,�n

• Every symmetric matrix A has a full set (basis) of n orthogonal unit eigenvectors
e1, e2, . . . , en

• No algebraic formula for the polynomial roots for n > 4

– Thus, the eigenvalue problem needs own special algorithms

– Solving the eigenvalue problem is harder than solving Ax = b

• Determinant |A| =
Q

n

i=1 �i

= �1�2 · · ·�n

(the product of eigenvalues)

• The trace of a matrix is the sum of the diagonal elements. That is,
trace(A) =

P
n

i=1 aii = a11 + a22 + . . .+ a
nn

.

• It turns out that trace(A) =
P

n

i=1 �i

= �1+�2+ . . .+�
n

(the sum of eigenvalues)

• Ak = A · · ·A| {z }
k times

has the same eigenvectors as A: e.g. for A2

Ae = �e ) AAe = �Ae = �2e

• Eigenvalues of Ak are �k

1, . . . ,�
k

n

• Eigenvalues of A�1 are 1
�1
, . . . , 1

�n

Example: Find the eigenvalues and eigenvectors of A =


2 �1

�1 2

�

Solution: First, find the eigenvalues of A by solving

|A� �I| =
����
2� � �1

�1 2� �

���� = �2 � 4�+ 3 = (�� 1)(�� 3) = 0.

So the eigenvalues are �1 = 1 and �2 = 3

The eigenvector associated with �1 = 1 is e1 and satisfies Ae1 = �1e1. Putting e1 =
x1
y1

�
we need to solve


2 �1

�1 2

� 
x1
y1

�
=


x1
y1

�
.
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The second row gives �x1 + 2y1 = y1, so y1 = x1. So fix x1 = 1 and e1 = c


1
1

�
for

any c 6= 0. If we choose c so that e1 is normalised, e1 = 1p
2


1
1

�
. A similar argument

shows e2 =
1p
2


1

�1

�
.

Before leaving this example, it is worth looking at some of the properties of the eigen-
values of A:

• Determinant det A ⌘ |A| = 4� 1 = 3 () �1 · �2 ⌘ 1 · 3 = 3

• trace(A) = 2 + 2 = 4 () �1 + �2 ⌘ 1 + 3 = 4

• Inverse matrix A�1 = 1
3


2 1
1 2

�
: eigenvalues �1 =

1
3 and �2 = 1

• Matrix A2 =


5 �4

�4 5

�
: eigenvalues �1 = 1 and �2 = 9

• Matrix A3 =


14 �13

�13 14

�
: eigenvalues �1 = 1 and �2 = 27

⇤
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7.1 LU decomposition via Gaussian elimination

7.1.1 Gaussian elimination to solve systems linear equations (review)

You should be familiar with the process of Gaussian elimination (or row reduction) in
which the equation Ax = b (where A is arbitrary) in transformed into the equivalent
equation Cx = d where C is triangular, making the equation easy to solve. We review
the process here.

It is easy to show that multiplying both sides of Ax = b from the left by any nonsingular
matrix M does not a↵ect the solution. That is MAx = Mb has the same solution as
Ax = b, since

MAx = Mb ) x = (MA)�1Mb = A�1M�1Mb = A�1b.

We know from the above result that we can multiple both sides by a series of elemen-

tary matrices which perform various row operations on A: the three types of operation
are row swapping, row multiplication and adding some multiple of one row to another
row. Repeated application of these three operations (that is, repeated multiplication
by elementary matrices) to both sides of the equation transforms it to Cx = d where
C = M1 . . .M

k

A is in upper triangular form (so the only non-zero elements of C are
on or above the diagonal) and d = M1 . . .M

k

b.

Example: Use Gaussian elimination to solve the system of equations Ax = b where

A =

2

664

3 2 1 2
6 6 3 5
3 0 3 5
9 2 7 8

3

775 and b =

2

664

4
5
5

10

3

775

Solution:
Az }| {2

664

3 2 1 2
6 6 3 5
3 0 3 5
9 2 7 8

3

775

xz }| {2

664

x1
x2
x3
x4

3

775 =

bz }| {2

664

4
5
5
10

3

775

)

2

664

1 0 0 0
�2 1 0 0
�1 0 1 0
�3 0 0 1

3

775

2

664

3 2 1 2
6 6 3 5
3 0 3 5
9 2 7 8

3

775

| {z }
Eliminating the first column: M1A

2

664

x1
x2
x3
x4

3

775

| {z }
x

=

2

664

1 0 0 0
�2 1 0 0
�1 0 1 0
�3 0 0 1

3

775

2

664

4
5
5

10

3

775

| {z }
M1b
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)

2

664

3 2 1 2
0 2 1 1
0 �2 2 3
0 �4 4 2

3

775

2

664

x1
x2
x3
x4

3

775 =

2

664

4
�3
1

�2

3

775

)

2

664

1 0 0 0
0 1 0 0
0 1 1 0
0 2 0 1

3

775

2

664

3 2 1 2
0 2 1 1
0 �2 2 3
0 �4 4 2

3

775

2

664

x1
x2
x3
x4

3

775

| {z }
M2M1Ax

=

2

664

1 0 0 0
0 1 0 0
0 1 1 0
0 2 0 1

3

775

2

664

4
�3
1

�2

3

775

| {z }
M2M1b

)

2

664

3 2 1 2
0 2 1 1
0 0 3 4
0 0 6 4

3

775

2

664

x1
x2
x3
x4

3

775 =

2

664

4
�3
�2
�8

3

775

)

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 �2 1

3

775

2

664

3 2 1 2
0 2 1 1
0 0 3 4
0 0 6 4

3

775

2

664

x1
x2
x3
x4

3

775

| {z }
M3M2M1Ax

=

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 �2 1

3

775

2

664

4
�3
�2
�8

3

775

| {z }
M3M2M1b

)

2

664

3 2 1 2
0 2 1 1
0 0 3 4
0 0 0 �4

3

775

2

664

x1
x2
x3
x4

3

775 =

2

664

4
�3
�2
�4

3

775

It is easy to see that the solution to this row reduced matrix equation is

x4 = �4
�4 = 1

x3 = 1
3 (�2� 4 · 1) = �2

x2 = 1
2 (�3� 1 · (�2)� 1 · 1) = �1

x1 = 1
3 (4� 2 · (�1)� 1 · (�2)� 2 · 1) = 2

⇤

7.1.2 Gaussian elimination as LU decomposition

It turns out that Gaussian elimination can be viewed a LU decomposition in which a
matrixA is written as the product of a lower triangular matrix L and an upper triangular
matrix U so that A = LU. Recall that the Gaussian elimination process starts with
an arbitrary square matrix A, multiplies it by a series of elementary vectors, M1 . . .M

k

to get U = M1 . . .M
k

A where U is upper triangular (we called it C in the earlier
discussion).
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Now (check that you understand the following statements), each of the elementary matri-
ces is lower triangular (so long as there are no row swapping operations) and the inverse
of lower triangular matrices are lower triangular too, so each of M�1

i

, for i = 1, . . . , k is
lower triangular. Finally, the product of lower triangular matrices is also lower triangular
so

U = M1 . . .M
k

A =) LU = A,

where L = (M1 . . .M
k

)�1 = M�1
k

. . .M�1
1 . If row permutations (row swaps) are needed

in the Gaussian elimination process, we can’t find an LU decomposition for A but can
find an LU decomposition for the permuted matrix PA, where P describes the necessary
permutations. Obviously, the permuted system has the same solution as the unpermuted
system.

The computational complexity of solving a system of n equations in n unknown using
Gaussian elimination is O(n3). It is typically a stable algorithm, though potential for
instability arises when a leading non-zero entry is very small (as we divide through by
this entry). Reordering of the rows before the start of the row reduction process so that
the largest leading non-zero elements are selected first can avoid this cause of instability.
This technique is known as pivoting.

We won’t look further at LU decompositions but will spend considerable time looking
first at singular value decomposition and its uses and, later, when we consider the Least
Squares framework, QR decompositions and its applications.
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