
1 Introduction

This course is aimed at introducing computer scientists to uses of computers and com-
putational techniques in other areas of science. The number of ways that computers are
used in the sciences are many, varied and often extremely sophisticated. The focus of
this course will be on “computational science” which involves constructing mathematical
models that can be simulated, analysed and solved using computational methods.

The course is split into two parts: in the first 3-4 weeks, we’ll look at techniques for find-
ing the roots of equations, solving systems of linear equations and decomposing matrices.
These techniques are basic to areas of research known as computational engineering, nu-
merical analysis and applied linear algebra.

In the remaining 8-9 weeks, we’ll turn to computational biology, with a focus on bioin-
formatics and phylogenetics. There, we see how a wide range of computational and
mathematical techniques have revolutionised an area of science and allowed us to anal-
yse and interpret huge amounts of genetic data. This area of study has helped us better
understand, among other things, the basic workings of life, our evolutionary history, the
causes of inherited diseases and the spread of infectious disease.

From a computational point of view, computational biology is a fascinating and active
area of research. The techniques we’ll study in this part of the course include stochastic
and probabilistic modelling, simulation, dynamic programming, estimation and infer-
ence.

CS 369 is more mathematical than many CS courses. This is unavoidable given the
subject matter. We assume that students have some background in discrete mathematics
(matrices, graphs, linear equations) and continuous mathematics (functions, derivatives,
integration), and an understanding of basic probability (discrete and continuous random
variables, expectation, conditional probability) . However, we recognise that students
come to this course from a variety of backgrounds so will provide explanations from
quite a basic level in most cases. We do assume that students have a solid foundation
in programming in one of Java, C++, Python, Matlab or R.

2 Mathematical modelling and why we need computers

Mathematical models attempt to precisely describe a system in order to better under-
stand it. A model is usually based on observing the system and is often structured to
answer a particular question. It is not an exact replica of the system and is not merely
a description of the observations. Recorded observations of the system are known as
data. Coupled with data, the model allows us to infer unobserved properties of the
model (such as model parameters) and predict future outcomes. Careful comparison of
outcomes predicted by the model with data (actual outcomes) tell us how accurate the
model is and where it needs to be refined.

This process of modelling and observation has, arguably, been used for thousands of
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years and certainly for hundreds. The complexity of the models we create and study is
somewhat determined by our ability to interpret and “solve” them. Before computers, we
were largely limited to using models that were analytically tractable — that is, models
for which closed form solutions could be found — or for which good approximations
could be made by hand. Our ability to fit models to data was severely limited by our
human limitations of collecting, storing and processing information by hand.

With the advent of computers, both of these limitations have eased considerably. It
is now possible to collect and store massive amounts of data. For example, Genbank,
which stores genetic nucleotide sequences contains over 204 billion nucleotide bases in
more than 189 million sequences as at the end of 2015, while CERN’s Large Hadron
Collider produces 30 PB (= 30 × 106 GB) of data annually. And fast computers allow
us process this data and to make almost arbitrarily good approximations to models that
are far more complex than could be tackled by hand.

However, even with all the data and computing power in the world we need to be
careful to propose useful models and tackle them with efficient techniques if we are to
make progress in answering questions that interest us. Bad models, bad data or bad
computational techniques could all derail our quest for understanding. In this course,
we aim to teach good computational techniques and give some insight into some basic
modelling and data analysis techniques that will help to tackle and answer a range of
interesting questions.

2.1 Why we need to be clever about our computing

Mathematical problems can be classed into problems that are well-posed and ill-posed.
A problem is well-posed if

1. A solution exists

2. the solution is unique

3. A small change in the initial condition induces only a small change in the solution

A problem that is not well-posed is ill-posed.

We are interested in the last criterion which can be termed sensitivity. Suppose our
problem has inputs x and has a solution (or output) y. An insensitive or well-conditioned
problem is when a change in x causes a change in y that is of similar relative size. A
sensitive or ill-conditioned problem is one in which the change in solution/output can
be large relative the the change in input.

Based on this idea, define the condition number by

cond =
|relative change in solution|
|relative change in input data|

=

∣∣∣∣∆y/y

∆x/x

∣∣∣∣ .
Thus a problem is ill-conditioned is cond� 1.
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Example: what is the condition number when we evaluate a function y = f(x) at an
approximation of x, x̂ = x + ∆x, rather than at the true value x?

Solution:

cond =

∣∣∣∣∆y/y

∆x/x

∣∣∣∣ =

∣∣∣∣f(x + ∆x)− f(x)/f(x)

∆x/x

∣∣∣∣ =

∣∣∣∣f(x + ∆x)− f(x)

∆x

x

f(x)

∣∣∣∣ ≈ ∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ .
So, depending on the function f and the input x, we could get very large condition
numbers. �

Example: What is the condition number for the functions f(x) = xn and f(x) = ex?

Solution: From above, the condition number is

cond ≈
∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ .
When f(x) = xn, f ′(x) = nxn−1, so

cond =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ =

∣∣∣∣x.nxn−1xn

∣∣∣∣ =

∣∣∣∣nxnxn

∣∣∣∣ = |n|.

So as the degree of the polynomial increases, the problem becomes increasingly ill-
conditioned.

Similarly, when f(x) = ex, f ′(x) = ex so

cond =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ =

∣∣∣∣x.exex

∣∣∣∣ = |x|.

In this case, the condition number depends on the input argument, x. If x is very large,
the problem can be considered ill-conditioned. �
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