
5.3 Review of systems of linear equations

A linear equation in n unknowns x1, . . . , xn is of the form a1x1 + . . . a

n

x

n

= b. Given m

such equations, we can write the ith equation as a
i1x1 + . . . a

in

x

n

= b

i

. We will seek to
solve these systems of linear equations.

Example a system of 3 equations in 3 unknowns and its solution is

8
<

:

4x1 + x2 + 2x3 = 24
2x1 � x2 � 2x3 = �6
�x1 + 2x2 � x3 = �4

=)

8
<

:

x1 = 3
x2 = 2
x3 = 5

⇤
These systems can be represented as a matrix equation Ax = b where A is the m ⇥ n

matrix of coe�cients, a
ij

, x =

2

64
x1
...
x

n

3

75 is the n-dimensional column vector of unknowns

and b is a vector of dimension m.

Example cont. In the example above, A =

2

4
4 1 2
2 �1 �2

�1 2 �1

3

5 and b =

2

4
24
�6
�4

3

5 ⇤

We’ll initially look at systems of n equations and n unknowns. Systems with m < n

are known as under-determined as there are less equations than unknowns while systems
with m > n are over-determined with more equations than there are unknowns.

When A is non-singular (so A

�1 exists), the system has a unique solution given by
x = A�1b.

Recall that A is nonsingular if and only if:
(i) inverse matrix A�1 exists; or
(ii) det(A) 6= 0; or
(iii) rank(A) = m, or
(iv) Ax 6= 0 for any vector x 6= 0, or
(v) range(A) = Rm, or
(vi) null(A) = {0}.

If A is singular, the system may have infinitely many solutions or no solutions at all,
depending on b.

Example If A =


2 3
4 6

�
, Ax = b has no solution if b /2 range(A) or infinitely many

solutions when b 2 range(A). Thus, when b =


4
7

�
there is no solution, while when

b =


4
8

�
, x =


�

2
3(2� �)

�
is a solution for any real �. ⇤
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6 Solving linear equations

In principle, all we need to do to solve the system of equations Ax = b is find the inverse
of A, A�1. Then Ax = b =) A�1Ax = A�1b =) x = A�1b. In practice, however,
things are more complicated. First, A only has an inverse if it is square (so m = n)
and det(A) 6= 0. In most cases, m 6= n and often even when m = n, det(A) = 0 is not
unusual. Second, supposing that A is indeed square, m and n are often large (104 is
common, as are much larger values). In these cases, even calculating det(A) is a hugely
expensive and complex computational task while finding A�1 is even harder.

We’ll initially concentrate on easily solvable systems and look at how we can coerce other
systems into a form where they (or some close approximation) too are easily solvable.

6.1 Easily solvable systems 1: Diagonal matrix

All the simple systems we consider here are assumed to be square, so m = n. We want
to solve Ax = b.

A is diagonal all entries the o↵-diagonal are zero. That is a

ij

= 0 when i 6= j. So to
specify a diagonal matrix, we need only specify the n diagonal elements. We can thus
use the simplifying notation, A = diag{a1, . . . , an}.
When A is diagonal, x

i

= bi
ai

for all i = 1, . . . , n. That is, A�1 = diag{ 1
a1
, . . . ,

1
an
}. Or,

to use less compact notation:

A =

2

64
a1

. . .

a

n

3

75 ) A�1 =

2

64

1
a1

. . .
1
an

3

75 .

6.2 Easily solvable systems 2: Triangular matrix

A matrix is lower triangular when all entries above the main diagonal are 0. That is,
A is lower triangular if and only if a

ij

= 0 when i < j. Similarly, a matrix is upper

triangular when all entries above the main diagonal are 0 (a
ij

= 0 for i > j). Lower
triangular is also called left triangular, and upper called right triangular, for obvious
reasons. E.g., a lower triangular matrix:

A =

2

66664

a11 0 . . . 0

a21 a22
. . .

...
...

...
. . . 0

a

n1 a

n2 . . . a

nn

3

77775
.

The system Ax = b is easy to solve for triangular A and it does not require that we
calculate the inverse of A.
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For the lower triangular matrix, the solution is given by

x

i

=
1

a

ii

0

@
b

i

�
i�1X

j=1

a

ij

x

j

1

A
,

so that

x1 =
b1

a11
; x2 =

b2 � a21x1

a22
; . . . ; x

n

=
b

n

� a

n1x1 � . . .� a

n�1,nxn�1

a

nn

.

A similar simple formula is available for the upper triangular case, this time working
backwards from x

n

:

x

n

=
b

n

a

nn

and

x

i

=
1

a

ii

(b
i

� a

i,i+1xi+1 � . . .� a

i,n

x

n

) for i = n� 1, . . . , 1.

The method of Gaussian elimination, or row reduction, which we assume you have seen
before transforms the matrix A into a triangular one to solve the system. This method
is reviewed and discussed in Section ??

6.3 Easily solvable systems 3: Orthonormal or orthogonal matrix

Matrix A is orthogonal or orthonormal if the columns of A are mutually orthogonal unit
vectors.

That is, A = [a1 a2 . . . a
n

] where a
i

= [a
i1 ai2 . . . a

in

]T are unit vectors and the set
{a1 a2 . . . a

n

} is mutually orthogonal (so a
i

· a
j

= 0 for i 6= j).

When A is orthonormal, A�1 = AT . This result is true since

ATA ⌘

2

64
aT1
...
aT
n

3

75 [a1 a2 . . . a
n

] = I
n

⌘ diag{1, 1, . . . , 1}.

Also check that AAT = I
n

: AATA ⌘ A (ATA)| {z }
In

= A and AATA ⌘ (AAT)A

These properties can be taken as a definition of an orthonomal matrix: A�1 = AT if
and only if A is orthonormal.

Thus, if A is orthonormal, the solution to Ax = b is simply x = ATb.
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Example: Find the solution to the set of equations

0.48x1 + 0.64x2 + 0.60x3 = 3.56
0.36x1 + 0.48x2 � 0.80x3 = �1.08
0.80x1 � 0.60x2 = �0.40

or

x1

a1z }| {2

4
0.48
0.36
0.80

3

5+x2

a2z }| {2

4
0.64
0.48

�0.60

3

5+x3

a3z }| {2

4
0.60

�0.80
0.00

3

5 =

2

4
3.56

�1.08
�0.40

3

5
.

So A = [a1 a2 a3].

Solution: By checking that a
i

· a
j

= 1 for i = j = 0 for i 6= j, it is easy to see that A
is orthonormal. So we have the solution

x = ATb =

2

4
aT1
aT2
aT3

3

5b

and
x1 = aT1 b = 0.48 · 3.56� 0.36 · 1.08� 0.80 · 0.40

= 1.7088� 0.3888� 0.3200 = 1.0
x2 = aT2 b = 0.64 · 3.56� 0.48 · 1.08 + 0.60 · 0.40

= 2.2784� 0.5184 + 0.2400 = 2.0
x3 = aT3 b = 0.60 · 3.56 + 0.80 · 1.08

= 2.136 + 0.864 = 3.0.

⇤

7 Factorising matrices

As we saw in the previous section, matrices with special forms are often much easier to
work with than arbitrary matrices. The remainder of this part of the course is focused
on how we can manipulate an arbitrary given matrix into a form that is convenient for
a stated problem. This is known as factorising or decomposing matrices.

There are 3 factorisations we will study in various degrees of depth: LU-factorisation,
Singular Value Decomposition (SVD) and QR decomposition. A brief summary is given
here:

• Elimination (LU decomposition): A = LU

– Lower triangular matrix ⇥ Upper triangular matrix

• Singular Value Decomposition (SVD): A = UDVT
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– ⇥ diag(singular values) ⇥ Orthogonal (rows)

– Orthonormal columns in U and V:
the left and right singular vectors, respectively

– Left singular vector: an eigenvector of the square m⇥m matrix AAT

– Right singular vector: an eigenvector of the square n⇥ n matrix ATA

– Singular value: the square root of an eigenvalue of ATA (or AAT).

• Orthogonalisation (QR decomposition): A = QR

– Orthogonal matrix (columns) ⇥
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