Bacteria, viruses and retroviruses evolve fast




Rate of evolution of HIV is maybe 6 orders of
magnitude greater than in humans




See as much evolution in an HIV in a few years as in
entire human history
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Figure S3 (a) PB2 segment
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Figure S3 (b) PB1 segment
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Networks are a natural way to model heterogeneity of
contacts among hosts

» Nodes represent hosts, edges represent contacts

» We want to use available data to estimate good models of
networks



Contact networks and transmission trees

» Assume a contact network G on N
individuals: A “contact” is necessary for
disease transmission.
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Contact networks and transmission trees

» Assume a contact network G on N
individuals: A “contact” is necessary for
disease transmission.

» Beginning with the first infected, disease
is spread at exponential rate 3, defining
a subtree of the contact network called
the transmission tree P.

Transmission tree, P:
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A network model: Bernoulli (Erdés-Rényi) network
For any nodes i and j, edge (/, ) exists with probability p.



Modelling epidemics: Stochastic compartmental
models

» The host population are considered to occupy different
classes based on current disease status.

» The SEIR model has four classes:
Susceptible — Exposed — Infectious — Removed

» The S — E transitions have exponential waiting times,
while E — [ and | — R have gamma distributed waiting
times.



Modelling epidemics: Stochastic compartmental
models




The path the epidemic follows describes a tree. The
virus mutates down the tree and we collect genomes
from the leaves.
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Can also use event time data where known

Node | Exposure Time | Infective Time | Removal Time
1 0.0 6.4 15.1
2 8.1 12.3 16.7
3 13.5 22.9 41.2
4 38.6 48.0 56.9

Contact Network Transmission Tree



Parameters of interest

Infection rate 3
Parameters 6 and k of latent and recovery times
n are the parameters of the network model

Use Bayesian techniques to estimate posterior
distributions for these parameters.

» To calculate likelihood, need also to estimate P and G
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Hagelloch Measles Data

» We consider (unusually complete) data from a measles
epidemic that spread through the small town of Hagelloch,
Germany, in 1861.

» The data contain proxies for the Infective and Recovery
times.

» We have to infer the Exposure times.

Node i | E; I; R;
1 ? 6.4 | 151
2 ? 1 123 | 16.7
3 ?1 229 | 41.2

» Assume 188 individuals infected comprise the complete
susceptible population so N = 188.



Posterior Estimates for »
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Model checking — simulations (black) vs real (red)
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Time data tell us little about who infected whom (tree
topology)

An typical posterior sample of P
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Time data tell us little about who infected whom (tree
topology)
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