Bacteria, viruses and retroviruses evolve fast

Rate of evolution of HIV is maybe 6 orders of magnitude greater than in humans

See as much evolution in an HIV in a few years as in entire human history

Figure S3 (a) PB2 segment

www.nature.com/nature 10

Figure S3 (b) PB1 segment

Networks are a natural way to model heterogeneity of contacts among hosts

- ▶ Nodes represent hosts, edges represent contacts
- We want to use available data to estimate good models of networks

► Assume a contact network G on N individuals: A "contact" is necessary for disease transmission.

- ► Assume a contact network G on N individuals: A "contact" is necessary for disease transmission.
- ▶ Beginning with the first infected, disease is spread at exponential rate β , defining a subtree of the contact network called the *transmission tree* \mathcal{P} .

- ► Assume a contact network G on N individuals: A "contact" is necessary for disease transmission.
- ▶ Beginning with the first infected, disease is spread at exponential rate β , defining a subtree of the contact network called the *transmission tree* \mathcal{P} .

- ► Assume a contact network G on N individuals: A "contact" is necessary for disease transmission.
- ▶ Beginning with the first infected, disease is spread at exponential rate β , defining a subtree of the contact network called the *transmission tree* \mathcal{P} .

- ► Assume a contact network G on N individuals: A "contact" is necessary for disease transmission.
- ▶ Beginning with the first infected, disease is spread at exponential rate β , defining a subtree of the contact network called the *transmission tree* \mathcal{P} .

- ► Assume a contact network G on N individuals: A "contact" is necessary for disease transmission.
- ▶ Beginning with the first infected, disease is spread at exponential rate β , defining a subtree of the contact network called the *transmission tree* \mathcal{P} .

- ► Assume a contact network G on N individuals: A "contact" is necessary for disease transmission.
- ▶ Beginning with the first infected, disease is spread at exponential rate β , defining a subtree of the contact network called the *transmission tree* \mathcal{P} .

Transmission tree, \mathcal{P} :

A network model: Bernoulli (Erdős-Rényi) network For any nodes i and j, edge (i,j) exists with probability p.

Modelling epidemics: Stochastic compartmental models

- ► The host population are considered to occupy different classes based on current disease status.
- ▶ The SEIR model has four classes:

 $Susceptible \to Exposed \to Infectious \to Removed$

The S → E transitions have exponential waiting times, while E → I and I → R have gamma distributed waiting times.

Modelling epidemics: Stochastic compartmental models

The path the epidemic follows describes a tree. The virus mutates down the tree and we collect genomes from the leaves.

Can also use event time data where known

Node	Exposure Time	Infective Time	Removal Time
1	0.0	6.4	15.1
2	8.1	12.3	16.7
3	13.5	22.9	41.2
4	38.6	48.0	56.9

Transmission Tree

Parameters of interest

- ▶ Infection rate β
- \blacktriangleright Parameters θ and k of latent and recovery times
- $ightharpoonup \eta$ are the parameters of the network model
- Use Bayesian techniques to estimate posterior distributions for these parameters.
- \blacktriangleright To calculate likelihood, need also to estimate $\mathcal P$ and $\mathcal G$

Hagelloch Measles Data

- ▶ We consider (unusually complete) data from a measles epidemic that spread through the small town of Hagelloch, Germany, in 1861.
- ► The data contain proxies for the Infective and Recovery times.
- ▶ We have to infer the Exposure times.

Node i	Ei	I _i	R_i
1	?	6.4	15.1
2	?	12.3	16.7
3	?	22.9	41.2
:	:	:	
		:	:

Assume 188 individuals infected comprise the complete susceptible population so N = 188.

Posterior Estimates for η

Model checking — simulations (black) vs real (red)

Time data tell us little about who infected whom (tree topology)

An typical posterior sample of \mathcal{P}

Time data tell us little about who infected whom (tree topology)

