
1 Introduction

2 Mathematical modelling and why we need computers

2.1 Why we need to be clever about our computing

Mathematical problems can be classed into problems that are well-posed and ill-posed.
A problem is well-posed if

1. A solution exists

2. the solution is unique

3. A small change in the initial condition induces only a small change in the solution

A problem that is not well-posed is ill-posed.

We are interested in the last criterion which can be termed sensitivity. Suppose our
problem has inputs x and has a solution (or output) y. An insensitive or well-conditioned
problem is when a change in x causes a change in y that is of similar relative size. A
sensitive or ill-conditioned problem is one in which the change in solution/output can
be large relative the the change in input.

Based on this idea, define the condition number by

cond =
|relative change in solution|
|relative change in input data|

=

∣∣∣∣∆y/y∆x/x

∣∣∣∣ .
Thus a problem is ill-conditioned is cond� 1.

Example: what is the condition number when we evaluate a function y = f(x) at an
approximation of x, x̂ = x+ ∆x, rather than at the true value x?

Solution:

cond =

∣∣∣∣∆y/y∆x/x

∣∣∣∣ =

∣∣∣∣f(x+ ∆x)− f(x)/f(x)

∆x/x

∣∣∣∣ =

∣∣∣∣f(x+ ∆x)− f(x)

∆x

x

f(x)

∣∣∣∣ ≈ ∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ .
So, depending on the function f and the input x, we could get very large condition
numbers. �

Example: What is the condition number for the functions f(x) = xn and f(x) = ex?

Solution: From above, the condition number is

cond ≈
∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ .
When f(x) = xn, f ′(x) = nxn−1, so

cond =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ =

∣∣∣∣x.nxn−1

xn

∣∣∣∣ =

∣∣∣∣nxnxn
∣∣∣∣ = |n|.
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So as the degree of the polynomial increases, the problem becomes increasingly ill-
conditioned.

Similarly, when f(x) = ex, f ′(x) = ex so

cond =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ =

∣∣∣∣x.exex
∣∣∣∣ = |x|.

In this case, the condition number depends on the input argument, x. If x is very large,
the problem can be considered ill-conditioned. �

What does this mean for computation? In nearly all our computations, we will re-
place exact formulations with approximations. For example, we approximate continuous
quantities with discrete quantities, we are limited in size by floating point representation
of numbers which often necessitates rounding or truncation and introduces (hopefully)
small errors. If we are not careful, these error will be amplified within an ill-conditioned
problem an produce inaccurate results.

This leads us to consider the stability and accuracy of our algorithms.

An algorithm is stable if the result is relatively unaffected by perturbations during com-
putation. This is similar to the idea of conditioning of problems.

An algorithm is accurate is the competed solution is close to the true solution of the
problem. Note that a stable algorithm could be inaccurate.

We seek to design and apply stable and accurate algorithms to find accurate solutions to
well-posed problems (or to find ways of transforming or approximating ill-posed problems
by well-posed ones).

3 Approximating a function by a Taylor series

First, a little notation. A real-valued function f : R → R is a function f that takes a
real number argument, x ∈ R ,and returns a real number, f(x) ∈ R. We write f ′(x)
to denote the derivative of f , so f ′(x) = df

dx , and f ′′(x) is the second derivative (so

f ′(x) = d
dx( dfdx) = d2f

dx2
) and f (k)(x) is the kth derivative of f evaluated at x.

As we have just seen, simply evaluating a real valued function can be prone to instability
(if the function has a large condition number). For that reason, approximations of
functions are often used. The most common method of approximating the real-valued
function f : R → R by a simpler function is to use the Taylor series representation for
f .

The Taylor series has the form of a polynomial where the coefficients of the polynomial
are the derivatives of f evaluated at a point. So long as all derivatives of the function
exists at the point x = a, f(x) can be expressed in terms of of the value of the function
and it’s derivatives at a as:

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) + . . .+

(x− a)k

k!
f (k)(a) + . . .
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This can be written more compactly as

f(x) =

∞∑
k=0

(x− a)k

k!
f (k)(a),

where f (0) = f and 0! = 1 by definition.

This is known as the Taylor series for f about a. It is valid for x “close” to a (strictly,
within the “radius of convergence” of the series). When a = 0, the Taylor series is known
as a Maclaurin series.

This is an infinite series (the sum contains infinitely many terms) so cannot be directly
computed. In practice, we truncate the series after n terms to get the Taylor polynomial
of degree n centred at a, which we denote f̂n(x; a):

f(x) ≈ f̂n(x; a) =
n∑
k=0

(x− a)k

k!
f (k)(a).

This is an approximation of f that can be readily calculated so long as the first n
derivatives of f evaluated at a can be calculated. The approximation can be made
arbitrarily accurate by increasing n. The quality of the approximation also depends on
the distance of x from a — the closer x is to a, the better the approximation.

Example: Find the Taylor approximation of f(x) = exp(x) = ex for values of x close
to 0.

Solution: The kth derivative of f(x) = ex is simply ex for all k. Since we want values
of x close to 0, find the Taylor series about a = 0 (the Maclaurin series). Then

f̂n(x; 0) = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · · =

n∑
k=0

xk

k!

This series converges to ex everywhere: lim
→∞

ên(x) = ex. The quality of the approximation

for various values of n and x are studied in the table below.

n 1 2 3 4 . . . true value ex

f̂n(x = 1; 0) 2.0000 2.5000 2.6667 2.7083 . . . 2.7183
Relative error 0.26 0.08 0.019 0.0037

f̂n(x = 2; 0) 3.0000 5.0000 6.3333 7.0000 . . . 7.3891
Relative error 0.59 0.32 0.14 0.053

Notice that the error is smaller for x close to a and decreases as n, the number of terms
in the polynomial increases. �

4 Finding the roots of equations

Given a real valued function f : R→ R, a fundamental problem is to find the values of
x for which f(x) = 0. This is known as finding the roots of f . The problem crops up
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again and again and many problems can be reformulated as this problem. For example,
if the trajectory of one object is described by h(x), while another object has trajectory
g(x), then the two objects intercept one another exactly when f(x) = g(x)− h(x) = 0.

Another common application is when we wish to find the minimum or maximum value
that a function takes. We know from basic calculus that if f is the derivative of some
function F , then F (x) takes its maximum or minimum values when f(x) = 0. Thus
finding the maximum value of F is a matter of finding the roots of f .

We will consider two simple yet effective root finding algorithms. The bisection method
and Newton’s method. In both cases, we assume that f : R→ R is continuous.

4.1 Bisection method

We want to find x∗ such that f(x∗) = 0. Let sign(f(x)) = −1 if f(x) < 0 and
sign(f(x)) = 1 if f(x) > 0. The bisection method proceeds as follows:

• Initialise: Choose initial guesses a, b such that signf(a) 6= signf(b)

• Iterate until the absolute difference |a− b| ≈ 0

– Calculate c = a+b
2

– If signf(a) = signf(c), then a← c; otherwise b← c

The method provides slow but sure convergence.

Figure 1: The idea behind the bisection method. Here, signf(a) = signf(c) so at the
next iteration we will set a← c. The algorithm stops when a and b are sufficiently close
to each other.
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4.2 Newton’s method

This method is also known as the Newton-Raphson method and is based on the approx-
imation first two terms of the Taylor series expansion. Recall that we want to find x
such that f(x) = 0. From the first two terms of the Taylor series of f(x), we know that
f(x) ≈ f(a) + (x − a)f ′(a). If f(x) is zero, then the expression on the right hand side
to 0 and solve for x to get

f(a) + (x− a)f ′(a) = 0 =⇒ x = a− f(a)

f ′(a)
.

We can treat this iteratively, starting at x0, and finding xi+1 = xi − f(xi)
f ′(xi)

. This leads
to the algorithm:

• Initialise: Choose x0 as an initial guess.

• Iterate until the absolute difference |xi − xi−1| ≈ 0

– Set xi+1 = xi − f(xi)
f ′(xi)

.

Example: f(x) = x2 − 2.

Solution: f ′(x) = 2x so

xi+1 = xi −
f(xi)

f ′(xi)
= xi −

x2
i − 2

2xi
=
xi
2

+
1

xi
.

See slide for example starting at x0 = 0.5. �

Compare with bisection method: Start at a = 1/2 and b = 2 to get to a = 1.34375 and
b = 1.4375 at the fifth step. This produces an absolute error of 0.02688 or 1.9%. The
absolute error in the Newton case is 0.00020 which is 2 orders of magnitude smaller.

5 Numerical linear algebra

Numerical linear algebra is one of the cornerstones of modern mathematical modelling.
Topics as important as solving systems of ordinary differential equations (arising in
engineering, economics, physics, biotech, etc), to network analysis (telecoms, sociologic,
epidemiology), internet search, data mining and many more rely on linear algebra.

These days, applied linear algebra and numerical linear algebra are virtually interchange-
able — problems of all sizes are routinely solved numerically and rely on a wealth of
mathematical and computational insight.

We’ll start out with a brief review of topics that you should be somewhat familiar with.
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Figure 2: The idea behind the Newton’s method. Starting at xn, we find the tangent
line (red) and calculate the point it intercepts the x-axis. This point of intercept is xn+1.

5.1 Review

Let a =

 a1
...
an

 b =

 b1
...
bn

 be vectors. The inner or dot product of a and b is the

scalar c = a•b ≡ aTb =
n∑
i=1

aibi. The dot product is also called multiplication of vectors.

The norm or magnitude of a vector a is ||a|| =
√
a · a =

√
aTa =

√
a2

1 + . . . a2
n.

The product of an m×n matrix A =

 A11 . . . A1n
...

. . .
...

Am1 . . . Amn

 and an n×1 (n-dimensional)

vector x =

 x1
...
xn

 is them-dimensional vector y = Ax with the elements yi =
m∑
j=1

Aijxj .

The product of a k ×m matrix A and an m× n matrix B is the k × n matrix C = AB

with the elements Cij =
m∑
α=1

Ai,αBα,j

The outer product of an m-dimensional vector a with an n-dimensional vector b is the
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m× n matrix

abT ≡


a1

a2
...
am

 [ b1 b2 . . . bn
]

=


a1b1 a1b2 . . . a1bn
a2b1 a2b2 . . . a2bn

...
...

. . .
...

amb1 amb2 . . . ambn


The identity matrix of size n, In, is the n× n matrix with (i, j)th entry = 0 if i 6= j and
1 if i = j.

The inverse of a square matrix A of size n is the square matrix A−1 such that AA−1 =
In = A−1A. When such a matrix exists, A is called invertible or non-singular. A is
singular if no inverse exists. Finding the inverse of A is typically difficult.

The determinant of an n×n matrix A, written det(A) =

∣∣∣∣∣∣∣
A11 . . . A1n

...
. . .

...
An1 . . . Ann

∣∣∣∣∣∣∣, is given by

a somewhat complex formula that we need not reproduce here (look it up at http://en.
wikipedia.org/wiki/Determinant). For n = 2, det(A) = A11A22−A21A12. For n = 3,
det(A) = A11A22A33−A31A22A13 +A12A23A31−A32A23A11 +A13A21A32−A33A21A12.

Example: Find the determinant of A =

(
3 5
1 −1

)
.

Solution: From above, det(A) = |A| = 3.−1− 1.5 = −3− 5 = −8. �

It is worth recalling a few properties of the determinant (as listed on the wiki page):

• det(I) = 1

• det(AT ) = det(A) (transposing the matrix does not affect the determinant)

• det(A−1) = 1
det(A) (the determinant of the inverse is the inverse of the determinant)

• For A,B square matrices of equal size, det(AB) = det(A)det(B)

• det(cA) = cn det(A) for any scalar c

• If A is triangular (so has all zeros in the upper or lower triangle) then det(A) =∏n
i=1Aii.

An eigenvector of the square matrix A is a non-zero vector e such that Ae = λe for
some scalar λ. λ is known as the eigenvalue of A corresponding to e. Note that λ may
be 0. So the effect of multiplying e by A is simply to scale e by the corresponding scalar
λ.

The determinant can be used to find the eigenvalues of A: they are the roots of the
characteristic polynomial p(λ) = det(A− λIn) where In is the identity matrix.

Example: Find the eigenvalues of A =

(
3 5
1 −1

)
.
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Solution: We need to solve p(λ) = det(A− λI2) = 0.

|A− λI2| =

∣∣∣∣( 3 5
1 −1

)
− λ

(
1 0
0 1

)∣∣∣∣
=

∣∣∣∣ 3− λ 5
1 −1− λ

∣∣∣∣
= (3− λ)(−1− λ)− 5
= −λ2 − 2λ− 8
= (λ+ 2)(λ− 4)

which is zero when λ = 4 or λ = −2. So the eigenvalues of A are λ = 4 and λ = −2. �

Example: Find the eigenvector of A =

(
3 5
1 −1

)
corresponding to the eigenvalue

λ = −2.

Solution: The eigenvector e corresponding to λ = −2 satisfies the equation Ae = −2e.
That is, (

3 5
1 −1

)(
e1

e2

)
= −2

(
e1

e2

)
.

This is the system of linear equations

3e1 + 5e2 = −2e1, (1)

e1 − e2 = −2e2. (2)

Rearranging either equation, we get e1 = −e2, so both equations are the same. We thus

fix e1 = 1 and the eigenvector associated with λ = −2 is e =

(
1
−1

)
. Notice that the

choice to fix e1 = 1 was arbitrary. We could choose any value so, strictly, e = c

(
1
−1

)
for any c 6= 0. Often, c is chosen so that e is normalised (see below). In this case, choose
c = 1/

√
2 to normalise e. �

Vectors a and b are orthogonal if the dot product aT b = 0. Orthogonal generalises the
of the idea of the perpendicular. In particular, a set of vectors {e1, . . . , en} is mutually
orthogonal if each pair of vectors ei, ej is orthogonal for i 6= j.

A vector ei is normalised if eTi ei = 1.

A set of vectors that is mutually orthogonal and has each vector normalise is called
orthonormal.

Any symmetric, square matrix A of size n has exactly n eigenvectors that are mutually
orthogonal.

Any square matrix A of size n that has n mutually orthogonal eigenvectors can be
represented via the eigenvector representation as follows:

A =

n∑
i=1

λi eie
T
i︸︷︷︸

Ui
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where Ui = eie
T
i is an n× n matrix.

The Range, range(A), or span of an m× n matrix A is the set of vectors y ∈ Rm such
that y = Ax for some x ∈ Rn. The range is also referred to as the column space of A
as it is the space of all linear combinations of the columns of A.

The Nullspace, null(A), of an m × n matrix A is the set of vectors x ∈ Rn, such that
Ax = 0 ∈ Rm

The Rank, rank(A), of an m× n matrix A is the dimension of the range of A or of the
column space of A. rank(A) ≤ min{m,n}.

9



5.2 Review of eigenvectors and eigenvalues

• λ is an eigenvalue of A if determinant |A− λI| = 0

• This determinant is a polynomial in λ of degree n: so it has n roots λ1, λ2, . . . , λn

• Every symmetric matrix A has a full set (basis) of n orthogonal unit eigenvectors
e1, e2, . . . , en

• No algebraic formula for the polynomial roots for n > 4

– Thus, the eigenvalue problem needs own special algorithms

– Solving the eigenvalue problem is harder than solving Ax = b

• Determinant |A| =
∏n
i=1 λi = λ1λ2 · · ·λn (the product of eigenvalues)

• The trace of a matrix is the sum of the diagonal elements. That is,
trace(A) =

∑n
i=1 aii = a11 + a22 + . . .+ ann.

• It turns out that trace(A) =
∑n

i=1 λi = λ1 +λ2 + . . .+λn (the sum of eigenvalues)

• Ak = A · · ·A︸ ︷︷ ︸
k times

has the same eigenvectors as A: e.g. for A2

Ae = λe ⇒ AAe = λAe = λ2e

• Eigenvalues of Ak are λk1, . . . , λ
k
n

• Eigenvalues of A−1 are 1
λ1
, . . . , 1

λn

Example: Find the eigenvalues and eigenvectors of A =

[
2 −1
−1 2

]
Solution: First, find the eigenvalues of A by solving

|A− λI| =
∣∣∣∣ 2− λ −1
−1 2− λ

∣∣∣∣ = λ2 − 4λ+ 3 = (λ− 1)(λ− 3) = 0.

So the eigenvalues are λ1 = 1 and λ2 = 3

The eigenvector associated with λ1 = 1 is e1 and satisfies Ae1 = λ1e1. Putting e1 =[
x1

y1

]
we need to solve

[
2 −1
−1 2

] [
x1

y1

]
=

[
x1

y1

]
.
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The second row gives −x1 + 2y1 = y1, so y1 = x1. So fix x1 = 1 and e1 = c

[
1
1

]
for

any c 6= 0. If we choose c so that e1 is normalised, e1 = 1√
2

[
1
1

]
. A similar argument

shows e2 = 1√
2

[
1
−1

]
.

Before leaving this example, it is worth looking at some of the properties of the eigen-
values of A:

• Determinant det A ≡ |A| = 4− 1 = 3⇐⇒ λ1 · λ2 ≡ 1 · 3 = 3

• trace(A) = 2 + 2 = 4⇐⇒ λ1 + λ2 ≡ 1 + 3 = 4

• Inverse matrix A−1 = 1
3

[
2 1
1 2

]
: eigenvalues λ1 = 1

3 and λ2 = 1

• Matrix A2 =

[
5 −4
−4 5

]
: eigenvalues λ1 = 1 and λ2 = 9

• Matrix A3 =

[
14 −13
−13 14

]
: eigenvalues λ1 = 1 and λ2 = 27

�
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5.3 Review of systems of linear equations

A linear equation in n unknowns x1, . . . , xn is of the form a1x1 + . . . anxn = b. Given m
such equations, we can write the ith equation as ai1x1 + . . . ainxn = bi. We will seek to
solve these systems of linear equations.

Example a system of 3 equations in 3 unknowns and its solution is
4x1 + x2 + 2x3 = 24
2x1 − x2 − 2x3 = −6
−x1 + 2x2 − x3 = −4

=⇒


x1 = 3
x2 = 2
x3 = 5

�

These systems can be represented as a matrix equation Ax = b where A is the m × n

matrix of coefficients, aij , x =

 x1
...
xn

 is the n-dimensional column vector of unknowns

and b is a vector of dimension m.

Example cont. In the example above, A =

 4 1 2
2 −1 −2
−1 2 −1

 and b =

 24
−6
−4

 �

We’ll initially look at systems of n equations and n unknowns. Systems with m < n
are known as under-determined as there are less equations than unknowns while systems
with m > n are over-determined with more equations than there are unknowns.

When A is non-singular (so A−1 exists), the system has a unique solution given by
x = A−1b.

Recall that A is nonsingular if and only if:
(i) inverse matrix A−1 exists; or
(ii) det(A) 6= 0; or
(iii) rank(A) = m, or
(iv) Ax 6= 0 for any vector x 6= 0, or
(v) range(A) = Rm, or
(vi) null(A) = {0}.

If A is singular, the system may have infinitely many solutions or no solutions at all,
depending on b.

Example If A =

[
2 3
4 6

]
, Ax = b has no solution if b /∈ range(A) or infinitely many

solutions when b ∈ range(A). Thus, when b =

[
4
7

]
there is no solution, while when

b =

[
4
8

]
, x =

[
γ

2
3(2− γ)

]
is a solution for any real γ. �
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6 Solving linear equations

In principle, all we need to do to solve the system of equations Ax = b is find the inverse
of A, A−1. Then Ax = b =⇒ A−1Ax = A−1b =⇒ x = A−1b. In practice, however,
things are more complicated. First, A only has an inverse if it is square (so m = n)
and det(A) 6= 0. In most cases, m 6= n and often even when m = n, det(A) = 0 is not
unusual. Second, supposing that A is indeed square, m and n are often large (104 is
common, as are much larger values). In these cases, even calculating det(A) is a hugely
expensive and complex computational task while finding A−1 is even harder.

We’ll initially concentrate on easily solvable systems and look at how we can coerce other
systems into a form where they (or some close approximation) too are easily solvable.

6.1 Easily solvable systems 1: Diagonal matrix

All the simple systems we consider here are assumed to be square, so m = n. We want
to solve Ax = b.

A is diagonal all entries the off-diagonal are zero. That is aij = 0 when i 6= j. So to
specify a diagonal matrix, we need only specify the n diagonal elements. We can thus
use the simplifying notation, A = diag{a1, . . . , an}.
When A is diagonal, xi = bi

ai
for all i = 1, . . . , n. That is, A−1 = diag{ 1

a1
, . . . , 1

an
}. Or,

to use less compact notation:

A =

 a1

. . .

an

 ⇒ A−1 =


1
a1

. . .
1
an

 .
6.2 Easily solvable systems 2: Triangular matrix

A matrix is lower triangular when all entries above the main diagonal are 0. That is,
A is lower triangular if and only if aij = 0 when i < j. Similarly, a matrix is upper
triangular when all entries above the main diagonal are 0 (aij = 0 for i > j). Lower
triangular is also called left triangular, and upper called right triangular, for obvious
reasons. E.g., a lower triangular matrix:

A =


a11 0 . . . 0

a21 a22
. . .

...
...

...
. . . 0

an1 an2 . . . ann

 .
The system Ax = b is easy to solve for triangular A and it does not require that we
calculate the inverse of A.
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For the lower triangular matrix, the solution is given by

xi =
1

aii

bi − i−1∑
j=1

aijxj

 ,

so that

x1 =
b1
a11

; x2 =
b2 − a21x1

a22
; . . . ; xn =

bn − an1x1 − . . .− an−1,nxn−1

ann
.

A similar simple formula is available for the upper triangular case, this time working
backwards from xn:

xn =
bn
ann

and

xi =
1

aii
(bi − ai,i+1xi+1 − . . .− ai,nxn) for i = n− 1, . . . , 1.

The method of Gaussian elimination, or row reduction, which we assume you have seen
before transforms the matrix A into a triangular one to solve the system. This method
is reviewed and discussed in Section 7.1

6.3 Easily solvable systems 3: Orthonormal or orthogonal matrix

Matrix A is orthogonal or orthonormal if the columns of A are mutually orthogonal unit
vectors.

That is, A = [a1 a2 . . . an] where ai = [ai1 ai2 . . . ain]T are unit vectors and the set
{a1 a2 . . . an} is mutually orthogonal (so ai · aj = 0 for i 6= j).

When A is orthonormal, A−1 = AT . This result is true since

ATA ≡

 aT
1

...
aT
n

 [a1 a2 . . . an] = In ≡ diag{1, 1, . . . , 1}.

Also check that AAT = In: AATA ≡ A (ATA)︸ ︷︷ ︸
In

= A and AATA ≡ (AAT)A

These properties can be taken as a definition of an orthonomal matrix: A−1 = AT if
and only if A is orthonormal.

Thus, if A is orthonormal, the solution to Ax = b is simply x = ATb.
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Example: Find the solution to the set of equations

0.48x1 + 0.64x2 + 0.60x3 = 3.56
0.36x1 + 0.48x2 − 0.80x3 = −1.08
0.80x1 − 0.60x2 = −0.40

or

x1

a1︷ ︸︸ ︷ 0.48
0.36
0.80

+x2

a2︷ ︸︸ ︷ 0.64
0.48
−0.60

+x3

a3︷ ︸︸ ︷ 0.60
−0.80

0.00

 =

 3.56
−1.08
−0.40

 .
So A = [a1 a2 a3].

Solution: By checking that ai · aj = 1 for i = j = 0 for i 6= j, it is easy to see that A
is orthonormal. So we have the solution

x = ATb =

 aT1
aT2
aT3

b

and
x1 = aT1 b = 0.48 · 3.56− 0.36 · 1.08− 0.80 · 0.40

= 1.7088− 0.3888− 0.3200 = 1.0
x2 = aT2 b = 0.64 · 3.56− 0.48 · 1.08 + 0.60 · 0.40

= 2.2784− 0.5184 + 0.2400 = 2.0
x3 = aT3 b = 0.60 · 3.56 + 0.80 · 1.08

= 2.136 + 0.864 = 3.0.

�

7 Factorising matrices

As we saw in the previous section, matrices with special forms are often much easier to
work with than arbitrary matrices. The remainder of this part of the course is focused
on how we can manipulate an arbitrary given matrix into a form that is convenient for
a stated problem. This is known as factorising or decomposing matrices.

There are 3 factorisations we will study in various degrees of depth: LU-factorisation,
Singular Value Decomposition (SVD) and QR decomposition. A brief summary is given
here:

• Elimination (LU decomposition): A = LU

– Lower triangular matrix × Upper triangular matrix

• Singular Value Decomposition (SVD): A = UDVT
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– × diag(singular values) × Orthogonal (rows)

– Orthonormal columns in U and V:
the left and right singular vectors, respectively

– Left singular vector: an eigenvector of the square m×m matrix AAT

– Right singular vector: an eigenvector of the square n× n matrix ATA

– Singular value: the square root of an eigenvalue of ATA (or AAT).

• Orthogonalisation (QR decomposition): A = QR

– Orthogonal matrix (columns) ×

16



7.1 LU decomposition via Gaussian elimination

7.1.1 Gaussian elimination to solve systems linear equations (review)

You should be familiar with the process of Gaussian elimination (or row reduction) in
which the equation Ax = b (where A is arbitrary) in transformed into the equivalent
equation Cx = d where C is triangular, making the equation easy to solve. We review
the process here.

It is easy to show that multiplying both sides of Ax = b from the left by any nonsingular
matrix M does not affect the solution. That is MAx = Mb has the same solution as
Ax = b, since

MAx = Mb⇒ x = (MA)−1 Mb = A−1M−1Mb = A−1b.

We know from the above result that we can multiple both sides by a series of elemen-
tary matrices which perform various row operations on A: the three types of operation
are row swapping, row multiplication and adding some multiple of one row to another
row. Repeated application of these three operations (that is, repeated multiplication
by elementary matrices) to both sides of the equation transforms it to Cx = d where
C = M1 . . .MkA is in upper triangular form (so the only non-zero elements of C are
on or above the diagonal) and d = M1 . . .Mkb.

7.1.2 Gaussian elimination as LU decomposition

It turns out that Gaussian elimination can be viewed a LU decomposition in which a
matrix A is written as the product of a lower triangular matrix L and an upper triangular
matrix U so that A = LU. Recall that the Gaussian elimination process starts with
an arbitrary square matrix A, multiplies it by a series of elementary vectors, M1 . . .Mk

to get U = M1 . . .MkA where U is upper triangular (we called it C in the earlier
discussion).

Now (check that you understand the following statements), each of the elementary matri-
ces is lower triangular (so long as there are no row swapping operations) and the inverse
of lower triangular matrices are lower triangular too, so each of M−1

i , for i = 1, . . . , k is
lower triangular. Finally, the product of lower triangular matrices is also lower triangular
so

U = M1 . . .MkA =⇒ LU = A,

where L = (M1 . . .Mk)
−1 = M−1

k . . .M−1
1 . If row permutations (row swaps) are needed

in the Gaussian elimination process, we can’t find an LU decomposition for A but can
find an LU decomposition for the permuted matrix PA, where P describes the necessary
permutations. Obviously, the permuted system has the same solution as the unpermuted
system.

The computational complexity of solving a system of n equations in n unknown using
Gaussian elimination is O(n3). It is typically a stable algorithm, though potential for
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instability arises when a leading non-zero entry is very small (as we divide through by
this entry). Reordering of the rows before the start of the row reduction process so that
the largest leading non-zero elements are selected first can avoid this cause of instability.
This technique is known as pivoting.

We won’t look further at LU decompositions but will spend considerable time looking
first at singular value decomposition and its uses and, later, when we consider the Least
Squares framework, QR decompositions and its applications.

18



8 Singular Value Decomposition (SVD)

Singular Value Decomposition is a method of factorising any ordinary rectangular m×n
matrix. It is most frequently applied to problems where m ≥ n (more equations than
unknowns).

It has applications in signal processing, pattern recognition, and statistics where it is
used for least squares data fitting, regularised inverse problems, finding pseudoinverses
and performing principal component analysis (PCA). The application areas are many
and varied but include computational tomography, seismology, weather forecast, image
compression, image denoising, genetic analyses and more.

It is particularly useful when a given set of linear equations is singular or very close
to singular in which case conventional solutions (e.g. by LU decomposition) are either
not available or produce senseless results (due to the problems being ill-posed). In these
cases, SVD can diagnose and, in some cases, solve the problem giving an useful numerical
answer (though not necessarily the expected one!).

8.1 Overview of an SVD

SVD represents an ordinary m× n matrix A as A = UDVT where:

U : an m×m column-orthogonal matrix; its m columns are the m eigenvectors u of
the m ×m matrix AAT. The vectors {u} are known as the left singular vectors
of A.

V : an n × n orthogonal matrix; its n columns are the eigenvectors v of the n × n
matrix ATA . The vectors {v} are known as the right singular vectors of A.

D : an m × n matrix whose only non-zero elements are the first r entries on the
diagonal where r is the rank of A and dkk = σk =

√
λk where λk is the eigenvalue

associated with vk.

The singular values, σk are ordered so that σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

Since A = UDVT, we can write

A =
r∑

k=1

σkukv
T
k (3)

= σ1u1v
T
1 + σ2u2v

T
2 + . . .+ σrurv

T
r .

This representation suggests the approximation of A by the truncated series,

Âρ =

ρ∑
k=1

σkukv
T
k for ρ < r.

Notice that when m > n (that is, the problem is over-determined), there are at most n
non-zero singular values. In this case, we can truncate the matrix U to be m×n and the
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matrix D to be a n×n diagonal matrix. This leaves the sum in Equation 3 unaltered as
the rows or columns that are removed contribute nothing to that sum. In the following
example, we employ this strategy.

Example: Find the SVD of the matrix A where

A =

 0 1
1 1
1 0


Solution: First find the eigenvectors and eigenvalues of AAT and ATA. Since A is
3×2, we need only find the top two eigenvalues and eigenvectors of each of these matrices.

ATA =

[
0 1 1
1 1 0

] 0 1
1 1
1 0

 =

[
2 1
1 2

]
which has eigenvalues λ1 = 3 and λ2 = 1. The associated eigenvectors are, respectively,

v1 =
1√
2

[
1
1

]
and v2 =

1√
2

[
−1

1

]
.

Notice that the eigenvectors have been normalised.

Similarly,

AAT =

 0 1
1 1
1 0

[ 0 1 1
1 1 0

]
=

 1 1 0
1 2 1
0 1 1


The top two eigenvalues are µ1 = 3 and µ2 = 1. Notice that these are the same as the
top two eigenvalues of ATA. The associated eigenvectors are

u1 =
1√
6

 1
2
1

 and u2 =
1√
2

 1
0
−1

 .
The singular values are given by σi =

√
λi, so σ1 =

√
3 and σ2 = 1.

We can thus write A as

A =

 0 1
1 1
1 0

 = [u1 u2]︸ ︷︷ ︸
U

diag(σ1, σ2)︸ ︷︷ ︸
D

[
vT

1

vT
2

]
︸ ︷︷ ︸

VT

=

 1/
√

6 1/
√

2

2/
√

6 0

1/
√

6 −1/
√

2


︸ ︷︷ ︸

U

[ √
3 0
0 1

]
︸ ︷︷ ︸

D

[
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
.︸ ︷︷ ︸

VT
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The matrix approximation Â1 is calculated as follows:

Â1 = σ1u1v
T
1

=
√

3 · 1√
6

 1
2
1

 · 1√
2

[1 1] = 1
2

 1
2
1

 [1 1] =

 0.5 0.5
1 1
0.5 0.5



while the approximation can be extended to Â2(= A) by

Â2 = Â1 + σ2u2v
T
2

≡

 0.5 0.5
1 1
0.5 0.5

+ 1 · 1√
2

 1
0
−1

 1√
2

[−1 1]

≡

 0.5 0.5
1 1
0.5 0.5

+

 −0.5 0.5
0 0

0.5 −0.5

 =

 0 1
1 1
1 0

 .
︸ ︷︷ ︸

A

8.2 Structure of SVD

In the overdetermined case, in which m > n, so that we have more equations than
unknowns, we have the following structure:

A = U D VT

In the underdetermined case, in which m < n, so that we have fewer equations than
unknowns, we have the following structure:

A = U D VT

Note that, in the overdetermined case, we truncate U and D since there are at most
r ≤ n < m non-zero singular values of A we can omit the ui that contribute nothing to
matrix product.

The matrix V is orthonormal, so VVT = VTV = In. U is orthonormal when m ≥ n,
but if m < n, the singular values σj = 0 for j = m + 1, . . . , n and the corresponding
columns of U are also 0 so that UUT = diag(1, . . . , 1, 0, . . . , 0) where only the first m
elements of the diagonal are 1 and the elements from m+ 1 to n are zero.

Note that the SVD of matrix A is only unique up to permutations of the columns/rows.
For this reason, we insist that the singular values and corresponding singular vectors
are arranged so that the singular values are in descending order σ1 ≥ σ2 ≥ . . .. Even
then, some of the σi’s may have the same value so columns of U and V could be
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permuted. Aside from these possible permuations, the representation is unique. Be
aware when calculating the SVD with various software that the you may need to enforce
this canonical representation.

8.3 Condition number of a matrix

The concept of a condition number was introduced in Section 2. This concept can
be applied to a matrices and is useful, for example, when considering solutions to the
equation Ax = b. Solutions to this equation will change greatly with small changes in
b when A has a large condition number, while the small changes in b will lead to only
small changes in the solution when the matrix has a small condition number. We can
define the condition number of a matrix as the maximum of the ratio of the relative error
in x divided by the relative error in b, where the maximum is taken over all possible x
and b.

To give a full description of how to derive the condition number of A, we would have
to introduce matrix norms which we do not have time to do here. Instead, we simply
present the result here that the condition number of A can be defined as the ratio of
the largest to the smallest non-zero singular values:

cond(A) =
σmax

σmin
.

If the smallest singular value of A is 0, A is singular (has no inverse) but the condition
number of A is still defined.

The condition number of A is considered to be large, and the matrix is ill-conditioned,
if roughly log(cond(A)) ≥ k where k is the number of digits of precision in the matrix
entries.

Example: Find the condition number of the matrix A =

[
2 −3
1 −1

]
Solution: Using a matrix algebra package, find the singular values of A to be 3.864 and
0.259, so cond(A) = 3.864

0.259 ≈ 14.9. �

Example: The singular values of the matrix A =

[
1.2969 0.8648
0.2161 0.1441

]
are approximately

1.58 and 6.33×10−9 so the condition number is about 2.5×108. This very large condition
number means that A is an ill-conditioned matrix.

Ill-conditioning means that standard approaches to solving linear systems can be very

unstable. For example, consider the linear system Ax = b where b =

[
0.8642
0.1140

]
. This

has the exact solution x =

[
2
−2

]
.

But standard matrix software (linsolve in Matlab), gives the solution as

[
2.59
−3.89

]
×

106 which is radically wrong!
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It also means that if some number in the system is measured slightly differently, the
results we get can change enormously. For example, if the measurement vector b is

just slightly different, say b =

[
0.86419999
0.11400001

]
, then the exact solution is now close to

x =

[
0.9911
−0.4870

]
which represents an enormous change in the solution relative to the

small change in the original system. �

8.4 Principal Components Analysis (PCA)

PCA is a common technique for identifying patterns in high-dimensional data. It trans-
forms the original correlated measurements into uncorrelated measurements. One of the
main uses of PCA is as a dimension reduction tool, in which only the directions in which
the data varies the most are considered. This can lead to enormous simplifications of
the data and provide insights for a wide variety of data. PCA is alternatively known
as the Karhunen-Loéve transform (KLT), the Hotelling transform or proper orthogonal
decomposition (POD)

These new coordinate axes (along which the data varies the most) are are known as
principal components and are, by construction, orthogonal.

A useful visualisation tool to aid your understanding of PCA is at http://setosa.io/ev/principal-
component-analysis/.

Suppose we have a m × n matrix of measurement data A. For example, n trials where
m properties were measured in each trial. Then, if ai are the measurements from the
ith trial,

A =
[

a1 a2 . . . an
]

=


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .
For example, A could be n = 100 observations of the position of an object measured in
m = 3 dimensions.

In the following, assume that the rows of A have been centred, so that the mean of each
row is 0 (each rows of A corresponds to a dimension in the original data). If this is not
already the case, it can be achieved by subtracting the mean of each row of A from each
element of that row. That is, set element

aij = aij −
n∑
j=1

aij/n

to centre the rows of A. This is a critical assumption and allows us to concentrate on
the variance.

Each observation A is just the m-vector ai. The idea of PCA is to chose a new basis
u1, . . . ,uk to express the data points (the ai’s) so that the variance of the measurements
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is greatest in the direction of u1, the next greatest variance is in the direction of u2 and
so on, down to uk. Ideally, k < m.

Define the covariance matrix of A by

Σ =
1

n− 1
AAT .

Then Σ is an m×m matrix where the diagonal terms of Σ are the variance of the ith
dimension of the measurement, while the off-diagonal terms of Σ are the covariances
between different measurements.

It turns out that the best basis to choose are the k eigenvectors of Σ corresponding its
k largest eigenvalues. These are known as the principal components of A. Call them
u1, . . . ,uk and form the matrix

Uk = [u1, . . . ,uk]

From results we have seen earlier about symmetric matrices, this an orthogonal matrix.
We include the subscript k as we may decide to truncate this matrix by including only the
eigenvectors corresponding to the largest eigenvalues. That is, if Σ has K eigenvectors
and associated eigenvalues, and the largest k eigenvalues are substantially larger than
the remaining K − k, it is reasonable to form Uk containing only the most significant k
eigenvectors.

We can now represent the original measurements, A, in this this new co-ordinate system.
The amount of measurement vector ai in direction uj is given by u>j ai: this is the jth
coordinate of ai in this new coordinate system. So if we consider just the two dimension
space defined by the top two principal components, ai has coordinates

UT
2 ai =

[
uT

1

uT
2

]
ai =

[
uT

1 ai
uT

2 ai

]
.

We usually consider this space independently of how it relates to the originalm-dimensional
space but we can consider it as embedded in the original space.

Example: Find the principal components of the data matrix A where

A =

 −4 3 −5 18 6 −5
2 6 −2 10 1 −1
7 11 3 6 9 3

 .
Find the amount of the first principal component in the first measurement vector of A
(that is, the first column), and calculate the projection matrix for projecting A onto the
first two principal components.

Solution: First, centre the rows of A so that each row has mean zero. Call this centred
matrix B.

B =

 −6.1667 0.8333 −7.1667 15.8333 3.8333 −7.1667
−0.6667 3.3333 −4.6667 7.3333 −1.6667 −3.6667

0.5 4.5 −3.5 −0.5 2.5 −3.5

 .
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Now form the covariance matrix for the centred data matrix, Σ = 1
nBBT:

Σ =
1

5

 406.8333 176.3333 52.5
176.3333 103.3333 36.0
52.5000 36.0000 51.5

 .
This matrix has eigenvalues 99.31, 9.46 and 3.561 corresponding to eigenvectors

[u1,u2,u3] =

 0.8987 0.2829 0.3352
0.4158 −0.3062 −0.8564
0.1396 −0.9090 0.3928

 = U.

These eigenvectors are the principal components of A (and of B).

The amount of the first principal component in a1 is

u>1 a1 = [0.8987, 0.4158, 0.1396]

 −4
2
7

 = −1.756.

8.5 What is connection between PCA and SVD?

Given A such that the rows of A have zero mean, define Y = 1√
n−1

AT (which has

columns with zero mean). Then YTY = Σ, the covariance of A. We have seen that the
principal components of A are the eigenvectors of Σ.

Now, if we calculate the SVD of Y to get Y = UDVT , the columns of V are the
eigenvectors of YTY = Σ. Therefore, the columns of V are the principal components
of A.

8.6 Problems with SVD and PCA

As we have seen, SVD and PCA are powerful analysis tools and SVD is a very stable
procedure. They do not, however, come free of cost.

The time complexity of SVD is O(m2n + n3) to calculate all of U,V and D (where,
typically, m� n) while faster algorithms are available when some elements of the SVD
are not required.

However, the matrices U and V are not at all sparse, where we say a matrix is sparse
when it mainly consists of zeros. Spareness is a commonly assumed property in large
systems as it reflects the observation that most effects are local and do not influence all
parameters in the system — a large world with small neighbourhoods. Sparse matrices
are typically computationally efficient to work with and store.

A second potential set-back is that SVD and PCA only work with data that can be (co-
herently) expressed as a two dimensional array (that is, a matrix). When data naturally
has 3 or 4 dimensions arrays (tensors), as is common in many engineering applications,
there is no perfect analogue to SVD or PCA or even eigenvectors.
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Finally, when using PCA for data analysis, you should be aware of the strong assumptions
being made. In particular, dependencies in the data are assumed to be linear, which
may not be the case. PCA and SVD will always give an answer but it is up to the user
to interpret whether or not it is a valid answer to any question they are interested in.

9 Least squares
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Figure 3: Left: Relationship between cognitive test scores for 3-4 year old children
and mother’s IQ score. Right: The same data with a least squares best fit line
added. Discussed in Gelman and Hill, 2007, Cambridge University Press, data at
http://www.stat.columbia.edu/ gelman/arm/examples/child.iq/kidiq.dta

You are probably familiar with the basic idea of least squares: we have a set of mea-
surements and we want to fit a model to them. But no sufficiently simple model exactly
fits all of the points at the same time. So how choose the model that is most satisfac-
tory? The answer often given is that we chose the model that satisfies the least squares
criterion: that is, the model for which the sum of the squares of differences between the
predictions from the model and the actual observations is minimised.

For example, in Figure 3, we might want to fit a linear model to the relationship between
a mother’s IQ score and her young child’s score in a cognitive test. This should be familiar
to you as the linear regression problem in statistics.

This problem arises when we have an overdetermined linear system: recall that Au = b
is overdetermined when A is m× n matrix with m > n:

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn



u1

u2
...
un

 =


b1
b2
...
bm

 .
In this case, A−1 does not exist and there is no u that solves this problem. (We ignore
the highly unusual cases where a solution does exist.)

The goal, then, is to find the best solution u∗ to the problem.
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Example 1: Fitting m = 4 measurements by a small number n = 2 of parameters (e.g.
linear regression in statistics)

Want to find the straight line bx = u1 + u2x where we have observed the points bx at x.
u1 + u2 · 0 = 1
u1 + u2 · 1 = 9
u1 + u2 · 2 = 9
u1 + u2 · 4 = 21

⇔




1 0
1 1
1 3
1 4

 [ u1

u2

]
=


1
9
9

21



x0

b0 = 1

1

b1 = 9

2 3

b3 = 9

4

b4 = 21

5

The above set of equations clearly has no solution as vector b is not a linear combination
of the two column vectors from A:

1 0
1 1
1 3
1 4

[ u1

u2

]
6=


1
9
9

21


For example, The line b = 1 + 8x through the first two points is almost certainly not the
best line:

x0

b0 = 1

1

b1 = 9

2 3

b3 = 9

4

b4 = 21

5

e3 = −16
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But why is this not the best line: look at the error or residual , e = b −Au. For the
two points the line does not pass through the error is ex = bx− (1 + 8x) is large: e3 = 16
and e4 = 12. The Total square error, E(u) = 0 + 0 + 256 + 144 = 400 .

Notice that the total square error is given by.

E(u) = eTe ≡‖ e ‖2= (b−Au)T(b−Au)

The Least Squares method to find the chooses a solution u∗ that minimises E(u).

How do we find u∗? To find the minimum of E(u), we can differentiate with respect to
u, set to 0 and attempt to solve for u:

E(u) = (b−Au)T(b−Au)

= bTb− 2uTATb + uTATAu

Differentiating and setting to 0:

∂E(u)
∂u = 0

=⇒ −2ATb + 2ATAu = 0

=⇒ ATAu = ATb

This equation, ATAu = ATb is called the normal equation.

The least squares estimate, u∗, is the solution to the normal equation.

Notice that ATA is square and symmetric. In some cases it may be possible to directly
find the inverse (in particular, when A has independent columns, then ATA is positive
definite and ATA is invertible in which case u∗ = (ATA)−1ATb). In other cases, this
approach may be highly unstable, so stable numerical techniques need to be employed.

9.1 Computing the Least Squares solution, u∗

We consider three methods for computing the least squares solution to a linear sys-
tem. They are Gaussian elimination, QR Decomposition (aka Orthogonalisation) and
computation of the pseudo-inverse via SVD.

9.2 Computing u∗ via Gaussian elimination

Given the normal equation ATAu = ATb, we may be tempted to find the solution by
Gaussian elimination, where we reduce the the matrix ATA to upper triangular form
using elementary row operations.

This solution can work but is highly unstable. To see why it is unstable, consider the
condition number of the matrix ATA. It can be shown that the condition number of
ATA is the square of the condition number of A (if we take σmin to be the smallest
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non-zero singular value in the definition of condition number). So even if A has only
moderately widely spread singular values, ATA can have a very large condition number
and solution by row reduction can be very unstable.
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9.3 Computing u∗ via orthogonalisation (QR decomposition)

QR-decompostion presents a much more stable solution to the normal equation ATAu =
ATb.

The Orthogonalisation of matrix A is given by A = QR where

• Q is an m × n matrix with n orthonormal columns: . Construction of Q is
discussed below.

• R is an n× n upper triangular matrix: . R is given by R = QTA.

This factorisation reduces the normal equation to a much simpler equation:

ATAu = ATb

=⇒ (QR)TQRu∗ = (QR)Tb

=⇒ RTQTQRu∗ = RTQTb

=⇒ RTRu∗ = RTQTb since QTQ = I

=⇒ Ru∗ = QTb multiplying both sides by (RT)−1.

This is easy to solve via back-substitution, since R is upper triangular.

9.3.1 Constructing the orthogonal matrix Q by Gram-Schmidt

The orthonormal columns of Q, call them q1, . . . ,qn, are obtained iteratively from the
columns a1, . . . ,an of A. The basic idea is that we set q1 to be a1. q2 is then set to be
a2 and any part of it in the direction of q1(= a1) is subtracted out, so ensure that it is
orthogonal to q1. Similarly, q3 is set to be a3 with any parts in the direction of q1 or q2

are subtracted. All these vectors are normalised to have magnitude 1 at each step.

This is called the Gram-Schmidt process and is more formally defined as follows:

Set v1 = a1. Then q1 = v1
|v1| .

Set v2 = a2 −
(
aT

2 q1

)
q1. Then q2 = v2

|v2| .
...

...
...

...

Set vj = aj −
j−1∑
i=1

(
aT
j qi

)
qi. Then qj =

vj

|vj | .

Note that |v| = vTv is the norm of v.

Having found Q, find R by setting R = Q>A. R is indeed upper triangular since the
ith column of Q is, by construction, orthogonal to first i− 1 columns of A.

Producing Q and R takes twice as long as the mn2 steps to form ATA, but that extra
cost gives a more reliable solution.
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There is another method of orthogonalisation that we don’t cover here which has better
numerical stability using so-called Householder reflectors.

Example: Use the Gram-Schmidt process to orthogonalise the matrix

A =


1 0 0
1 0 1
1 1 0
1 1 1

 .

Solution: Let v1 = a1 =


1
1
1
1

 and then normalise to get q1 = v1
|v1| =


0.5
0.5
0.5
0.5

. Now

set v2 = a2 − (a>2 q1)q1 =


0
0
1
1

 −
[ 0 0 1 1

] 
0.5
0.5
0.5
0.5





0.5
0.5
0.5
0.5

 =


−0.5
−0.5

0.5
0.5

.

Since v2 = 1, q2 = v2
|v2| = v2.

Finally, to get q3, set

v3 = a3 − (a>3 q1)q1 − (a>3 q2)q2

=


0
1
0
1

−
[ 0 1 0 1

] 
0.5
0.5
0.5
0.5





0.5
0.5
0.5
0.5

−
[ 0 1 0 1

] 
−0.5
−0.5

0.5
0.5




−0.5
−0.5

0.5
0.5



=


0.5
−0.5

0.5
−0.5


which is also normalised, so q3 = v3 and

Q =
1

2


1 −1 1
1 −1 −1
1 1 1
1 1 −1

 .
We find R as follows:

R = QTA =
1

2

 1 1 1 1
−1 −1 1 1

1 −1 1 −1




1 0 0
1 0 1
1 1 0
1 1 1

 =

 2 1 1
0 1 0
0 0 −1

 .
�
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9.4 Computing u∗ via SVD: the Pseudoinverse

The most stable computation to find the solution to the normal equation is given by
singular value decomposition (SVD).

Recall that SVD decomposes the m× n matrix A as A = UDVT where:

• U is a column-orthonormal n×m matrix, so UTU = In,

• V is an orthonormal n× n matrix so VTV = In (indeed, VT = V−1), and

• D = diag{σ1, . . . , σn} is a diagonal n × n matrix of singular values. Since D is
diagonal, DT = D.

Now consider the product ATA that arises in the normal equation. Substituting A =
UDVT in this product gives:

ATA = (UDVT)TUDVT = VDTUTUDVT = VDTDVT = VD2VT.

We can thus express the normal equation in a much simplified form:

ATAu = ATb

=⇒ VD2VTu∗ = VDUTb

=⇒ D2VTu∗ = DUTb

=⇒ VTu∗ =
(
D2
)−1

D︸ ︷︷ ︸
D+

UTb

=⇒ u∗ = VD+UTb.

The matrix D+ is called the “pseudoinverse” of D and is defined as follows: D+ =
diag

{
σ+

1 , . . . , σ
+
n

}
where

σ+
i =

{
σ−1
i = 1

σi
if σi > 0

0 otherwise.

Thus if rank(A) = n, then all the singular values of A are non-zero, in which case

D+ = D−1 = diag
{

1
σ1
, . . . , 1

σn

}
. In this case, In the former case, DD+ = D+D = In.

However, if rank(A) = r < n, there are only r < n non-zero singular values and D+ =
diag{ 1

σ1
, . . . , 1

σk
, 0, . . . , 0︸ ︷︷ ︸
n−r zeros

}. In this case, DD+ = D+D = diag{1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
n−r zeros

} —

which is very close to, but not quite, the identity matrix.

We call the product matrix VD+UT the pseudoinverse of A, written A+. That is ,

A+ = VD+UT.

If rank(A) = n, then A+A = VD+UTUDVT = VD+DVT = VVT = In, and A+ =
A−1.
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Recall that the matrix ATA is ill-conditioned when the smallest singular value, σn, is
very small. This leads to instability in computing the solution to the normal equation.
The pseudo-inverse method provides a way of removing this instability to get an approx-
imate but stable solution by simply removing the smallest singular value or values.

9.4.1 Properties of the pseudo inverse A+

The pseudo-inverse of A always exists (all we need to do is calculate the SVD and form
the product described above).

The SVD of A gives A = UDVT from which we get AV = UD or, considering the
individual columns, Avi = σiui.

• If A is a square matrix such that A−1 exists, then the singular values for A−1 are
σ−1 = 1

σ and A−1ui = 1
σi

vi

• If A−1 does not exist, then the pseudoinverse matrix A+ does exist such that:

A+ui =

{ 1
σi

vi if i ≤ r = rank(A) i.e. if σi > 0

0 for i > r.

• Pseudoinverse matrix A+ has the same rank r as A

• The matrices AA+ and A+A are also as near as possible to the m×m and n×n
identity matrices, respectively

• AA+ – the m×m projection matrix onto the column space of A

• A+A – the n× n projection matrix onto the row space of A

Example: Find the pseudo-inverse of A =

 0 1
1 1
1 0

 .
Solution: The singular value decomposition of A is

A = UDV> =


1√
6

1√
2

2√
6

0

1√
6
− 1√

2


︸ ︷︷ ︸

U

[ √
3 0
0 1

]
︸ ︷︷ ︸

D

[
1√
2

1√
2

− 1√
2

1√
2

]
︸ ︷︷ ︸

VT

.

So the pseudo-inverse of A is

A+ = VD+U> =

[ 1√
2
− 1√

2
1√
2

1√
2

]
︸ ︷︷ ︸

V

[
1√
3

0

0 1

]
︸ ︷︷ ︸

D+

[ 1√
6

2√
6

1√
6

1√
2

0 − 1√
2

]
︸ ︷︷ ︸

UT

=

[
−1

3
1
3

2
3

2
3

1
3 −1

3

]
.
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Now let’s check the products AA+ and A+A:

AA+ =

 0 1
1 1
1 0

[ −1
3

1
3

2
3

2
3

1
3 −1

3

]
=


2
3

1
3 −1

3
1
3

2
3

1
3

−1
3

1
3

2
3


while

A+A =

[
−1

3
1
3

2
3

2
3

1
3 −1

3

] 0 1
1 1
1 0

 =

[
1 0
0 1

]
.

�

We end our discussion on computational methods in linear algebra here. We have only
touched on a small number of the wide variety of techniques used in this area, but we
have tried to direct our attention to some of the more common and useful techniques.
This is a rich and extremely useful area of study and we encourage interested students
to look into fields where these tools and ideas are applied and explored further including
computer vision, engineering, physics, applied mathematics and statistics.

10 Introduction to stochastic processes and probability

Models and methods that have been considered so far in the course have been determinis-
tic — a single input produces the same answer every time while solutions to problems are
aimed at finding one correct answer or a close approximations to it. These deterministic
models, methods and approximations can be very accurate, particularly in engineering
and physical applications.

Many systems, however, are inherently random. Apparently identical inputs may pro-
duce radically different outputs and no two realisations of the system are exactly the
same. Whether that randomness is the result of our imprecise measurements (were the
inputs exactly the same?) or there is a fundamental randomness built into the system
(quantum uncertainty?), we should attempt to model and quantify this uncertainty. We
regularly refer to non-deterministic systems as stochastic rather than random to avoid
the common usage of random (where it is often used to mean uniformly random where
every outcome is equally likely).

The framework we use to make these models is probability theory and, ideally, we use
statistical inference to find the relationship between our models and the system we are
studying. Simulation is one of the tools we use to understand how our models behave and
is often used where exact statistical inference is prohibitively difficult. Both statistical
inference and simulation rely heavily on computational power and algorithms. Model
building is typically more of an art than a science and is done by hand (or mind).

In this section, we look at some of the basic terminology of probability theory, introduce
the fundamental ideas behind statistical inference and see how we can simulate stochastic
processes in silico.
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11 Primer on Probability

The basic challenge of probability theory and applied probability is to understand and
describe the laws according to which events occur.

A event can be pretty much anything. Commonly used examples in probability are
rolling dice, picking balls out of an urn or tossing a coin — these are commonly used
because they are simple, easy to understand and aid our intuition. But all sorts of events
can be thought of as random: the amount of rain falling in an area in a given period,
the number of mutations that occur when a cell splits, the age of the person currently
reading this sentence. Indeed, if we consider randomness to a a property of our state of
knowledge of an event, any event can be considered random.

Formally, we define a probability to be a number between 0 and 1 assigned to a set of
outcomes of a random process called an event. This number is typically interpreted as
the chance of the event occurring or as the degree of plausibility we place on the event
occurring.

The set of all outcomes that the random process can take is known as the state space
and is often denoted Ω.

An event, A, is a subset of the state space: A ⊆ Ω. When Ω is finite or countable,
probability can be viewed as a function from the set of all subsets of Ω, written A, to
the interval [0, 1], that is P : A → [0, 1]. A, the set of all subsets of Ω, is called the
power set of Ω. That is, for some event or collection of events, we view the function P
as giving the probability of that event occurring.

This interpretation is not mathematically correct when Ω is uncountable (for example,
when our random process can take any value in continuous interval) but it will be
sufficient to guide our intuition here.

Example: Tossing a coin 2 times and recording the result of each toss. The random
process is tossing the coin twice. The state space is the set of all possible outcomes:
Ω = {HH,HT, TH, TT}.
An example of an event is that we throw a tails first: in this case A = {TH, TT}.
There are 24 = 16 possible events that we could consider here as that is the size of the
power-set (the set of all possible subsets) of Ω. For completeness, we write down all pos-
sible events: A = {∅, {HH}, {HT}, {HT}, {TT}, {HH,HT}, {HH,TH}, {HH,TT},
{HT, TH}, {HT, TT}, {TH, TT}, {HH,HT, TH}, {HH,HT, TT}, {HH,TH, TT}, {HT, TH, TT},
Ω}. �

Note that sometimes we distinguish between simple and compound events. In the above
example, the simple events are {HH}, {HT}, {HT}, {TT} while compound events are
combinations of simple events.

Example: Length of time waiting for bus, measured from arrival at bus stop until bus
arrives. Supposing the buses come every 15 mins. Then Ω = [0, 15] (that is, any time in
the interval between 0 and 15 minutes). An example of an event is A = [0, 1] being the
event that the wait for the bus is at most 1 minute. �
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Let A and B be events. Then the event C that A and B occur is given by C = A ∩ B
while the event F that A or B occurs is given by D = A ∪ B. The event A does not
occur is given by Ac = Ā = Ω−A = Ω\A = {ω ∈ Ω : ω /∈ A}.
Example: Suppose we roll a fair die and record the value. Then Ω = {1, 2, 3, 4, 5, 6}.
Let A be the event that the roll is even, B be the event that we roll a 3 or a 6. Then
A = {2, 4, 6} and B = {3, 6}. The event that A and B occur is A ∩ B = {6} while the
event that A or B happens is A ∪ B = {2, 3, 4, 6}. The event that A does not occur is
Ac = {1, 3, 5} (A does not occur when the roll is odd). �

11.1 Conditional probability and independence

For events A and B, if we know that B occurred, what can we say about the probability
of A given that knowledge? This is captured by the concept of the conditional probability
of A given B is written P (A|B) and defined by

P (A|B) =
P (A ∩B)

P (B)
.

This is only defined where P (B) > 0.

Example: Suppose we roll a fair die and record the value. Let A be the event that 2 is
rolled and B be the event that the roll is an even number. What is the probability that
the roll is a two given that we know it is even? This is just P (A|B). We calculate it as
follows. P (B) = 1/2 and P (A ∩B) = P (A) = 1/6 since A ∩B = A. Thus

P (A|B) =
P (A ∩B)

P (B)
=

1/6

1/2
=

1

3
.

�

We say that events A and B are independent when P (A ∩ B) = P (A)P (B). From the
definition of conditional probability, it is clear that if A and B are independent, then
P (A|B) = P (A) and P (B|A) = P (A).

Note that we usually write P (A,B) instead of P (A ∩ B). More generally, we write
P (A1, . . . , Ak) for P (

⋂k
i=1Ai).

Rearranging the definition of conditional probability, we see that P (A,B) = P (A|B)P (B) =
P (B|A)P (B). Repeated applications of this result gives

P (A1, . . . , Ak) = P (A1|A2, . . . , Ak)P (A2|A3, . . . , Ak) . . . P (Ak−1|Ak)P (Ak).

11.2 Bayes’ Theorem

From the definition of conditional probability, we can prove the following result, known
as Bayes’ theorem.

P (B|A) =
P (A|B)P (B)

P (A)
.
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This simple result is important because it tells us how the forward probability P (A|B)
is related to the backward probability P (B|A). We’ll see that this relationship is crucial
to statistical inference.

11.3 Random variables

A random variable (r.v.) X is a variable whose value results from the measurement of
a random process. That is, a random variable is a measurement of some random event.
We use capital letters to denote random variables while lower-case letters to denote
particular observations or realisations of the random variable. So X = x is the event
that the random variable X takes the particular value x.

A discrete random variable takes a finite or countably infinite number of values, while
a continuous random variable can take an uncountable number of possible values.

Random variables are most commonly real valued (that is, their value is a real number)
but they can take any value. For example, we could consider random sequences, random
graphs or random trees. For now, lets stick with real valued random variables. Formally,
a real-valued random variable is a map from events to the real numbers: X : Ω→ R.

For discrete random variables, the probability distribution function (pdf) or prob-
ability mass function (pmf) is a function (rule, table) that assigns probabilities to
each possible value of X.

P (X = x) = p(x) is the probability that X = x. Sometimes write P (X = x) = px or
P (X = x) = f(x).

As usual, we have 0 ≤ P (X = x) ≤ 1 and
∑

x P (X = x) = 1.

For continuous random variables, the probability that a random variable takes any one
exact value is zero, that is P (X = x) = 0, so we consider instead the probability
density function, pX(x) (also written fX(x) or f(x)) from which we can calculate the
probability that X lies in the interval [a, b]:

Pr(a ≤ X ≤ b) =

∫ b

a
pX(x)dx.

pX(x) is real-valued, non-negative and normalised, i.e.,∫ ∞
−∞

px(x)dx = 1.

Note that the integral
∫ b
a pX(x)dx gives the area under the curve pX(x) between x = a

and x = b.

The cumulative distribution function (cdf), or simply the distribution function, is
defined, for both discrete and continuous random variables, by F (x) = P (X ≤ x).
This is a function that is monotonically increasing from 0 to 1. For continuous random
variables, the cdf is continuous, while for discrete random variables, it is a step function
with dis-continuities.
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These ideas immediately extend to multiple random variables, so that the joint proba-
bility density function of n random valuablesX1, . . . , Xn takes n arguments, pX1,...,Xn(x1, . . . , xn)
that is real-valued, non-negative and normalised. The probability that the point (X1, . . . , Xn)
lies in some region is just the multiple integral over that region.

Given a joint probability density function, we obtain the probability density for a subset
of the variables by integrating over the ones not in the subset. For example, given
pXY (x, y), we have

pX(x) =

∫ ∞
−∞

pXY (x, y)dy.

This process is known as marginalization. The process is the same for a discrete
variable, if we replace the integral with a sum:

P (x) =
∑
y∈Y

P (x, y)

Two random variables X and Y are independent when

pXY (x, y) = pX(x)pY (y).

Equivalently, X and Y are independent when

pY |X(y|x) = pY (y).

The expected value of a random variable X is called the mean and is given by

E[X] =

∫ ∞
−∞

xpX(x)dx.

For discrete random variables, this is written

E[X] =
∑
x∈X

xpx.

The symbol µ is often used for the mean.

The variance of a random variable is Var(X) = E[(X − E[X])2] = E[X2] − (E[X])2.
The variance is a measure of the spread of a random variable about its mean.

The expected value of a function f of X is

E[f(X)] =

∫ ∞
−∞

f(x)pX(x)dx.
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11.4 Commonly used distributions

In this course, we’ll primarily be discussing bioinformatics where some commonly used
discrete probability distribution functions are: Bernoulli, geometric, binomial, uniform
and Poisson. Commonly used continuous distributions are uniform, normal (Gaussian),
exponential, and gamma. Those are briefly described below. For more thorough de-
scriptions, refer to any decent statistics text or, more simply, the relevant Wikipedia
entries.

11.4.1 Bernoulli distribution

A random variable X with a Bernoulli distribution takes values 0 and 1. It takes the
value 1 on a ‘success’ which occurs with probability p where 0 ≤ p ≤ 1. It takes value
0 on a failure with probability q = 1 − p. Thus it has the single parameter p. If X is
Bernoulli, E[X] = q ·0+p ·1 = p and Var(X) = E[X2]−E[X]2 = q ·02 +p ·12−p2 = pq.

11.4.2 Geometric distribution

X has a geometric distribution when it is the number of Bernoulli trials that fail before
the first success. It therefore takes values in {0, 1, 2, 3, . . .}. If the Bernoulli trials have
probability p of success, the pdf for X is P (X = x) = (1− p)xp. If X is geometric,

E[X] =
q

p
and Var(X) =

q

p2
.

Note that the Geometric distribution can be defined instead as the total number of trials
required to get a single success. This version of the geometric can only take values in
{1, 2, 3, . . .}. The pdf, mean and variance all need to be adjusted accordingly.

11.4.3 Binomial distribution

X has a binomial distribution when it represents the number of successes in n Bernoulli
trials. There are thus two parameters required to describe a binomial random variable:
n, the number of Bernoulli trials undertaken, and p, the probability of success in the
Bernoulli trials. The pdf for X is

f(x) = P (X = x) =

(
n

x

)
px(1− p)n−x for x = 0, 1, 2, . . . , n.

where
(
n
x

)
= n!

x!(n−x)! . For a binomial variable X,

E[X] = np and V ar[X] = np(1− p) = npq.

We write X ∼ Bin(n, p) when X has a binomial distribution with parameters n and p.
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11.4.4 Poisson distribution

The Poisson distribution is used to model the number of rare events that occur in a
period of time. The events are considered to occur independently of each other. The
distribution has a single parameter, λ, and probability density function

f(x) = exp(−λ)
λx

x!
for x = 0, 1, 2, 3, . . . .

If X is Poisson,
E[X] = λ and V ar[X] = λ.

We write X ∼ Poiss(λ) when X has a Poisson distribution with parameter λ.

11.4.5 Uniform distribution (discrete or continuous)

Under the uniform distribution, all possible values are equally likely. So if X is discrete
and takes n possible values, P (X = xi) = 1/n for all xi.

If X is continuous and uniform over the interval [a, b], the density function is f(x) = 1
b−a .

In this case, write X ∼ U([a, b]).

11.4.6 Normal distribution

The Normal, or Gaussian, distribution, with mean µ and variance σ2, (µ ∈ R;σ > 0)
has density function

f(x) =
1

σ
√

2π
exp

{
− 1

2σ2
(x− µ)2

}
We write X ∼ N(µ, σ2).

The normal distribution is a widely used distribution in statistical modelling for a number
of reasons. A primary reason is that it arises as a consequence of the central limit theorem
which says that (under a few weak assumptions) the sum of a set of identical random
variables is well approximated by a normal distribution. Thus when random effects all
add together, they often result in a normal distribution. Measurement error terms are
typically modelled as normally distributed.

11.4.7 Exponential distribution

The Exponential distribution describes the time between rare events so always takes
non-negative values. It has a single parameter, λ known as the rate and has density
function

f(x) = λe−λx,

where x ≥ 0. If X is exponentially distributed,

E[X] =
1

λ
and Var(X) =

1

λ2
.

Write X ∼ Exp(λ).
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11.4.8 Gamma distribution

The Gamma distribution arises as the sum of a number of exponentials. It has two
parameters, k and θ, called the shape and scale, respectively. These parameters can be
used to specify the mean and variance of the distribution.

f(x) =
1

θkΓ(k)
xk−1 exp(−x/θ) for x > 0,

where Γ(k) =
∫∞

0 tk−1e−t dt is the gamma function (the extension of the factorial func-
tion, k!, to all real numbers). The mean and variance of a gamma distributed random
variable X is

E[X] = kθ and Var(X) = kθ2.

Write X ∼ Gamma(k, θ).

Note that the gamma distribution has different parametrisations which result in different
looking (but mathematically equivalent) expressions for the density, mean and variance
— be sure to check which parametrisation is being used.
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12 Inference

Let’s consider how we pose and tackle problems in a statistical framework. Suppose we
have a statistical model for some real process (from biology, physics, sociology, psychol-
ogy etc...). By having a model, we mean that given a set of control parameters, θ, we
can predict the outcome of the system, D. For example, our model may be that each
element of D is a draw from one of the distributions we described above so the control
parameters θ are just the parameter(s) of that distribution. Note that the model of the
process may include our (imperfect or incomplete) method of measuring the outcome.

In an abstract sense, then, we can consider the model as a black box with input vector
θ (the parameters) and output vector D, the data.

Parameter vector
θ

Model of system
Data

D

The model gives us the forward probability density of the outcome given the parameter,
that is, P (D|θ). This density is the called the likelihood, although, as we see below, we
don’t usually consider it as a density in the usual way.

This model is not deterministic. The data D can be seen as a random sample from the
probability distribution defined by the model (and parameters). Changing the value of
the parameters typically does not change the possible outcomes of the model but it will
change the shape of the probability distribution, making some outcomes more likely,
others less likely.

Example: Suppose we are interested the number of buses stopping at a bus stop over
the course of an hour. We watch for the hour between 8am and 9am every weekday
morning for 2 weeks. We observe the outcomes D = (10, 7, 5, 6, 12, 9, 10, 5, 14, 7). A
sensible model here might be the Poisson distribution where we say that the number
of bus arrivals in an interval is Poisson distributed with parameter λ. Our parameter
vector contains just the single parameter θ = (λ) and our data vector contains the 10
observed outcomes D = (D1, D2, . . . , D10) = (10, 7, 5, 6, 12, 9, 10, 5, 14, 7).

We derive the likelihood as follows.

The probability of observing the data D for a given value of λ is P (D|λ). Let’s assume
that each observation is independent of others then P (D|λ) =

∏
i P (Di|λ). That is, the

probability of observing this series of outcomes is just the product of the probabilities
of observing each particular outcome.

The likelihood of a single observation is given by the probability distribution function
for the Poisson since Di ∼ Poiss(λ) so:

P (Di|λ) =
λDi

Di!
e−λ.
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And so the likelihood of observing the full data D is just

P (D|λ) =
∏
i

P (Di|λ) =
∏
i

λDi

Di!
e−λ.

�

Note that the likelihood is a probability density function for D. But D is typically fixed
in the sense that we make the observations which remain fixed through-out the analysis.
We will be interested in considering the likelihood as a function of the parameters θ. The
likelihood is not a probability density function for θ since, in general

∫
θ∈Θ P (D|θ) dθ 6= 1.

12.1 Bayesian inference

The statistical problem essentially comes down to one of observing the outcome, D and
wanting to recover the parameters θ.

That is, we want to estimate θ given D. We summarise our estimate of θ as a probability
distribution, conditional on having observed D: P (θ|D). This is called the posterior
distribution of θ.

From Bayes’ theorem, we can express the posterior in terms of the likelihood:

P (θ|D) =
P (D|θ)P (θ)

P (D)
,

where P (D|θ) is the likelihood, P (θ) is the prior distribution of θ and P (D) is a
normalisation constant.

The prior p(θ) summarises what we know about a parameter before making any obser-
vations.

The posterior, p(θ|D) summarises what we know about θ after observing the data.

The likelihood tells us about the likeliness of the data under the model for any value
of θ. Recall that we consider the likelihood a function of θ rather than a probability
density for D; to emphasise this fact, people often write it explicitly as a function of θ:
L(θ) = P (D|θ).
Bayes’ theorem tells us how we update our beliefs given new data. Our updated beliefs
about θ are encapsulated in the posterior, while are initial beliefs are encapsulated in the
prior. Bayes’ theorem simply tells us that that we obtain the posterior by multiplying the
prior by the likelihood (and dividing by P (D) which we can think of as a normalisation
constant).

Note that we need the normalisation constant as the posterior is a probability distri-
bution for θ, so its density must integrate to 1, i.e.,

∫
θ∈Θ f(D|θ) dθ = 1. Thus the

normalisation constant is P (D) =
∫
θ∈Θ P (D|θ)P (θ) dθ. Typically this integral is hard

to calculate so we try to find that will avoid having to calculate it.

Example: In the example above, we found an expression for the likelihood. To find
an expression for the posterior, we need to decide on a prior distribution. Suppose we
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had looked up general info about bus stops in the city and found that the busiest stop
had an average of 30 buses an hour while the quietest had an average of less than 1 bus
per hour. We use this prior information to say that any rate parameter λ producing an
average of between 0 (λ = 0) and 30 (λ = 30) buses an hour is equally likely. This leads
us to the prior λ ∼ U(0, 30). The density of this prior is f(λ) = 1/30 for 0 ≤ λ ≤ 30.

To get the posterior density, we use the formula above:

f(λ|D) =
f(D|λ)f(λ)

P (D)
=

∏
i
λDi

Di!
e−λ 1

30

P (D)
.

The normalisation constant P (D) is the integral of the numerator over all possible values
of λ:

P (D) =

∫ 30

0

∏
i

λDi

Di!
e−λ

1

30
dλ.

�

While it is possible to calculate this particular integral analytically, for most posterior
distributions analytical integration is either very difficult or impossible. We’ll investigate
methods for avoiding calculating difficult integrals like this in later sections.

12.2 Maximum likelihood

It is often difficult or inconvenient to deal with the posterior distribution (when the prior
is hard to specify or the normalisation constant is impossible to calculate). In these cases,
we can still use our probabilistic model by concentrating solely on the likelihood function.
The aim here is typically to find the parameters that maximise the likelihood function.
That is, those parameters under which the observed data is most likely. We call this
parameter estimate the maximum likelihood estimate and write it as

θ̂ = arg max
θ
f(D|θ) = arg max

θ
L(θ;D)

This function can be maximise using standard tools from calculus (taking the derivative
and setting it to zero – it is often easier to work with the log of the likelihood function
as they both share a maximum) or using numerical techniques such as hill-climbing.

Many methods in statistics are based on maximum likelihood including regression,
χ2−tests, t−tests, ANOVA and so on.

Example: In the bus example above, we could find the maximum likelihood estimator
for λ by differentiating the log-likelihood, log(L(λ;D)) with respect to λ, setting the
result to zero and solving. Note that we often work with the log-likelihood rather than
the likelihood for a couple of reasons: it is often easier algebraically and it helps avoid
numerical under-flow when the likelihood itself is very small.
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13 Simulation

In a statistical setting there are a number of reasons we may wish to simulate from a
distribution or a stochastic process. We may wish to get a feeling for how the process
behaves or estimate some quantity that we cannot calculate analytically. An example
of the latter case arises in Bayesian statistics, where the aim is to find the posterior
distribution f(θ|x). This can be very difficult for two main reasons:

• The normalising constant (P (D), above) involves a p−dimensional integral (where
p is the number of parameters of the model, that is, θ = (θ1, θ2, . . . , θp)) which is
often impossible to calculate analytically.

• Even if we are able to find f(θ|x), if we want to find the marginal distribution for
some part of θ this may again involve a high-dimensional integral.

Both of these reasons boil down to the fact that integration is hard.

To get around this problem, our approach will be to obtain a sample of values, {θ(i)} for
i = 1, . . . , n, from the distribution of interest and use this sample to estimate properties
of the distribution.

For example, the mean of the distribution is E[θ] =
∑

θ∈Ω θPr(θ). We can estimate this

from the sample set by E[θ] ≈ θ̄ = 1
n

∑n
1 θ

(i). This is called the sample mean of θ, and
is indicated by the bar over the variable. The sample mean is an estimator of the mean.
More generally, we estimate the mean of a function of θ by E[g(θ)] ≈ ḡ(θ) = 1

n

∑n
1 g(θ(i)).

How good are these estimates? Since each sample θ(i) is a random variable, ḡ is a random
variable. That is, each time we obtain a different sample of values of θ, we will get a
different value for ḡ. Clearly, as n, the size of the sample, increases our estimate will
become more accurate but by how much?

It turns out that under quite general conditions, the main being that the samples, θ(i)

are independent of each other, ḡ is normally distributed with mean E[g] and variance
var(ḡ) = var(g)/n. When stated formally, this is known as a central limit theorem.

Thus, if we have a method of simulating lots of independent samples, we can quickly get
extremely accurate estimates of the quantities we are interested in.

Note that we can estimate more complex things than simple means using these methods.
For example, we can estimate the shape of distributions by drawing a histogram of the
sampled points.

So our attention turns to how we can generate this random sample. First we consider
how we can generate or simulate randomness at all using (deterministic) computers.

13.1 Random number generation

All simulation relies on a ready supply of random numbers. There are currently no known
methods to generate truly random numbers with a computer without measuring some
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physical process. There are, however, many fast and efficient methods for generating
pseudo-random numbers that, for most applications, are completely sufficient. The fact
that these are based on algorithms that are repeatable makes them superior to physically
based rngs for scientific simulation purposes.

We do not go into the mathematical details of pseudo-random number generators here
as most major languages have libraries that implement perfectly adequate algorithms.
It is worth considering briefly what we want in a RNG. The following quality criteria
are taken from L’Ecuyer in the Handbook of Computational Statistics, 2004.

The RNG must:

• have a very long period so that no repetitions of the cycle occur;

• be efficient in memory and speed;

• repeatable so that simulations can be reproduced;

• portable between implementations;

• have efficient jump-ahead methods so that a number of virtual streams of random
numbers can be created from a single stream for use in parallel computations; and,

• have good statistical properties approximating the uniform distribution on [0, 1].

It is relatively simple to come up with rngs that satisfy the first of these criteria, yet
the last is where the difficulties occur. The performance of rngs can be tested via the
diehard test suite (or more recently, the dieharder suite). See http://www.phy.duke.

edu/~rgb/General/dieharder.php.

13.2 Simulating from univariate distributions via Inversion sampling

Simulation from discrete or continuous distributions with cumulative density function
F (X) relies on the following result which tells us that all we need to simulate draws
from an arbitrary univariate distribution is a draw from U(0, 1) and use the inverse of
the cdf:

Result (Inversion method): If U ∼ U(0, 1), then X = F−1(U) produces a draw from
X where F−1 is the inverse of X.

Thus when the cdf is known and we can find the inverse, sampling from the distribution
is easy, as the following example shows.

Example (simulating an exponential random variable): if X ∼ Exp(λ), then
F (x) =

∫ x
−∞ f(t)dt =

∫ x
−∞ λe

−λtdt = 1− e−λx.

It is simple to see (by setting u = 1−e−λy and solving for y) that F−1(u) = − log(1−u)/λ.

Since 1 − U ∼ U(0, 1) when U ∼ U(0, 1), we can use this expression to generate ex-
ponential random variables by generating the uniform random variable u and setting
x = − log(u)/λ. �
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Figure 4: Sampling an Exp(1) random variable using the inversion method. A uniform
sample u ∼ U(0, 1) is drawn. Here u = 0.72 shown on the vertical axis. This is mapped,
via the cdf, to x ∼ Exp(1) to produce x = − log(1−u) = 1.272 shown on the horizontal
axis.

Note that with discrete random variables, a inverse of F is ambiguously defined (since
F is a step function). It is possible to extend the definition of an inverse to derive the
following method for simulating discrete random variables.

Inversion sampling from a discrete distribution: If X is discrete with P (X =
xi) = pi, we generate U ∼ U(0, 1) and set X = x1 if u < p1 and X = xi if

∑i−1
j=1 pj <

u <
∑i

j=1 pj .

Example: Use the inversion method to obtain samples from X ∼ Binomial(n = 5, p
= 0.3).

Solution: The possible values X can take are (0, 1, 2, 3, 4, 5) with probabilities f(x) =
(0.168, 0.360, 0.309, 0.132, 0.028, 0.002), respectively (from Section 11.5.3). Obtain the
cdf by taking the cumulative sum of these probabilities: F (X) = (0.168, 0.528, 0.837,
0.969, 0.998, 1.000). Now obtain samples from X by sampling u ∼ U(0, 1) and finding
the index of the smallest value of the cdf which is larger than u. E.g. if u = 0.439,
x = 1 since F (0) = 0.168 < u < F (1) = 0.528, Similarly, if u = 0.972, x = 4 since
F (3) < u < F (4). �
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13.3 Stochastic processes

So far we have talked about random variables which can be pretty much any object but
are only observed at one time. A stochastic process is a collection of random variables
that describes the evolution of a system that is subject to randomness. A stochastic
process could, for example, describe the position of a particle that is being buffeted by
other particles, the state of a genetic sequence that is subject to copying with mutation,
or the shape and size of a land mass that is subject to geological forces.

Mathematically, we consider a random process X as the set of random variables {Xt :
t ∈ T} where T is some index set, such as discrete time (T = 0, 1, 2, . . .) or continuous
time (T = [0,∞)).

We will try to get an understanding of these process by studying a few examples.

13.3.1 Random walk

One of the simplest stochastic processes is known as the simple symmetric random walk,
or drunkard’s walk. Imagine a person leaves the pub so drunk that their method of
getting home consists of taking random steps, with probability 0.5 the step is in the
direction of home with probability 0.5 it is in the other opposite direction. We can
model the drunk’s position after the ith step as a random variable Xi where X0 = 0
(that is, the pub is the origin). Then Xi+1 = Xi + Si where

Si =

{
+1 with probability 1/2

−1 with probability 1/2.

with is the direction of the ith step. Equivalently, Xi = X0 +
∑i−1

j=0 Sj . The process,
while amenable to analytic techniques, is extremely simple to simulate: we just need to
be able to simulate Bernoulli random variables.

The random walk has many variations: instead of looking at a symmetric walk, consider
Si = 1 with probability p; we can consider the random walk in higher dimensions,
choosing from 2d possible directions in d dimensions; and choosing a different step size
(Si = ±c, say).

The process has some very nice, and often surprising, properties. For example, the
simple symmetric random walk crosses every point an infinite number of times (this is
known as Gambler’s ruin, as if X models the amount a gambler is winning when betting
$1 on toss of a coin, the gambler will certainly eventually lose all their money if they
play for long enough against a casino with infinite resources).

Secondly, the random walk in d dimensions returns to the origin with probability 1 for
d = 1, 2, but for d ≥ 3, that probability is below 1 (about 0.34 in for d = 3, 0.19 for
d = 4 etc.).
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13.3.2 Poisson process

The Poisson process is a simple yet incredibly useful model for events that occur inde-
pendently of each other and randomly in time (or space). It is commonly used to model
events such as:

• Genetic mutations

• arrival times of customers

• radioactive decay

• occurrences of earthquakes

• industrial accidents

• errors in manufacturing processes (e.g. silicon wafers or cloth)

We will consider processes in time although the concepts extend readily to space (the
last of the examples above could be spatial).

A Poisson process is sometimes called a point process. It is counts the number of events
in the time interval [0, t]. Let N(t) be the number of points in the interval, so that N(t)
is a counting process.

Define a Poisson process with intensity λ, where λ > 0 (also called the rate) to be
a process N = {N(t), t ≥ 0} that takes values in S = {0, 1, 2, . . .} that satisfies the
following properties:

1. N(0) = 0 and if s < t then N(s) < N(t).

2. If s < t then N(t) −N(s) is the number of arrivals in (s, t] which is independent
of the number (and times) of the arrivals in (0, s].

3.

Pr(N(t+ h) = n+m|N(t) = n) =


λh+ o(h) if m = 1

o(h) if m > 1

1− λh+ o(h) if m = 0.

Here the notation o(h) indicates that, as h gets small the bit of the expression that is
o(h) disappears. A strict definition is that function f is o(h) (‘of order little oh of h’) if

lim
h→0

f(h)

h
= 0.

Examples: Check that f(h) = h2 is o(h) while f(h) = h−
1
2 is not. �

The Poisson process is related to the Poisson distribution by the fact that N(t) has a
Poisson distribution with parameter λt so that

Pr(N(t) = k) =
(λt)k

k!
exp(−λt)
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for k ∈ {0, 1, 2, . . .}.
Now look at the times between events in a Poisson process. Let Ti denote the time of
the ith event of the process and T0 = 0. Then the ith inter-arrival time, Xi = Ti+1−Ti,
is exponentially distributed with parameter λ, that is Xi ∼ Exp(λ), i = 1, 2, 3, . . ..

Poisson processes have some very nice properties.

Splitting: Let {N(t), t ≥ 0} be a Poisson process with rate λ. Suppose each event is
of type i, for i ∈ {1, . . . , k} with probability pi and suppose that this is independent of
other events.

If we observe just the events of type i, they form a Poisson process with rate λpi inde-
pendently of the remaining types of events.

For example, if we look at the request for different types of data in a network or arrivals
of different types of customer, we get the large Poission process separated out as multiple
smaller (lower rate) Poisson processes.

Merging: The converse of splitting is merging: Let N = {N(t), t ≥ 0} be a Poisson
process with rate λ and M = {M(t), t ≥ 0} be a Poisson process with rate µ independent
of N . Then L = {L(t) = N(t) +M(t), t ≥ 0} is a Poisson process of rate λ+ µ.

Together, these results tell us how to model multiple Poisson processes using a single
large process: Suppose we have n independent Poisson processes where process i has
rate λi. Then the merged process has events of n different types. If we observe an event
in the merged process, let pi be the probability of the event being of type i. What is pi?

According to the splitting theorem, the type i process has rate λi = λpi where
∑

i pi = 1
so that λ =

∑
i λi. So pi is given by

pi =
λi
λ

=
λi

λ1 + . . .+ λn
=

rate of type i

total rate
.

Example: We model arrivals at a bus stop as a Poisson process. Some people arriving
are students and some are office workers. Students arrive at rate λ1, office workers arrive
at rate λ2. Merging these processes tells us the total rate of arrivals is λ1 + λ2. The
probability that any given arrival is a student is λ1

λ1+λ2
while the probability that they

are an office worker is λ2
λ1+λ2

. �

14 Markov chains

We think of a random process as a sequence of random variables {Xt : t ∈ T} where T
is an index set. T can be thought of as time. If T is discrete, the process X(t) is called
a discrete time random process while if T is continuous, X(t) is called a continuous time
random process. The random walk example is an example of a discrete time process
(each time unit corresponds to a single step in the process) while the Poisson process is
a continuous time process (arrivals happen at any time). We will consider only discrete
time processes until further notice.
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The random walk and Poisson processes described above both share an important prop-
erty, known as the Markov property. Intuitively, this is the property of memorylessness
in that future states depend only on the current state and not any past states. That is,
to propagate the process forward, we need only be told the current state to generate the
next state.

Formally, the sequence of random variables X1, X2, X3, . . . is a Markov chain if it has
the Markov property:

P (Xn+1 = x|Xn = xn, Xn−1 = xn−1, . . . , X2 = x2, X1 = x1) = P (Xn+1 = x|Xn = xn).

Markov chains are commonly used to model processes that are sequential in nature and
where the future state only depends on the current state. This limited dependence
property is called the Markov property (after Andrey Andreyevich Markov, a Russian
mathematician from the late 19th century).

Example 1: The random walk. Start at X0 = 0. If Xn is the current state, P (Xn+1 =
Xn + 1|Xn) = 1/2 = P (Xn+1 = Xn− 1|Xn). This is a Markov chain on an infinite
state space. A realisation of this chain: 0 1 0 -1 0 1 2 3 2 1 2 1 2 1 0 1

· · · -2 -1 0 1 2 · · ·
0.5 0.5 0.5 0.5 0.5 0.5

0.50.50.50.50.50.5

Example 2: Weather. The weather tomorrow depends on the weather today. If it is
sunny today, tomorrow it is sunny with probability 0.7 and rainy otherwise. Rain
clears a bit faster, so if it is rainy today, it is rainy tomorrow with probability 0.6
and sunny otherwise. This is a Markov chain with state space {R,S} (for rainy
and sunny, respectively). The following is a simulated realisation: S S S S S S R
S R R R

R S

0.4

0.6

0.3

0.7

Example 3: The following is not a Markov chain. Recall our random walk is called
a drunkard’s walk. Imagine someone occasionally helps the drunkard on the way
home by carrying him 10 paces either to the left or the right. This person has
limited patience, though, so will help at most 3 times. When the person has not
yet reached the limit of their patience, possible transitions include Xn+1 = Xn±10
orXn+1 = Xn±1. After the person has intervened to help 3 times, the only possible
transitions are Xn+1 = Xn ± 1. So to see if this large movement is possible, we
need to look back in history to see how many interventions have occurred. Thus
the distribution of the next state depends on more than just the current state and
the chain is not a Markov chain. �
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The chain is homogeneous if Pr(Xn+1 = j|Xn = i) = Pr(X1 = j|X0 = i). If a chain
is homogeneous, we write Pij = Pr(X1 = j|X0 = i). The transition probabilities are
normalised so that

∑
j Pij = 1.

The matrix P = [Pij ] is called a stochastic matrix as all its entries are non-negative and
its rows sum to 1, so that

∑
j Pij = 1.

Example: The transition matrix for the weather example given above is

[
0.7 0.3
0.4 0.6

]
where rows and columns 1 and 2 are indexed by S and R, respectively. �

A homogeneous Markov chain is completely defined by specifying an initial distribution
Pr(X0 = i) for X0 and the transition probabilities Xn+1 given Xn, Pij .
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The m−step transition probability is the probability of going from state i to state j in
exactly m steps, Pij(m) = Pr(Xn+m = j|Xn = m). Hence the m−step transition matrix
is Pm = [Pij(m)].

A result known as the Chapman-Kolmogorov equations tells us Pm+n = PmPn (where
the right-hand side is just standard matrix multiplication). In particular, this result
tells us that Pn = Pn, that is, the n-step transition matrix is just the nth power of the
(one-step) transition matrix.

15 Introduction to genetics and genetic terminology

The history of life can be viewed, in a rather mundane way, as a long running and very
complex stochastic (or random) process.

At a very basic level, and after many simplifying assumptions, we can think of the
historical process explaining the relationships between species as a tree. The points
where the tree splits are speciations and the leaves of the tree are different species. The
past is back at the base or root of the tree and time increases from the root to the tips.
Information is passed along the tree (away from the root) from one generation to the
next via genetic material.

Genetic material is thought to be the only means by which biological information is
passed from parent to offspring. The process of copying genetic material is imperfect, so
that children will differ slightly from the parent. These imperfections consist of errors
in the copying, known as mutations, and can be thought of as a stochastic process.

The fundamental objects we will be studying are sequences of characters represent-
ing biological macromolecules: DNA (Deoxyribonucleic), RNA (Ribonucleic acid) and
proteins. DNA are RNA are the primary forms of genetic material. The charac-
ters in DNA and RNA sequences are drawn from 4 letter alphabets: DNA has Ω =
{A,C,G, T} while RNA has Ω = {A,C,G,U}. The A stands for adenine, C for cy-
tosine, G for guanine, T for thymine and U for uracil. These are known as nucle-
obases or simply bases, with C, T, U being pyramidines and A,G being purines. Pro-
tein sequences consist of the twenty amino acids that are represented by the alphabet
{A,R,N,D,C,E,Q,G,H, I, L,K,M,F, P, S, T,W, Y, V } (that is, all the letters except
{B, J,O,U,X,Z}). We will refer to the bases in an DNA/RNA sequence or the amino
acids in a protein sequence as residues.

In eukaryotes (organisms with cells that have a nucleus), the three types of sequences
related to each other by the Central Dogma of Molecular Biology that states, DNA
makes RNA makes Protein. Or, more prosaically, DNA is transcribed into a type of
RNA called mRNA that is then translated into protein.

There are some good animations showing how translation and transcription work at
www.hhmi.org/biointeractive/animations/index.html, in particular see the DNA
transcription and translation animations. A Japanese anime style film of the central
dogma is also worth a look: http://www.youtube.com/watch?v=-ygpqVr7_xs.
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Parts of the the DNA sequence encode information for proteins. These regions are known
as genes and must be transcribed to RNA before being built into proteins. When the
DNA is transcribed to RNA, all bases are copied exactly except that T (thymine) is
transcribed as U (uracil). Once copied, the RNA is edited at splice sites so that only
exons remain (the introns are edited out). This leaves the messenger RNA, mRNA,
which is then translated to a protein sequence (poly-peptide chain). This translation
occurs via the genetic code which translates consecutive triples of RNA bases (known as
a codon) into one of the 20 amino acids. There are 43 = 64 possible codes since there
is an alphabet of 4 bases. 60 of these code for proteins, 1 (AUG) is a start codon and
3 (UAA, UGA and UAG) are stop codons signalling the start or finish of a protein. A
particular amino acid may be encoded by just one codon (e.g. AUG→Methionine(M)) or
up to 6 (e.g. any of UUA, UUG, CUU, CUC, CUA, CUG→Leucine (L)). Once the poly-
peptide chain is formed it folds into three dimensional molecule, taking on a particular
structure.

Example: The sequence atgaggttgacgctactttgttgcacctggagggaa can be split into
codons atg agg ttg acg cta ctt tgt tgc acc tgg agg gaa which translate into the
protein sequence MRLTLLCCTWRE. �

In this course, we are only interested in the primary structure of sequences, that is, the
order in which residues occur along the sequence. We will ignore the secondary, tertiary
and quaternary structure of proteins — secondary structure is the name for the regular
substructures such as alpha helices and beta sheets, the tertiary structure are the three
dimensional structures of single molecules while quaternary structure are the complex
forms taken by collections of single protein molecules. The study of these more complex
structures is known as structural bioinformatics.

When DNA is passed from one generation to the next, the copy made is not exact.
There are a number of processes that cause differences to arise between the parent
and child. Recombination is one such process and involves the mixing of the maternal
and paternal copies of DNA when the gametes (eggs or sperm) are produced. Other
processes are generally thought of as mutations. The simplest are point mutations where
the offspring sequence differs from the parent sequence by a single base (residue). This
type of mutation is called a single nucleotide polymorphism, abbreviated as SNP and
pronounced ‘snip’. Insertions (or deletions) refer to the child sequence gaining (losing)
one or more base than the parent. Larger scale mutations include: gene duplication
which is a large scale insertion where the child inherits extra copy of a region containing
a whole gene. Other large scale mutations include inversions (part of the sequence is
reversed end to end) and translocations (a piece of the sequence is copied out of order).

Examples of mutations: Consider the short sequence cgctcaccatgaagcgtttcactaat.
We demonstrate types of mutations showing the original sequence and a mutated version
of it below with X marking the mutation.

• Single nucleotide polymorphism (SNP)
cgctcaccatgaagcgtttcactaat

cgctcgccatgaagcgtttcactaat
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.....X....................

• Insertion
cgctcacc----atgaagcgtttcactaat

cgctcacctgatatgaagcgtttcactaat

........XXXX..................

• Deletion
cgctcaccatgaagcgtttcactaat

cgct----atgaagcgtttcactaat

....XXXX..................

• Duplication (the copied region is marked with parentheses). Note that duplication
usually refers to gene duplication where whole genes are copied.
cgctcaccatgaagcgtttcacta-----------at

cgctcaccatgaagcgtttcactacaccatgaagcat

....(.........).........XXXXXXXXXXX..

• Inversion (again, this typically happens at a larger scale than shown here)
cgctcaccatgaagcgtttcactaat

cgctctaccagaagcgtttcactaat

.....XXXXX................

�

All these processes can be modelled and studied, with varying degrees of difficulty. We’ll
focus primarily on the question of how to align the sequences, how to identify regions
of interest in sequences (for example, genes), and given aligned sequences, how can we
reconstruct the evolutionary history (the tree) of those sequences. This last problem
will require us to model the the mutation process where we restrict ourselves to looking
at how point mutations arise.

The models we use will use are relatively simple, sometimes to the point of being down-
right crude. It is good to keep in mind the quote from the famous statistician George
Box who said, “All models are wrong but some are useful”.

15.1 Summary of above

• We model genetic sequences: think of them as strings of letters.

• There are 3 types of sequence, DNA, RNA or Protein.

• DNA sequences are composed of the 4 letters, or bases, {A,C,G, T}, RNA is
made of the bases {A,C,G,U} while protein sequences are made up of the 20
amino acids.

• The three types of sequence are related by the central dogma of molecular biology:
DNA is transcribed to RNA and then translated to protein.
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• Protein sequences fold up into more complex structures. We will ignore this struc-
ture in this introductory course.

• DNA is copied from parent to child.

• At copying, mutations are introduced.

• Mutations may be single nucleotide polymorphisms (SNPs), insertions, deletions
or of other types.

• We use a tree to model the history of relationships between individuals (which are
represented by their sequences).

To model the complex random process of genetic mutation and inheritance, we will need
tools from applied probability and statistics. The next few sections are concerned with
introducing the main tools and concepts that we will use for our study. All of you will
have previously encountered at least some of the ideas we discuss here but, as with the
linear algebra sections, it helps to review the main points before plunging in to new
material.

16 Alignment

16.1 Homology

Homology (from the Greek, to agree) is a crucial concept in biology referring to traits
or, in the case of sequences, sequence regions that share a common ancestry. We expect
homologous regions to be similar to each other where the level of similarity will depend
on how recently they shared a common ancestor.

Thus to say two regions are homologous is an evolutionary hypothesis. Mrs Darwin
(in Carol Ann Duffy’s poem from the collection The World’s Wife) was making an
evolutionary hypothesis of homology:

7 April 1852
Went to the Zoo.
I said to Him —
Something about that Chimpanzee over there reminds me of you.

The claim does not imply that the regions share a similar function now or, depending
on the time since divergence, that they even particularly similar, just that they share
a common ancestor. Therefore, sequences are either homologous or not, there are no
degrees of homology. We often infer homology between two sequences when they are
similar but we must be careful as we can get similarity without homology. Homologous
sequences are sometimes referred to as homologs.

There are two main ways that we get similarity without homology: either by chance
or by convergent evolution. Similarity by chance will occur even in completely random
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sequences on a finite alphabet. In two random sequences of four letters, we would expect
similarity by chance of 25%.

Convergent evolution occurs when similar functions evolve independently of each other.
An example of this are the wings of birds and insects. We don’t believe these two very
different creatures had a common ancestor that evolved wings but that wings evolved
indecently of each other in the insect and bird lineages. Thus, while wings in a fly and
a sparrow may be superficially similar, they are not considered homologous. The same
applies to sequences that code for similar proteins (i.e., have similar function) but have
evolved independently. Such traits/regions are called analogous.

We distinguish between two types of homology: orthology and paralogy:

Orthology occurs when two genes are separated by a speciation event and evolve in-
dependently from there on.

Paralogy occurs when a region of the genome is duplicated in the same genome (a
duplication event) and they evolve in parallel in the same genome. The two copies
are said to be paralogs.

16.2 Pairwise alignment

Given two sequences, if they are homologues, how do they align with each other? That
is, exactly which sites in the sequence are homologous with each other?

We consider pairs of sequences, x and y of length m and n, respectively. xi is the ith
symbol of x. These symbols are usually the 4 DNA or RNA bases or the 20 amino acids.
We refer to the symbols as residues.

We will allow gaps to be introduced in either sequence to allow them to align better.
Biologically, gaps correspond to insertions or deletions in the sequence.

Clearly, there are many ways of aligning a pair of sequences (how many?), but what is
the best alignment?

Example: x = GAATTC and y = GATTA

GAATTC or GAATTC-

GA-TTA -GATT-A

are two possible alignments. �

16.3 Scoring alignments

The best alignment will depend on how we score alignments. It is easy to come up with
different scoring regimes (e.g., score 1 for a match, -1 for a mismatch) but we really
want to compare two models — that the similarity we see is just chance vs. that the
sequences are homologs.

We initially consider alignments without gaps.
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16.3.1 Model of non-homologous sequences

The most basic model is that each letter appears with some probability, letter a appears
with probability qa (note that the probabilities summed over the alphabet are 1), that
each site is independent and that the each sequence is independent. Then the probability
of seeing sequence x is

P (x) =
n∏
i=1

qxi

and the joint likelihood of an alignment is just the joint probability of the sequences x
and y,

P (x, y) = P (x)P (y) =

n∏
i=1

qxi

m∏
i=1

qyi =

n∏
i=1

qxiqyi .

16.3.2 Model of homologous sequences

An alternative model is that the two sequences are related and the probability of seeing
the pair of residues a (from x) and b (from y) aligned at a locus is pab. The probability
of the alignment is then the product of the loci,

P (x, y) =
n∏
i=1

pxiyi .

To compare these two models, we take ratio of these likelihoods:∏n
i=1 pxiyi∏n
i=1 qxiqyi

=
n∏
i=1

pxiyi
qxiqyi

.

It is easier to work with log-likelihoods (and addition) than likelihoods and multiplica-
tion, so we take the log of this quantity to get

S =
∑
i

s(x,yi)

where

s(a, b) = log

(
pab
qaqb

)
.

The score of the alignment then is the sum over the local score s(a, b). s can be thought
of as a matrix and is often referred to as a score matrix or substitution matrix.

There are various methods for deciding reasonable values for the entries of the matrix,
discussed below. Note that even when ad hoc values are chosen for the matrix, the
underlying probabilities, pab and qa can be derived by reversing the above argument.
That is, when a score matrix is selected we are making implicit assumptions about the
qas and pabs.

Example: If x = GAATTC and y = GGATTA are aligned as
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GAATTC

GGATTA

where s(a, b) = 2 if a = b and s(a, b) = −1 if a 6= b, the alignments scores 2 − 1 + 2 +
2 + 2− 1 = 6. �

16.3.3 Scoring gaps

To make sequences align fully, we add gaps to one sequence or the other. A gap in x
corresponds to an insertion in y with respect to x or a deletion in x with respect to y.
Adding gaps comes with a penalty, so reduces the score for the match.

For a gap of length k, write γ(k) for the penalty. We consider two forms for γ.

A linear penalty is defined by γ(k) = −dk for some d > 0. That is, each deleted base
adds a penalty of d.

An affine penalty is defined by γ(k) = −d − (k − 1)e where d > e > 0. d is the gap
open penalty and e is the gap extension penalty. The affine penalty is more biologically
appropriate as insertions or deletions are typically created in a single event rather than
building up one residue at a time.

More complex gap penalties can be used, for example, we may wish to have different
penalties for gaps matched with different residues, or non-linear functions of gap length.
Such penalties come at the cost of more difficult implementation.

In the algorithms below, we’ll first consider the simple case of the linear penalty.
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