
We can treat this iteratively, starting at x0, and finding x

i+1 = x

i

� f(xi)
f

0(xi)
. This leads

to the algorithm:

• Initialise: Choose x0 as an initial guess.

• Iterate until the absolute di↵erence |x
i

� x

i�1| ⇡ 0

– Set x
i+1 = x

i

� f(xi)
f

0(xi)
.

Example: f(x) = x

2 � 2.

Solution: f 0(x) = 2x so

x

i+1 = x

i

� f(x
i

)

f

0(x
i

)
= x

i

� x

2
i

� 2

2x
i

=
x

i

2
+

1

x

i

.

See slide for example starting at x0 = 0.5. ⇤
Compare with bisection method: Start at a = 1/2 and b = 2 to get to a = 1.34375 and
b = 1.4375 at the fifth step. This produces an absolute error of 0.02688 or 1.9%. The
absolute error in the Newton case is 0.00020 which is 2 orders of magnitude smaller.

Figure 2: The idea behind the Newton’s method. Starting at x

n

, we find the tangent
line (red) and calculate the point it intercepts the x-axis. This point of intercept is x

n+1.

There are, of course, many other root finding methods. We list a few of them here (not
examinable).

Secant method (http://en.wikipedia.org/wiki/Secant_method):

7



• Newton’s method with a finite di↵erence instead of the derivative

• Neither computation, nor existence of a derivative is required

• However, the convergence is slower (approximately, ↵ = 1.6)

False position method (http://en.wikipedia.org/wiki/False_position_method):

• Always retains one point on either side of the root

• Faster than the bisection and more robust than the secant method

Muller’s method (http://en.wikipedia.org/wiki/Muller’s_method):

• Quadratic (instead of linear) interpolations

• Faster convergence than with the secant method

• Roots may be complex (in addition to reals)
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5 Numerical linear algebra

Numerical linear algebra is one of the cornerstones of modern mathematical modelling.
Topics as important as solving systems of ordinary di↵erential equations (arising in
engineering, economics, physics, biotech, etc), to network analysis (telecoms, sociologic,
epidemiology), internet search, data mining and many more rely on linear algebra.

These days, applied linear algebra and numerical linear algebra are virtually interchange-
able — problems of all sizes are routinely solved numerically and rely on a wealth of
mathematical and computational insight.

We’ll start out with a brief review of topics that you should be somewhat familiar with.

5.1 Review

Let a =

2

64
a1
...
a

n

3

75 b =

2

64
b1
...
b

n

3

75 be vectors. The inner or dot product of a and b is the

scalar c = a•b ⌘ a

T

b =
nP

i=1
a

i

b

i

. The dot product is also called multiplication of vectors.

The norm or magnitude of a vector a is ||a|| =
p
a · a =

p
a

T

a =
p
a

2
1 + . . . a

2
n

.

The product of an m⇥n matrix A =

2

64
A11 . . . A1n
...

. . .
...

A

m1 . . . A

mn

3

75 and an n⇥1 (n-dimensional)

vector x =

2

64
x1
...
x

n

3

75 is them-dimensional vector y = Ax with the elements y
i

=
mP
j=1

A

ij

x

j

.

The product of a k ⇥m matrix A and an m⇥ n matrix B is the k ⇥ n matrix C = AB

with the elements C
ij

=
mP

↵=1
A

i,↵

B

↵,j

The outer product of an m-dimensional vector a with an n-dimensional vector b is the
m⇥ n matrix

ab

T ⌘

2

6664

a1

a2
...
a

m

3

7775
⇥
b1 b2 . . . b

n

⇤
=

2

6664

a1b1 a1b2 . . . a1bn

a2b1 a2b2 . . . a2bn
...

...
. . .

...
a

m

b1 a

m

b2 . . . a

m

b

n

3

7775

The identity matrix of size n, I
n

, is the n⇥ n matrix with (i, j)th entry = 0 if i 6= j and
1 if i = j.

The inverse of a square matrix A of size n is the square matrix A

�1 such that AA

�1 =
I

n

= A

�1
A. When such a matrix exists, A is called invertible or non-singular. A is

singular if no inverse exists. Finding the inverse of A is typically di�cult.
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The determinant of an n⇥n matrix A, written det(A) =

�������

A11 . . . A1n
...

. . .
...

A

n1 . . . A

nn

�������
, is given by

a somewhat complex formula that we need not reproduce here (look it up at http://en.
wikipedia.org/wiki/Determinant). For n = 2, det(A) = A11A22�A21A12. For n = 3,
det(A) = A11A22A33�A31A22A13+A12A23A31�A32A23A11+A13A21A32�A33A21A12.

Example: Find the determinant of A =

✓
3 5
1 �1

◆
.

Solution: From above, det(A) = |A| = 3.�1� 1.5 = �3� 5 = �8. ⇤
It is worth recalling a few properties of the determinant (as listed on the wiki page):

• det(I) = 1

• det(AT ) = det(A) (transposing the matrix does not a↵ect the determinant)

• det(A�1) = 1
det(A) (the determinant of the inverse is the inverse of the determinant)

• For A,B square matrices of equal size, det(AB) = det(A)det(B)

• det(cA) = c

n

det(A) for any scalar c

• If A is triangular (so has all zeros in the upper or lower triangle) then det(A) =Q
n

i=1Aii

.

An eigenvector of the square matrix A is a non-zero vector e such that Ae = �e for
some scalar �. � is known as the eigenvalue of A corresponding to e. Note that � may
be 0. So the e↵ect of multiplying e by A is simply to scale e by the corresponding scalar
�.

The determinant can be used to find the eigenvalues of A: they are the roots of the
characteristic polynomial p(�) = det(A� �I

n

) where I

n

is the identity matrix.

Example: Find the eigenvalues of A =

✓
3 5
1 �1

◆
.

Solution: We need to solve p(�) = det(A� �I2) = 0.

|A� �I2| =

����

✓
3 5
1 �1

◆
� �

✓
1 0
0 1

◆����

=

����
3� � 5
1 �1� �

����
= (3� �)(�1� �)� 5
= ��

2 � 2�� 8
= (�+ 2)(�� 4)

which is zero when � = 4 or � = �2. So the eigenvalues of A are � = 4 and � = �2. ⇤

Example: Find the eigenvector of A =

✓
3 5
1 �1

◆
corresponding to the eigenvalue

� = �2.
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Solution: The eigenvector e corresponding to � = �2 satisfies the equation Ae = �2e.
That is, ✓

3 5
1 �1

◆✓
e1

e2

◆
= �2

✓
e1

e2

◆
.

This is the system of linear equations

3e1 + 5e2 = �2e1, (1)

e1 � e2 = �2e2. (2)

Rearranging either equation, we get e1 = �e2, so both equations are the same. We thus

fix e1 = 1 and the eigenvector associated with � = �2 is e =

✓
1
�1

◆
. Notice that the

choice to fix e1 = 1 was arbitrary. We could choose any value so, strictly, e = c

✓
1
�1

◆

for any c 6= 0. Often, c is chosen so that e is normalised (see below). In this case, choose
c = 1/

p
2 to normalise e. ⇤

Vectors a and b are orthogonal if the dot product a

T

b = 0. Orthogonal generalises the
of the idea of the perpendicular. In particular, a set of vectors {e1, . . . , en} is mutually

orthogonal if each pair of vectors e
i

, e

j

is orthogonal for i 6= j.

A vector e
i

is normalised if eT
i

e

i

= 1.

A set of vectors that is mutually orthogonal and has each vector normalise is called
orthonormal.

Any symmetric, square matrix A of size n has exactly n eigenvectors that are mutually
orthogonal.

Any square matrix A of size n that has n mutually orthogonal eigenvectors can be
represented via the eigenvector representation as follows:

A =
nX

i=1

�

i

e

i

e

T

i|{z}
Ui

where U

i

= e

i

e

T

i

is an n⇥ n matrix.

The Range, range(A), or span of an m⇥ n matrix A is the set of vectors y 2 Rm such
that y = Ax for some x 2 Rn. The range is also referred to as the column space of A
as it is the space of all linear combinations of the columns of A.

The Nullspace, null(A), of an m ⇥ n matrix A is the set of vectors x 2 Rn, such that
Ax = 0 2 Rm

The Rank, rank(A), of an m⇥ n matrix A is the dimension of the range of A or of the
column space of A. rank(A)  min{m,n}.
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