
369 Computational Science

Compiled, collated and written by David Welch
Sections 1-9 are based on slides by Georgy Gimel’farb, sections 16–18 are
based on the book Biological Sequence Analysis by Durbin et al. 2010.

Other sections are incompletely referenced so
presence in these notes is no claim of authorship.

Contents

1 Introduction 6

2 Mathematical modelling and why we need computers 6

2.1 Why we need to be clever about our computing 7

3 Approximating a function by a Taylor series 9

4 Finding the roots of equations 10

4.1 Bisection method . 10

4.2 Newton’s method . 11

5 Numerical linear algebra 13

5.1 Review . 13

5.2 Review of eigenvectors and eigenvalues . 16

5.3 Review of systems of linear equations . 17

6 Solving linear equations 18

6.1 Easily solvable systems 1: Diagonal matrix 18

6.2 Easily solvable systems 2: Triangular matrix 19

6.3 Easily solvable systems 3: Orthonormal or orthogonal matrix 20

7 Factorising matrices 21

7.1 LU decomposition via Gaussian elimination 22

7.1.1 Gaussian elimination to solve systems linear equations (review) . . 22

7.1.2 Gaussian elimination as LU decomposition 24

7.2 Eigenvalues and eigenvectors of real symmetric matrices 24

1

8 Singular Value Decomposition (SVD) 26

8.1 Overview of an SVD . 27

8.2 How does this all work? . 29

8.3 Structure of SVD . 31

8.4 Condition number of a matrix . 31

8.4.1 Image compression . 32

8.4.2 Gene expression . 32

8.5 Principal Components Analysis (PCA) . 33

8.6 Examples . 35

8.7 What is connection between PCA and SVD? 36

8.8 Problems with SVD and PCA . 36

9 Least squares 37

9.1 Understanding the Least Squares solution 39

9.2 Computing the Least Squares solution, u∗ 40

9.3 Computing u∗ via Gaussian elimination 40

9.4 Computing u∗ via orthogonalisation (QR decomposition) 41

9.4.1 Constructing the orthogonal matrix Q by Gram-Schmidt 41

9.5 Computing u∗ via SVD: the Pseudoinverse 43

9.5.1 Properties of the pseudo inverse A+ 44

10 Introduction to stochastic processes and probability 46

11 Primer on Probability 46

11.1 Axioms of probability . 47

11.2 Conditional probability and independence 48

11.3 Bayes’ Theorem . 48

11.4 Random variables . 49

11.5 Commonly used distributions . 50

11.5.1 Bernoulli distribution . 51

11.5.2 Geometric distribution . 51

11.5.3 Binomial distribution . 51

11.5.4 Poisson distribution . 51

11.5.5 Uniform distribution (discrete or continuous) 52

11.5.6 Normal distribution . 52

11.5.7 Exponential distribution . 52

11.5.8 Gamma distribution . 52

2

11.6 Entropy . 53

12 Inference 54

12.1 Bayesian inference . 55

12.2 Maximum likelihood . 56

13 Simulation 58

13.1 Random number generation . 58

13.1.1 Linear congruential generators . 59

13.1.2 Shift register generators . 59

13.2 Simulating from univariate distributions via Inversion sampling 60

13.3 Stochastic processes . 62

13.3.1 Random walk . 62

13.3.2 Poisson process . 63

14 Markov chains 64

15 Introduction to genetics and genetic terminology 68

15.1 Summary of above . 70

16 Alignment 71

16.1 Homology . 71

16.2 Pairwise alignment . 72

16.3 Scoring alignments . 72

16.3.1 Model of non-homologous sequences 72

16.3.2 Model of homologous sequences . 73

16.4 Choosing the substitution matrix . 74

16.4.1 Scoring gaps . 74

16.5 Global alignment: Needleman-Wunsch algorithm 76

16.6 Elements of an alignment algorithm . 78

16.7 Local Alignment: Smith Waterman algorithm 78

16.7.1 Overlap matches . 79

16.8 Pairwise alignment with non-linear gap penalties 79

16.9 Alignment with affine gap scores . 80

16.10Linear space alignment . 82

17 Multiple sequence alignments (MSA) 83

17.1 Dynamic programming . 83

3

17.2 Progressive alignment . 83

17.3 Building trees with distances and UPGMA 84

17.4 Feng-Doolittle progressive alignment . 86

18 Hidden Markov Models 88

18.1 The Viterbi algorithm for finding the most probable state path 90

18.2 The forward algorithm and calculating P(x) 92

18.3 The backward algorithm and calculating P(x) 94

18.4 The posterior probability of being in state k at time i P (πi = k|x) 95

18.5 What can we do with the posterior estimates? 95

18.6 Estimating the parameters of an HMM . 96

18.7 Baum-Welch algorithm for estimating parameters of HMM 96

18.7.1 Comments on the Baum-Welch algorithm 97

18.8 Sampling state paths . 98

18.9 HMM model structure . 99

18.9.1 Duration modeling . 99

19 Applications of HMMs in bioinformatics 100

19.1 Pairwise alignment with HMMs . 100

19.1.1 Probability that two sequences are related 102

19.1.2 Sampling alignments . 102

19.1.3 Probability that xi and yj are aligned 102

19.2 Profile HMMs . 102

19.2.1 Estimating the parameters of a profile HMM 105

19.2.2 Finding matches . 105

19.2.3 Alignment with a known profile HMM 106

19.2.4 Alignment from unaligned sequences with HMMs 106

19.3 Gene finding . 106

20 Reconstructing trees 110

20.1 Defining distances between sequences . 110

20.2 Ultrametric distances . 110

20.3 Additive distances . 111

20.4 Neighbour joining . 111

20.4.1 Unrooted vs rooted trees . 114

20.4.2 Complexity of neighbour jointing and UPGMA 115

20.5 Parsimony . 115

4

20.5.1 Weighted parsimony . 118

20.5.2 Parsimony informative sites . 118

20.6 Finding the maximum parsimony tree . 118

20.6.1 Exhaustive search . 119

20.6.2 Branch and bound . 119

20.6.3 Heuristic search . 121

20.7 Disadvantages of parsimony . 122

21 Statistical approaches to modelling evolution 123

21.1 Likelihood of a given tree . 123

21.2 Markov processes . 129

21.3 Models of sequence mutation . 130

21.3.1 Jukes-Cantor model . 131

21.3.2 Kimura model . 132

21.3.3 F81 and HKY models . 132

21.3.4 GTR model . 133

21.3.5 Rate variation across sites . 133

21.4 Estimating the maximum likelihood tree 134

21.5 Bayesian approach to phylogenetics . 134

21.6 Models for trees: Yule trees and the coalescent 135

21.6.1 Yule trees . 135

21.6.2 The coalescent . 135

21.6.3 Properties of the coalescent . 137

5

1 Introduction

This course is aimed at introducing computer scientists to uses of computers and com-
putational techniques in other areas of science. The number of ways that computers are
used in the sciences are many, varied and often extremely sophisticated. The focus of
this course will be on “computational science” which involves constructing mathematical
models that can be simulated, analysed and solved using computational methods.

The course is split into two parts: in the first 3-4 weeks, we’ll look at techniques for find-
ing the roots of equations, solving systems of linear equations and decomposing matrices.
These techniques are basic to areas of research known as computational engineering, nu-
merical analysis and applied linear algebra.

In the remaining 8-9 weeks, we’ll turn to computational biology, with a focus on bioin-
formatics and phylogenetics. There, we see how a wide range of computational and
mathematical techniques have revolutionised an area of science and allowed us to anal-
yse and interpret huge amounts of genetic data. This area of study has helped us better
understand, among other things, the basic workings of life, our evolutionary history, the
causes of inherited diseases and the spread of infectious disease.

From a computational point of view, computational biology is a fascinating and active
area of research. The techniques we’ll study in this part of the course include stochastic
and probabilistic modelling, simulation, dynamic programming, estimation and infer-
ence.

CS 369 is more mathematical than many CS courses. This is unavoidable given the
subject matter. We assume that students have some background in discrete mathematics
(matrices, graphs, linear equations) and continuous mathematics (functions, derivatives,
integration), and an understanding of basic probability (discrete and continuous random
variables, expectation, conditional probability) . However, we recognise that students
come to this course from a variety of backgrounds so will provide explanations from
quite a basic level in most cases. We do assume that students have a solid foundation
in programming in one of Java, C++, Python, Matlab or R.

2 Mathematical modelling and why we need computers

Mathematical models attempt to precisely describe a system in order to better under-
stand it. A model is usually based on observing the system and is often structured to
answer a particular question. It is not an exact replica of the system and is not merely
a description of the observations. Recorded observations of the system are known as
data. Coupled with data, the model allows us to infer unobserved properties of the
model (such as model parameters) and predict future outcomes. Careful comparison of
outcomes predicted by the model with data (actual outcomes) tell us how accurate the
model is and where it needs to be refined.

This process of modelling and observation has, arguably, been used for thousands of

6

years and certainly for hundreds. The complexity of the models we create and study is
somewhat determined by our ability to interpret and “solve” them. Before computers, we
were largely limited to using models that were analytically tractable — that is, models
for which closed form solutions could be found — or for which good approximations
could be made by hand. Our ability to fit models to data was severely limited by our
human limitations of collecting, storing and processing information by hand.

With the advent of computers, both of these limitations have eased considerably. It
is now possible to collect and store massive amounts of data. For example, Genbank,
which stores genetic nucleotide sequences contains over 204 billion nucleotide bases in
more than 189 million sequences as at the end of 2015, while CERN’s Large Hadron
Collider produces 30 PB (= 30 × 106 GB) of data annually. And fast computers allow
us process this data and to make almost arbitrarily good approximations to models that
are far more complex than could be tackled by hand.

However, even with all the data and computing power in the world we need to be
careful to propose useful models and tackle them with efficient techniques if we are to
make progress in answering questions that interest us. Bad models, bad data or bad
computational techniques could all derail our quest for understanding. In this course,
we aim to teach good computational techniques and give some insight into some basic
modelling and data analysis techniques that will help to tackle and answer a range of
interesting questions.

2.1 Why we need to be clever about our computing

Mathematical problems can be classed into problems that are well-posed and ill-posed.
A problem is well-posed if

1. A solution exists

2. the solution is unique

3. A small change in the initial condition induces only a small change in the solution

A problem that is not well-posed is ill-posed.

We are interested in the last criterion which can be termed sensitivity. Suppose our
problem has inputs x and has a solution (or output) y. An insensitive or well-conditioned
problem is when a change in x causes a change in y that is of similar relative size. A
sensitive or ill-conditioned problem is one in which the change in solution/output can
be large relative the the change in input.

Based on this idea, define the condition number by

cond =
|relative change in solution|
|relative change in input data|

=

∣∣∣∣∆y/y∆x/x

∣∣∣∣ .
Thus a problem is ill-conditioned is cond� 1.

7

Example: what is the condition number when we evaluate a function y = f(x) at an
approximation of x, x̂ = x+ ∆x, rather than at the true value x?

Solution:

cond =

∣∣∣∣∆y/y∆x/x

∣∣∣∣ =

∣∣∣∣f(x+ ∆x)− f(x)/f(x)

∆x/x

∣∣∣∣ =

∣∣∣∣f(x+ ∆x)− f(x)

∆x

x

f(x)

∣∣∣∣ ≈ ∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ .
So, depending on the function f and the input x, we could get very large condition
numbers. �

Example: What is the condition number for the functions f(x) = xn and f(x) = ex?

Solution: From above, the condition number is

cond ≈
∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ .
When f(x) = xn, f ′(x) = nxn−1, so

cond =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ =

∣∣∣∣x.nxn−1

xn

∣∣∣∣ =

∣∣∣∣nxnxn
∣∣∣∣ = |n|.

So as the degree of the polynomial increases, the problem becomes increasingly ill-
conditioned.

Similarly, when f(x) = ex, f ′(x) = ex so

cond =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ =

∣∣∣∣x.exex
∣∣∣∣ = |x|.

In this case, the condition number depends on the input argument, x. If x is very large,
the problem can be considered ill-conditioned. �

What does this mean for computation? In nearly all our computations, we will re-
place exact formulations with approximations. For example, we approximate continuous
quantities with discrete quantities, we are limited in size by floating point representation
of numbers which often necessitates rounding or truncation and introduces (hopefully)
small errors. If we are not careful, these error will be amplified within an ill-conditioned
problem an produce inaccurate results.

This leads us to consider the stability and accuracy of our algorithms.

An algorithm is stable if the result is relatively unaffected by perturbations during com-
putation. This is similar to the idea of conditioning of problems.

An algorithm is accurate is the competed solution is close to the true solution of the
problem. Note that a stable algorithm could be inaccurate.

We seek to design and apply stable and accurate algorithms to find accurate solutions to
well-posed problems (or to find ways of transforming or approximating ill-posed problems
by well-posed ones).

8

3 Approximating a function by a Taylor series

First, a little notation. A real-valued function f : R → R is a function f that takes a
real number argument, x ∈ R ,and returns a real number, f(x) ∈ R. We write f ′(x)
to denote the derivative of f , so f ′(x) = df

dx , and f ′′(x) is the second derivative (so

f ′(x) = d
dx(dfdx) = d2f

dx2
) and f (k)(x) is the kth derivative of f evaluated at x.

As we have just seen, simply evaluating a real valued function can be prone to instability
(if the function has a large condition number). For that reason, approximations of
functions are often used. The most common method of approximating the real-valued
function f : R → R by a simpler function is to use the Taylor series representation for
f .

The Taylor series has the form of a polynomial where the coefficients of the polynomial
are the derivatives of f evaluated at a point. So long as all derivatives of the function
exists at the point x = a, f(x) can be expressed in terms of of the value of the function
and it’s derivatives at a as:

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) + . . .+

(x− a)k

k!
f (k)(a) + . . .

This can be written more compactly as

f(x) =
∞∑
k=0

(x− a)k

k!
f (k)(a),

where f (0) = f and 0! = 1 by definition.

This is known as the Taylor series for f about a. It is valid for x “close” to a (strictly,
within the “radius of convergence” of the series). When a = 0, the Taylor series is known
as a Maclaurin series.

This is an infinite series (the sum contains infinitely many terms) so cannot be directly
computed. In practice, we truncate the series after n terms to get the Taylor polynomial
of degree n centred at a, which we denote f̂n(x; a):

f(x) ≈ f̂n(x; a) =
n∑
k=0

(x− a)k

k!
f (k)(a).

This is an approximation of f that can be readily calculated so long as the first n
derivatives of f evaluated at a can be calculated. The approximation can be made
arbitrarily accurate by increasing n. The quality of the approximation also depends on
the distance of x from a — the closer x is to a, the better the approximation.

Example: Find the Taylor approximation of f(x) = exp(x) = ex for values of x close
to 0.

Solution: The kth derivative of f(x) = ex is simply ex for all k. Since we want values
of x close to 0, find the Taylor series about a = 0 (the Maclaurin series). Then

9

f̂n(x; 0) = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · · =

n∑
k=0

xk

k!

This series converges to ex everywhere: lim
→∞

ên(x) = ex. The quality of the approximation

for various values of n and x are studied in the table below.

n 1 2 3 4 . . . true value ex

f̂n(x = 1; 0) 2.0000 2.5000 2.6667 2.7083 . . . 2.7183
Relative error 0.26 0.08 0.019 0.0037

f̂n(x = 2; 0) 3.0000 5.0000 6.3333 7.0000 . . . 7.3891
Relative error 0.59 0.32 0.14 0.053

Notice that the error is smaller for x close to a and decreases as n, the number of terms
in the polynomial increases. �

4 Finding the roots of equations

Given a real valued function f : R→ R, a fundamental problem is to find the values of
x for which f(x) = 0. This is known as finding the roots of f . The problem crops up
again and again and many problems can be reformulated as this problem. For example,
if the trajectory of one object is described by h(x), while another object has trajectory
g(x), then the two objects intercept one another exactly when f(x) = g(x)− h(x) = 0.

Another common application is when we wish to find the minimum or maximum value
that a function takes. We know from basic calculus that if f is the derivative of some
function F , then F (x) takes its maximum or minimum values when f(x) = 0. Thus
finding the maximum value of F is a matter of finding the roots of f .

We will consider two simple yet effective root finding algorithms. The bisection method
and Newton’s method. In both cases, we assume that f : R→ R is continuous.

4.1 Bisection method

We want to find x∗ such that f(x∗) = 0. Let sign(f(x)) = −1 if f(x) < 0 and
sign(f(x)) = 1 if f(x) > 0. The bisection method proceeds as follows:

• Initialise: Choose initial guesses a, b such that signf(a) 6= signf(b)

• Iterate until the absolute difference |a− b| ≈ 0

– Calculate c = a+b
2

– If signf(a) = signf(c), then a← c; otherwise b← c

The method provides slow but sure convergence.

10

Figure 1: The idea behind the bisection method. Here, signf(a) = signf(c) so at the
next iteration we will set a← c. The algorithm stops when a and b are sufficiently close
to each other.

4.2 Newton’s method

This method is also known as the Newton-Raphson method and is based on the approx-
imation first two terms of the Taylor series expansion. Recall that we want to find x
such that f(x) = 0. From the first two terms of the Taylor series of f(x), we know that
f(x) ≈ f(a) + (x − a)f ′(a). If f(x) is zero, then the expression on the right hand side
to 0 and solve for x to get

f(a) + (x− a)f ′(a) = 0 =⇒ x = a− f(a)

f ′(a)
.

We can treat this iteratively, starting at x0, and finding xi+1 = xi − f(xi)
f ′(xi)

. This leads
to the algorithm:

• Initialise: Choose x0 as an initial guess.

• Iterate until the absolute difference |xi − xi−1| ≈ 0

– Set xi+1 = xi − f(xi)
f ′(xi)

.

Example: f(x) = x2 − 2.

Solution: f ′(x) = 2x so

xi+1 = xi −
f(xi)

f ′(xi)
= xi −

x2
i − 2

2xi
=
xi
2

+
1

xi
.

See slide for example starting at x0 = 0.5. �

11

Compare with bisection method: Start at a = 1/2 and b = 2 to get to a = 1.34375 and
b = 1.4375 at the fifth step. This produces an absolute error of 0.02688 or 1.9%. The
absolute error in the Newton case is 0.00020 which is 2 orders of magnitude smaller.

Figure 2: The idea behind the Newton’s method. Starting at xn, we find the tangent
line (red) and calculate the point it intercepts the x-axis. This point of intercept is xn+1.

There are, of course, many other root finding methods. We list a few of them here (not
examinable).

Secant method (http://en.wikipedia.org/wiki/Secant_method):

• Newton’s method with a finite difference instead of the derivative

• Neither computation, nor existence of a derivative is required

• However, the convergence is slower (approximately, α = 1.6)

False position method (http://en.wikipedia.org/wiki/False_position_method):

• Always retains one point on either side of the root

• Faster than the bisection and more robust than the secant method

Muller’s method (http://en.wikipedia.org/wiki/Muller’s_method):

• Quadratic (instead of linear) interpolations

• Faster convergence than with the secant method

• Roots may be complex (in addition to reals)

12

http://en.wikipedia.org/wiki/Secant_method
http://en.wikipedia.org/wiki/False_position_method
http://en.wikipedia.org/wiki/Muller's_method

5 Numerical linear algebra

Numerical linear algebra is one of the cornerstones of modern mathematical modelling.
Topics as important as solving systems of ordinary differential equations (arising in
engineering, economics, physics, biotech, etc), to network analysis (telecoms, sociologic,
epidemiology), internet search, data mining and many more rely on linear algebra.

These days, applied linear algebra and numerical linear algebra are virtually interchange-
able — problems of all sizes are routinely solved numerically and rely on a wealth of
mathematical and computational insight.

We’ll start out with a brief review of topics that you should be somewhat familiar with.

5.1 Review

Let a =

 a1
...
an

 b =

 b1
...
bn

 be vectors. The inner or dot product of a and b is the

scalar c = a•b ≡ aTb =
n∑
i=1

aibi. The dot product is also called multiplication of vectors.

The norm or magnitude of a vector a is ||a|| =
√
a · a =

√
aTa =

√
a2

1 + . . . a2
n.

The product of an m×n matrix A =

 A11 . . . A1n
...

. . .
...

Am1 . . . Amn

 and an n×1 (n-dimensional)

vector x =

 x1
...
xn

 is them-dimensional vector y = Ax with the elements yi =
m∑
j=1

Aijxj .

The product of a k ×m matrix A and an m× n matrix B is the k × n matrix C = AB

with the elements Cij =
m∑
α=1

Ai,αBα,j

The outer product of an m-dimensional vector a with an n-dimensional vector b is the
m× n matrix

abT ≡

a1

a2
...
am

 [b1 b2 . . . bn
]

=

a1b1 a1b2 . . . a1bn
a2b1 a2b2 . . . a2bn

...
...

. . .
...

amb1 amb2 . . . ambn

The identity matrix of size n, In, is the n× n matrix with (i, j)th entry = 0 if i 6= j and
1 if i = j.

The inverse of a square matrix A of size n is the square matrix A−1 such that AA−1 =
In = A−1A. When such a matrix exists, A is called invertible or non-singular. A is
singular if no inverse exists. Finding the inverse of A is typically difficult.

13

The determinant of an n×n matrix A, written det(A) =

∣∣∣∣∣∣∣
A11 . . . A1n

...
. . .

...
An1 . . . Ann

∣∣∣∣∣∣∣, is given by

a somewhat complex formula that we need not reproduce here (look it up at http://en.
wikipedia.org/wiki/Determinant). For n = 2, det(A) = A11A22−A21A12. For n = 3,
det(A) = A11A22A33−A31A22A13 +A12A23A31−A32A23A11 +A13A21A32−A33A21A12.

Example: Find the determinant of A =

(
3 5
1 −1

)
.

Solution: From above, det(A) = |A| = 3.−1− 1.5 = −3− 5 = −8. �

It is worth recalling a few properties of the determinant (as listed on the wiki page):

• det(I) = 1

• det(AT) = det(A) (transposing the matrix does not affect the determinant)

• det(A−1) = 1
det(A) (the determinant of the inverse is the inverse of the determinant)

• For A,B square matrices of equal size, det(AB) = det(A)det(B)

• det(cA) = cn det(A) for any scalar c

• If A is triangular (so has all zeros in the upper or lower triangle) then det(A) =∏n
i=1Aii.

An eigenvector of the square matrix A is a non-zero vector e such that Ae = λe for
some scalar λ. λ is known as the eigenvalue of A corresponding to e. Note that λ may
be 0. So the effect of multiplying e by A is simply to scale e by the corresponding scalar
λ.

The determinant can be used to find the eigenvalues of A: they are the roots of the
characteristic polynomial p(λ) = det(A− λIn) where In is the identity matrix.

Example: Find the eigenvalues of A =

(
3 5
1 −1

)
.

Solution: We need to solve p(λ) = det(A− λI2) = 0.

|A− λI2| =

∣∣∣∣(3 5
1 −1

)
− λ

(
1 0
0 1

)∣∣∣∣
=

∣∣∣∣ 3− λ 5
1 −1− λ

∣∣∣∣
= (3− λ)(−1− λ)− 5
= −λ2 − 2λ− 8
= (λ+ 2)(λ− 4)

which is zero when λ = 4 or λ = −2. So the eigenvalues of A are λ = 4 and λ = −2. �

Example: Find the eigenvector of A =

(
3 5
1 −1

)
corresponding to the eigenvalue

λ = −2.

14

http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Determinant

Solution: The eigenvector e corresponding to λ = −2 satisfies the equation Ae = −2e.
That is, (

3 5
1 −1

)(
e1

e2

)
= −2

(
e1

e2

)
.

This is the system of linear equations

3e1 + 5e2 = −2e1, (1)

e1 − e2 = −2e2. (2)

Rearranging either equation, we get e1 = −e2, so both equations are the same. We thus

fix e1 = 1 and the eigenvector associated with λ = −2 is e =

(
1
−1

)
. Notice that the

choice to fix e1 = 1 was arbitrary. We could choose any value so, strictly, e = c

(
1
−1

)
for any c 6= 0. Often, c is chosen so that e is normalised (see below). In this case, choose
c = 1/

√
2 to normalise e. �

Vectors a and b are orthogonal if the dot product aT b = 0. Orthogonal generalises the
of the idea of the perpendicular. In particular, a set of vectors {e1, . . . , en} is mutually
orthogonal if each pair of vectors ei, ej is orthogonal for i 6= j.

A vector ei is normalised if eTi ei = 1.

A set of vectors that is mutually orthogonal and has each vector normalise is called
orthonormal.

Any symmetric, square matrix A of size n has exactly n eigenvectors that are mutually
orthogonal.

Any square matrix A of size n that has n mutually orthogonal eigenvectors can be
represented via the eigenvector representation as follows:

A =
n∑
i=1

λi eie
T
i︸︷︷︸

Ui

where Ui = eie
T
i is an n× n matrix.

The Range, range(A), or span of an m× n matrix A is the set of vectors y ∈ Rm such
that y = Ax for some x ∈ Rn. The range is also referred to as the column space of A
as it is the space of all linear combinations of the columns of A.

The Nullspace, null(A), of an m × n matrix A is the set of vectors x ∈ Rn, such that
Ax = 0 ∈ Rm

The Rank, rank(A), of an m× n matrix A is the dimension of the range of A or of the
column space of A. rank(A) ≤ min{m,n}.

15

5.2 Review of eigenvectors and eigenvalues

• λ is an eigenvalue of A if determinant |A− λI| = 0

• This determinant is a polynomial in λ of degree n: so it has n roots λ1, λ2, . . . , λn

• Every symmetric matrix A has a full set (basis) of n orthogonal unit eigenvectors
e1, e2, . . . , en

• No algebraic formula for the polynomial roots for n > 4

– Thus, the eigenvalue problem needs own special algorithms

– Solving the eigenvalue problem is harder than solving Ax = b

• Determinant |A| =
∏n
i=1 λi = λ1λ2 · · ·λn (the product of eigenvalues)

• The trace of a matrix is the sum of the diagonal elements. That is,
trace(A) =

∑n
i=1 aii = a11 + a22 + . . .+ ann.

• It turns out that trace(A) =
∑n

i=1 λi = λ1 +λ2 + . . .+λn (the sum of eigenvalues)

• Ak = A · · ·A︸ ︷︷ ︸
k times

has the same eigenvectors as A: e.g. for A2

Ae = λe ⇒ AAe = λAe = λ2e

• Eigenvalues of Ak are λk1, . . . , λ
k
n

• Eigenvalues of A−1 are 1
λ1
, . . . , 1

λn

Example: Find the eigenvalues and eigenvectors of A =

[
2 −1
−1 2

]
Solution: First, find the eigenvalues of A by solving

|A− λI| =
∣∣∣∣ 2− λ −1
−1 2− λ

∣∣∣∣ = λ2 − 4λ+ 3 = (λ− 1)(λ− 3) = 0.

So the eigenvalues are λ1 = 1 and λ2 = 3

The eigenvector associated with λ1 = 1 is e1 and satisfies Ae1 = λ1e1. Putting e1 =[
x1

y1

]
we need to solve

[
2 −1
−1 2

] [
x1

y1

]
=

[
x1

y1

]
.

16

The second row gives −x1 + 2y1 = y1, so y1 = x1. So fix x1 = 1 and e1 = c

[
1
1

]
for

any c 6= 0. If we choose c so that e1 is normalised, e1 = 1√
2

[
1
1

]
. A similar argument

shows e2 = 1√
2

[
1
−1

]
.

Before leaving this example, it is worth looking at some of the properties of the eigen-
values of A:

• Determinant det A ≡ |A| = 4− 1 = 3⇐⇒ λ1 · λ2 ≡ 1 · 3 = 3

• trace(A) = 2 + 2 = 4⇐⇒ λ1 + λ2 ≡ 1 + 3 = 4

• Inverse matrix A−1 = 1
3

[
2 1
1 2

]
: eigenvalues λ1 = 1

3 and λ2 = 1

• Matrix A2 =

[
5 −4
−4 5

]
: eigenvalues λ1 = 1 and λ2 = 9

• Matrix A3 =

[
14 −13
−13 14

]
: eigenvalues λ1 = 1 and λ2 = 27

�

5.3 Review of systems of linear equations

A linear equation in n unknowns x1, . . . , xn is of the form a1x1 + . . . anxn = b. Given m
such equations, we can write the ith equation as ai1x1 + . . . ainxn = bi. We will seek to
solve these systems of linear equations.

Example a system of 3 equations in 3 unknowns and its solution is
4x1 + x2 + 2x3 = 24
2x1 − x2 − 2x3 = −6
−x1 + 2x2 − x3 = −4

=⇒

x1 = 3
x2 = 2
x3 = 5

�

These systems can be represented as a matrix equation Ax = b where A is the m × n

matrix of coefficients, aij , x =

 x1
...
xn

 is the n-dimensional column vector of unknowns

and b is a vector of dimension m.

Example cont. In the example above, A =

 4 1 2
2 −1 −2
−1 2 −1

 and b =

 24
−6
−4

 �

17

We’ll initially look at systems of n equations and n unknowns. Systems with m < n
are known as under-determined as there are less equations than unknowns while systems
with m > n are over-determined with more equations than there are unknowns.

When A is non-singular (so A−1 exists), the system has a unique solution given by
x = A−1b.

Recall that A is nonsingular if and only if:
(i) inverse matrix A−1 exists; or
(ii) det(A) 6= 0; or
(iii) rank(A) = m, or
(iv) Ax 6= 0 for any vector x 6= 0, or
(v) range(A) = Rm, or
(vi) null(A) = {0}.

If A is singular, the system may have infinitely many solutions or no solutions at all,
depending on b.

Example If A =

[
2 3
4 6

]
, Ax = b has no solution if b /∈ range(A) or infinitely many

solutions when b ∈ range(A). Thus, when b =

[
4
7

]
there is no solution, while when

b =

[
4
8

]
, x =

[
γ

2
3(2− γ)

]
is a solution for any real γ. �

6 Solving linear equations

In principle, all we need to do to solve the system of equations Ax = b is find the inverse
of A, A−1. Then Ax = b =⇒ A−1Ax = A−1b =⇒ x = A−1b. In practice, however,
things are more complicated. First, A only has an inverse if it is square (so m = n)
and det(A) 6= 0. In most cases, m 6= n and often even when m = n, det(A) = 0 is not
unusual. Second, supposing that A is indeed square, m and n are often large (104 is
common, as are much larger values). In these cases, even calculating det(A) is a hugely
expensive and complex computational task while finding A−1 is even harder.

We’ll initially concentrate on easily solvable systems and look at how we can coerce other
systems into a form where they (or some close approximation) too are easily solvable.

6.1 Easily solvable systems 1: Diagonal matrix

All the simple systems we consider here are assumed to be square, so m = n. We want
to solve Ax = b.

A is diagonal all entries the off-diagonal are zero. That is aij = 0 when i 6= j. So to
specify a diagonal matrix, we need only specify the n diagonal elements. We can thus
use the simplifying notation, A = diag{a1, . . . , an}.
When A is diagonal, xi = bi

ai
for all i = 1, . . . , n. That is, A−1 = diag{ 1

a1
, . . . , 1

an
}. Or,

18

to use less compact notation:

A =

 a1

. . .

an

 ⇒ A−1 =

1
a1

. . .
1
an

 .
6.2 Easily solvable systems 2: Triangular matrix

A matrix is lower triangular when all entries above the main diagonal are 0. That is,
A is lower triangular if and only if aij = 0 when i < j. Similarly, a matrix is upper
triangular when all entries above the main diagonal are 0 (aij = 0 for i > j). Lower
triangular is also called left triangular, and upper called right triangular, for obvious
reasons. E.g., a lower triangular matrix:

A =

a11 0 . . . 0

a21 a22
. . .

...
...

...
. . . 0

an1 an2 . . . ann

 .
The system Ax = b is easy to solve for triangular A and it does not require that we
calculate the inverse of A.

For the lower triangular matrix, the solution is given by

xi =
1

aii

bi − i−1∑
j=1

aijxj

 ,

so that

x1 =
b1
a11

; x2 =
b2 − a21x1

a22
; . . . ; xn =

bn − an1x1 − . . .− an−1,nxn−1

ann
.

A similar simple formula is available for the upper triangular case, this time working
backwards from xn:

xn =
bn
ann

and

xi =
1

aii
(bi − ai,i+1xi+1 − . . .− ai,nxn) for i = n− 1, . . . , 1.

The method of Gaussian elimination, or row reduction, which we assume you have seen
before transforms the matrix A into a triangular one to solve the system. This method
is reviewed and discussed in Section 7.1

19

6.3 Easily solvable systems 3: Orthonormal or orthogonal matrix

Matrix A is orthogonal or orthonormal if the columns of A are mutually orthogonal unit
vectors.

That is, A = [a1 a2 . . . an] where ai = [ai1 ai2 . . . ain]T are unit vectors and the set
{a1 a2 . . . an} is mutually orthogonal (so ai · aj = 0 for i 6= j).

When A is orthonormal, A−1 = AT . This result is true since

ATA ≡

 aT
1

...
aT
n

 [a1 a2 . . . an] = In ≡ diag{1, 1, . . . , 1}.

Also check that AAT = In: AATA ≡ A (ATA)︸ ︷︷ ︸
In

= A and AATA ≡ (AAT)A

These properties can be taken as a definition of an orthonomal matrix: A−1 = AT if
and only if A is orthonormal.

Thus, if A is orthonormal, the solution to Ax = b is simply x = ATb.

20

Example: Find the solution to the set of equations

0.48x1 + 0.64x2 + 0.60x3 = 3.56
0.36x1 + 0.48x2 − 0.80x3 = −1.08
0.80x1 − 0.60x2 = −0.40

or

x1

a1︷ ︸︸ ︷ 0.48
0.36
0.80

+x2

a2︷ ︸︸ ︷ 0.64
0.48
−0.60

+x3

a3︷ ︸︸ ︷ 0.60
−0.80

0.00

 =

 3.56
−1.08
−0.40

 .
So A = [a1 a2 a3].

Solution: By checking that ai · aj = 1 for i = j = 0 for i 6= j, it is easy to see that A
is orthonormal. So we have the solution

x = ATb =

 aT1
aT2
aT3

b

and
x1 = aT1 b = 0.48 · 3.56− 0.36 · 1.08− 0.80 · 0.40

= 1.7088− 0.3888− 0.3200 = 1.0
x2 = aT2 b = 0.64 · 3.56− 0.48 · 1.08 + 0.60 · 0.40

= 2.2784− 0.5184 + 0.2400 = 2.0
x3 = aT3 b = 0.60 · 3.56 + 0.80 · 1.08

= 2.136 + 0.864 = 3.0.

�

7 Factorising matrices

As we saw in the previous section, matrices with special forms are often much easier to
work with than arbitrary matrices. The remainder of this part of the course is focused
on how we can manipulate an arbitrary given matrix into a form that is convenient for
a stated problem. This is known as factorising or decomposing matrices.

There are 3 factorisations we will study in various degrees of depth: LU-factorisation,
Singular Value Decomposition (SVD) and QR decomposition. A brief summary is given
here:

• Elimination (LU decomposition): A = LU

– Lower triangular matrix × Upper triangular matrix

• Singular Value Decomposition (SVD): A = UDVT

21

– × diag(singular values) × Orthogonal (rows)

– Orthonormal columns in U and V:
the left and right singular vectors, respectively

– Left singular vector: an eigenvector of the square m×m matrix AAT

– Right singular vector: an eigenvector of the square n× n matrix ATA

– Singular value: the square root of an eigenvalue of ATA (or AAT).

• Orthogonalisation (QR decomposition): A = QR

– Orthogonal matrix (columns) ×

7.1 LU decomposition via Gaussian elimination

7.1.1 Gaussian elimination to solve systems linear equations (review)

You should be familiar with the process of Gaussian elimination (or row reduction) in
which the equation Ax = b (where A is arbitrary) in transformed into the equivalent
equation Cx = d where C is triangular, making the equation easy to solve. We review
the process here.

It is easy to show that multiplying both sides of Ax = b from the left by any nonsingular
matrix M does not affect the solution. That is MAx = Mb has the same solution as
Ax = b, since

MAx = Mb⇒ x = (MA)−1 Mb = A−1M−1Mb = A−1b.

We know from the above result that we can multiple both sides by a series of elemen-
tary matrices which perform various row operations on A: the three types of operation
are row swapping, row multiplication and adding some multiple of one row to another
row. Repeated application of these three operations (that is, repeated multiplication
by elementary matrices) to both sides of the equation transforms it to Cx = d where
C = M1 . . .MkA is in upper triangular form (so the only non-zero elements of C are
on or above the diagonal) and d = M1 . . .Mkb.

Example: Use Gaussian elimination to solve the system of equations Ax = b where

A =

3 2 1 2
6 6 3 5
3 0 3 5
9 2 7 8

 and b =

4
5
5

10

Solution:

22

A︷ ︸︸ ︷
3 2 1 2
6 6 3 5
3 0 3 5
9 2 7 8

x︷ ︸︸ ︷
x1

x2

x3

x4

 =

b︷ ︸︸ ︷
4
5
5

10

⇒

1 0 0 0
−2 1 0 0
−1 0 1 0
−3 0 0 1

3 2 1 2
6 6 3 5
3 0 3 5
9 2 7 8

︸ ︷︷ ︸

Eliminating the first column: M1A

x1

x2

x3

x4

︸ ︷︷ ︸

x

=

1 0 0 0
−2 1 0 0
−1 0 1 0
−3 0 0 1

4
5
5

10

︸ ︷︷ ︸

M1b

⇒

3 2 1 2
0 2 1 1
0 −2 2 3
0 −4 4 2

x1

x2

x3

x4

 =

4
−3

1
−2

⇒

1 0 0 0
0 1 0 0
0 1 1 0
0 2 0 1

3 2 1 2
0 2 1 1
0 −2 2 3
0 −4 4 2

x1

x2

x3

x4

︸ ︷︷ ︸

M2M1Ax

=

1 0 0 0
0 1 0 0
0 1 1 0
0 2 0 1

4
−3

1
−2

︸ ︷︷ ︸

M2M1b

⇒

3 2 1 2
0 2 1 1
0 0 3 4
0 0 6 4

x1

x2

x3

x4

 =

4
−3
−2
−8

⇒

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −2 1

3 2 1 2
0 2 1 1
0 0 3 4
0 0 6 4

x1

x2

x3

x4

︸ ︷︷ ︸

M3M2M1Ax

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −2 1

4
−3
−2
−8

︸ ︷︷ ︸

M3M2M1b

⇒

3 2 1 2
0 2 1 1
0 0 3 4
0 0 0 −4

x1

x2

x3

x4

 =

4
−3
−2
−4

It is easy to see that the solution to this row reduced matrix equation is

x4 = −4
−4 = 1

x3 = 1
3 (−2− 4 · 1) = −2

x2 = 1
2 (−3− 1 · (−2)− 1 · 1) = −1

x1 = 1
3 (4− 2 · (−1)− 1 · (−2)− 2 · 1) = 2

23

�

7.1.2 Gaussian elimination as LU decomposition

It turns out that Gaussian elimination can be viewed a LU decomposition in which a
matrix A is written as the product of a lower triangular matrix L and an upper triangular
matrix U so that A = LU. Recall that the Gaussian elimination process starts with
an arbitrary square matrix A, multiplies it by a series of elementary vectors, M1 . . .Mk

to get U = M1 . . .MkA where U is upper triangular (we called it C in the earlier
discussion).

Now (check that you understand the following statements), each of the elementary matri-
ces is lower triangular (so long as there are no row swapping operations) and the inverse
of lower triangular matrices are lower triangular too, so each of M−1

i , for i = 1, . . . , k is
lower triangular. Finally, the product of lower triangular matrices is also lower triangular
so

U = M1 . . .MkA =⇒ LU = A,

where L = (M1 . . .Mk)
−1 = M−1

k . . .M−1
1 . If row permutations (row swaps) are needed

in the Gaussian elimination process, we can’t find an LU decomposition for A but can
find an LU decomposition for the permuted matrix PA, where P describes the necessary
permutations. Obviously, the permuted system has the same solution as the unpermuted
system.

The computational complexity of solving a system of n equations in n unknown using
Gaussian elimination is O(n3). It is typically a stable algorithm, though potential for
instability arises when a leading non-zero entry is very small (as we divide through by
this entry). Reordering of the rows before the start of the row reduction process so that
the largest leading non-zero elements are selected first can avoid this cause of instability.
This technique is known as pivoting.

We won’t look further at LU decompositions but will spend considerable time looking
first at singular value decomposition and its uses and, later, when we consider the Least
Squares framework, QR decompositions and its applications.

7.2 Eigenvalues and eigenvectors of real symmetric matrices1

Result: in elementary linear algebra courses, it is shown that a real symmetric (so
square) matrix A always has real eigenvalues and the eigenvectors of such a matrix may
always be chosen to form an orthonormal set of size n.

Denote the eigenvectors of A by ui with corresponding eigenvalue λi, so that

Aui = uiλi (3)

1This section is taken, with few modifications, from notes written by Sze Tan for Physics 707: Inverse
Problems.

24

(note that I purposely write the right hand side this order. You can consider it as matrix
multiplication of a n × 1 matrix with a 1 × 1 matrix. Of course, the result is the same
as standard scalar multiplication of a matrix λiui.)

Write the column vectors ui, . . . ,un as the columns of a square matrix:

U =

...

...
...

u1 u2 . . . un
...

...
...

Now the relations described by Equation 3 can be written

AU =

...

...
...

Au1 Au2 . . . Aun
...

...
...

 =

...

...
...

λ1u1 λ2u2 . . . λnun
...

...
...

=

...

...
...

u1 u2 . . . un
...

...
...

λ1

λ2

. . .

λn

 = UD

where D is the diagonal matrix with eigenvalues on the diagonal, D = diag(λ1, . . . , λn).

Since U is orthogonal (and assuming its columns are normalised), it is invertible with
U−1 = UT so

A = UDUT .

This can be rewritten as

A =
n∑
k=1

λkuku
T
k ,

a decomposition that we have seen before that is worth considering further. First, you
can check that the decomposition is actually correct by showing that the multiplying
the eigenvectors ui by A and

∑n
k=1 λkuku

T
k produces equivalent results.

Second, it means that the action of multiplying an arbitrary n-vector x by the real
symmetric matrix A, so Ax = (

∑n
k=1 λkuku

T
k)x =

∑n
k=1 ukλku

T
k x can be understood

as comprising three steps:

1. It resolves the input vector along each of the eigenvectors uk, the component of
the input vector along the kth eigenvector being given by uTk x,

2. The amount along the kth eigenvector is multiplied by the eigenvalue λk,

3. The product tells us how much of the kth eigenvector uk is present in the product
Ax.

25

u1

u2
x

uT
1 x

uT
2 x

Rn

A

u1

u2 Ax

λ1u
T
1 x

λ2u
T
2 x

Rn

Figure 3: Effect of a real symmetric matrix A of size n on a vector x. Only two of the
orthogonal eigenvectors are shown.

A schematic diagram of this process is shown in Figure 3.

Note that this is a special case of diagonalisation. A matrix A is diagonalisable if A =
PDP−1 (or, equivalently, P−1AP = D) for some diagonal matrix D and some matrix
P. In the case discussed above, where A is real and symmetric, A is diagonalisable with
P = U and U−1 = UT.

8 Singular Value Decomposition (SVD)

Singular Value Decomposition is a method of factorising any ordinary rectangular m×n
matrix. It is most frequently applied to problems where m ≥ n (more equations than
unknowns).

It has applications in signal processing, pattern recognition, and statistics where it is
used for least squares data fitting, regularised inverse problems, finding pseudoinverses
and performing principal component analysis (PCA). The application areas are many
and varied but include computational tomography, seismology, weather forecast, image
compression, image denoising, genetic analyses and more.

It is particularly useful when a given set of linear equations is singular or very close
to singular in which case conventional solutions (e.g. by LU decomposition) are either
not available or produce senseless results (due to the problems being ill-posed). In these
cases, SVD can diagnose and, in some cases, solve the problem giving an useful numerical
answer (though not necessarily the expected one!).

26

8.1 Overview of an SVD

SVD represents an ordinary m× n matrix A as A = UDVT where:

U : an m×m column-orthogonal matrix; its m columns are the m eigenvectors u of
the m ×m matrix AAT. The vectors {u} are known as the left singular vectors
of A.

V : an n × n orthogonal matrix; its n columns are the eigenvectors v of the n × n
matrix ATA . The vectors {v} are known as the right singular vectors of A.

D : an m × n matrix whose only non-zero elements are the first r entries on the
diagonal where r is the rank of A and dkk = σk =

√
λk where λk is the eigenvalue

associated with vk.

The singular values, σk are ordered so that σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

Since A = UDVT, we can write

A =

r∑
k=1

σkukv
T
k (4)

= σ1u1v
T
1 + σ2u2v

T
2 + . . .+ σrurv

T
r .

This representation suggests the approximation of A by the truncated series,

Âρ =

ρ∑
k=1

σkukv
T
k for ρ < r.

Notice that when m > n (that is, the problem is over-determined), there are at most n
non-zero singular values. In this case, we can truncate the matrix U to be m×n and the
matrix D to be a n×n diagonal matrix. This leaves the sum in Equation 4 unaltered as
the rows or columns that are removed contribute nothing to that sum. In the following
example, we employ this strategy.

Example: Find the SVD of the matrix A where

A =

 0 1
1 1
1 0

Solution: First find the eigenvectors and eigenvalues of AAT and ATA. Since A is
3×2, we need only find the top two eigenvalues and eigenvectors of each of these matrices.

ATA =

[
0 1 1
1 1 0

] 0 1
1 1
1 0

 =

[
2 1
1 2

]

27

which has eigenvalues λ1 = 3 and λ2 = 1. The associated eigenvectors are, respectively,

v1 =
1√
2

[
1
1

]
and v2 =

1√
2

[
−1

1

]
.

Notice that the eigenvectors have been normalised.

Similarly,

AAT =

 0 1
1 1
1 0

[0 1 1
1 1 0

]
=

 1 1 0
1 2 1
0 1 1

The top two eigenvalues are µ1 = 3 and µ2 = 1. Notice that these are the same as the
top two eigenvalues of ATA. The associated eigenvectors are

u1 =
1√
6

 1
2
1

 and u2 =
1√
2

 1
0
−1

 .
The singular values are given by σi =

√
λi, so σ1 =

√
3 and σ2 = 1.

We can thus write A as

A =

 0 1
1 1
1 0

 = [u1 u2]︸ ︷︷ ︸
U

diag(σ1, σ2)︸ ︷︷ ︸
D

[
vT

1

vT
2

]
︸ ︷︷ ︸

VT

=

 1/
√

6 1/
√

2

2/
√

6 0

1/
√

6 −1/
√

2

︸ ︷︷ ︸

U

[√
3 0
0 1

]
︸ ︷︷ ︸

D

[
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
.︸ ︷︷ ︸

VT

The matrix approximation Â1 is calculated as follows:

Â1 = σ1u1v
T
1

=
√

3 · 1√
6

 1
2
1

 · 1√
2

[1 1] = 1
2

 1
2
1

 [1 1] =

 0.5 0.5
1 1
0.5 0.5

28

while the approximation can be extended to Â2(= A) by

Â2 = Â1 + σ2u2v
T
2

≡

 0.5 0.5
1 1
0.5 0.5

+ 1 · 1√
2

 1
0
−1

 1√
2

[−1 1]

≡

 0.5 0.5
1 1
0.5 0.5

+

 −0.5 0.5
0 0

0.5 −0.5

 =

 0 1
1 1
1 0

 .
︸ ︷︷ ︸

A

8.2 How does this all work?2

Recall A is m × n so that ATA is n × n and AAT is m ×m. Both of these product
matrices are square and symmetric.

So, by the result we saw earlier, ATA has n real eigenvalues and a set of n orthonormal
eigenvectors (similarly for AAT which has m of them).

Let vi be the eigenvectors of AAT and λi be the corresponding eigenvectors and order
them so that λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. (It can be shown that all eigenvales here are ≥ 0.)

Similarly, let ui be the eigenvectors of ATA and µi be the corresponding eigenvectors
and order them so that µ1 ≥ µ2 ≥ . . . ≥ µm ≥ 0.

It turns out that the non-zero eigenvalues of AAT are exactly the same as the non-zero
eigenvalues of ATA. Suppose there are r such non-zero eigenvalues, so that λr+1 =
. . . = λn = 0 and µr+1 = . . . = µm = 0.

r is called the rank of A (and of AT). Clearly, r ≤ m and r ≤ n.

Now, for k = 1, . . . , r, it can be shown that we have

Avk = σkuk and ATuk = σkvk

where σk =
√
λk =

√
µ
k
. And, also that, for k > r,

Avk = 0 and ATuk = 0.

The equations Avk = σkuk for k ≤ r together with Avk = 0 for k > r tell us how A acts
on the orthonormal set of vectors {vk}. Since this set is a basis for Rn, the equations
give a complete description of the action of A, so that we can write

A =
r∑

k=1

σkukv
T
k . (5)

2This section is taken, and condensed, from notes written by Sze Tan for Physics 707: Inverse
Problems.

29

A similar argument shows that

AT =
r∑

k=1

σkvku
T
k .

The orthonormal vectors {vk} are known as the right singular vectors, the vectors {uk}
are known as the left singular vectors, and the scalars {σk} are called the singular values
of the matrix A.

The singular value decomposition allows us to understand the action of A on a vector
x as

Ax =
r∑

k=1

ukσk(v
T
k x).

which can be interpreted as having three stages:

1. It resolves the input vector along each of the right singular vectors vk, the compo-
nent of the input vector along the kth singular vector being given by vTk x,

2. The amount along the kth direction is multiplied by the singular value σk,

3. The product tells us how much of the kth left singular vector uk is present in the
product Ax.

This is illustrated in Figure 4.

v1

v2

x

vT
1 x

vT
2 x

Rn

A

u1

u2
Ax

σ1v
T
1 x

σ2v
T
2 x

Rm

Figure 4: Effect of a rectangular matrix A of size m× n on a vector x. Only two of the
orthogonal eigenvectors are shown.

30

8.3 Structure of SVD

In the overdetermined case, in which m > n, so that we have more equations than
unknowns, we have the following structure:

A = U D VT

In the underdetermined case, in which m < n, so that we have fewer equations than
unknowns, we have the following structure:

A = U D VT

Note that, in the overdetermined case, we truncate U and D since there are at most
r ≤ n < m non-zero singular values of A we can omit the ui that contribute nothing to
matrix product.

The matrix V is orthonormal, so VVT = VTV = In. U is orthonormal when m ≥ n,
but if m < n, the singular values σj = 0 for j = m + 1, . . . , n and the corresponding
columns of U are also 0 so that UUT = diag(1, . . . , 1, 0, . . . , 0) where only the first m
elements of the diagonal are 1 and the elements from m+ 1 to n are zero.

Note that the SVD of matrix A is only unique up to permutations of the columns/rows.
For this reason, we insist that the singular values and corresponding singular vectors
are arranged so that the singular values are in descending order σ1 ≥ σ2 ≥ Even
then, some of the σi’s may have the same value so columns of U and V could be
permuted. Aside from these possible permuations, the representation is unique. Be
aware when calculating the SVD with various software that the you may need to enforce
this canonical representation.

8.4 Condition number of a matrix

The concept of a condition number was introduced in Section 2. This concept can
be applied to a matrices and is useful, for example, when considering solutions to the
equation Ax = b. Solutions to this equation will change greatly with small changes in
b when A has a large condition number, while the small changes in b will lead to only
small changes in the solution when the matrix has a small condition number. We can
define the condition number of a matrix as the maximum of the ratio of the relative error
in x divided by the relative error in b, where the maximum is taken over all possible x
and b.

To give a full description of how to derive the condition number of A, we would have
to introduce matrix norms which we do not have time to do here. Instead, we simply
present the result here that the condition number of A can be defined as the ratio of
the largest to the smallest non-zero singular values:

cond(A) =
σmax

σmin
.

31

If the smallest singular value of A is 0, A is singular (has no inverse) but the condition
number of A is still defined.

The condition number of A is considered to be large, and the matrix is ill-conditioned,
if roughly log(cond(A)) ≥ k where k is the number of digits of precision in the matrix
entries.

Example: Find the condition number of the matrix A =

[
2 −3
1 −1

]
Solution: Using a matrix algebra package, find the singular values of A to be 3.864 and
0.259, so cond(A) = 3.864

0.259 ≈ 14.9. �

Example: The singular values of the matrix A =

[
1.2969 0.8648
0.2161 0.1441

]
are approximately

1.58 and 6.33×10−9 so the condition number is about 2.5×108. This very large condition
number means that A is an ill-conditioned matrix.

Ill-conditioning means that standard approaches to solving linear systems can be very

unstable. For example, consider the linear system Ax = b where b =

[
0.8642
0.1140

]
. This

has the exact solution x =

[
2
−2

]
.

But standard matrix software (linsolve in Matlab), gives the solution as

[
2.59
−3.89

]
×

106 which is radically wrong!

It also means that if some number in the system is measured slightly differently, the
results we get can change enormously. For example, if the measurement vector b is

just slightly different, say b =

[
0.86419999
0.11400001

]
, then the exact solution is now close to

x =

[
0.9911
−0.4870

]
which represents an enormous change in the solution relative to the

small change in the original system. �

We’ll see in a later section on pseudo-inverses how the SVD can be used to solve the
linear system Ax = b.

8.4.1 Image compression

See slides and assignment 1.

8.4.2 Gene expression

Abstract from Alter et al, 2000, Singular value decomposition for genome-wide expression
data processing and modeling, http://www.pnas.org/content/97/18/10101.full: We
describe the use of singular value decomposition in transforming genome-wide expression
data from genes × arrays space to reduced diagonalized eigengenes × eigenarrays space,
where the eigengenes (or eigenarrays) are unique orthonormal superpositions of the genes

32

http://www.pnas.org/content/97/18/10101.full

(or arrays). Normalizing the data by filtering out the eigengenes (and eigenarrays) that
are inferred to represent noise or experimental artifacts enables meaningful comparison
of the expression of different genes across different arrays in different experiments. Sort-
ing the data according to the eigengenes and eigenarrays gives a global picture of the
dynamics of gene expression, in which individual genes and arrays appear to be classi-
fied into groups of similar regulation and function, or similar cellular state and biological
phenotype, respectively. After normalization and sorting, the significant eigengenes and
eigenarrays can be associated with observed genome-wide effects of regulators, or with
measured samples, in which these regulators are overactive or underactive, respectively.

8.5 Principal Components Analysis (PCA)

PCA is a common technique for identifying patterns in high-dimensional data. It trans-
forms the original correlated measurements into uncorrelated measurements. One of the
main uses of PCA is as a dimension reduction tool, in which only the directions in which
the data varies the most are considered. This can lead to enormous simplifications of
the data and provide insights for a wide variety of data. PCA is alternatively known
as the Karhunen-Loéve transform (KLT), the Hotelling transform or proper orthogonal
decomposition (POD)

These new coordinate axes (along which the data varies the most) are are known as
principal components and are, by construction, orthogonal.

A useful visualisation tool to aid your understanding of PCA is at http://setosa.io/ev/principal-
component-analysis/.

Suppose we have a m × n matrix of measurement data A. For example, n trials where
m properties were measured in each trial. Then, if ai are the measurements from the
ith trial,

A =
[

a1 a2 . . . an
]

=

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .
For example, A could be n = 100 observations of the position of an object measured in
m = 3 dimensions.

In the following, assume that the rows of A have been centred, so that the mean of each
row is 0 (each rows of A corresponds to a dimension in the original data). If this is not
already the case, it can be achieved by subtracting the mean of each row of A from each
element of that row. That is, set element

aij = aij −
n∑
j=1

aij/n

to centre the rows of A. This is a critical assumption and allows us to concentrate on
the variance.

33

http://setosa.io/ev/principal-component-analysis/
http://setosa.io/ev/principal-component-analysis/

Each observation A is just the m-vector ai. The idea of PCA is to chose a new basis
u1, . . . ,uk to express the data points (the ai’s) so that the variance of the measurements
is greatest in the direction of u1, the next greatest variance is in the direction of u2 and
so on, down to uk. Ideally, k < m.

Define the covariance matrix of A by

Σ =
1

n− 1
AAT .

Then Σ is an m×m matrix where the diagonal terms of Σ are the variance of the ith
dimension of the measurement, while the off-diagonal terms of Σ are the covariances
between different measurements.

It turns out that the best basis to choose are the k eigenvectors of Σ corresponding its
k largest eigenvalues. These are known as the principal components of A. Call them
u1, . . . ,uk and form the matrix

Uk = [u1, . . . ,uk]

From results we have seen earlier about symmetric matrices, this an orthogonal matrix.
We include the subscript k as we may decide to truncate this matrix by including only the
eigenvectors corresponding to the largest eigenvalues. That is, if Σ has K eigenvectors
and associated eigenvalues, and the largest k eigenvalues are substantially larger than
the remaining K − k, it is reasonable to form Uk containing only the most significant k
eigenvectors.

We can now represent the original measurements, A, in this this new co-ordinate system.
The amount of measurement vector ai in direction uj is given by u>j ai: this is the jth
coordinate of ai in this new coordinate system. So if we consider just the two dimension
space defined by the top two principal components, ai has coordinates

UT
2 ai =

[
uT

1

uT
2

]
ai =

[
uT

1 ai
uT

2 ai

]
.

We usually consider this space independently of how it relates to the originalm-dimensional
space but we can consider it as embedded in the original space. To find the coordinates
of a point in this embedded space, define the projection matrix, Pk by

Pk = UkU
T
k =

[
u1 u2 . . . uk

]

uT
1

uT
2
...

uT
k

so that each measurement vector ai is projected via Pkai.

One interpretation of PCA is that the projection Pk is chosen to minimise the projection
error

∑n
j=1 ‖aj −Pkaj‖2

34

Example: Find the principal components of the data matrix A where

A =

 −4 3 −5 18 6 −5
2 6 −2 10 1 −1
7 11 3 6 9 3

 .
Find the amount of the first principal component in the first measurement vector of A
(that is, the first column), and calculate the projection matrix for projecting A onto the
first two principal components.

Solution: First, centre the rows of A so that each row has mean zero. Call this centred
matrix B.

B =

 −6.1667 0.8333 −7.1667 15.8333 3.8333 −7.1667
−0.6667 3.3333 −4.6667 7.3333 −1.6667 −3.6667

0.5 4.5 −3.5 −0.5 2.5 −3.5

 .
Now form the covariance matrix for the centred data matrix, Σ = 1

nBBT:

Σ =
1

5

 406.8333 176.3333 52.5
176.3333 103.3333 36.0
52.5000 36.0000 51.5

 .
This matrix has eigenvalues 99.31, 9.46 and 3.561 corresponding to eigenvectors

[u1,u2,u3] =

 0.8987 0.2829 0.3352
0.4158 −0.3062 −0.8564
0.1396 −0.9090 0.3928

 = U.

These eigenvectors are the principal components of A (and of B).

The amount of the first principal component in a1 is

u>1 a1 = [0.8987, 0.4158, 0.1396]

 −4
2
7

 = −1.756.

To project A into the coordinate system defined by the first two principal components,
form the projection matrix,

P2 = U2U
T
2 =

 0.8987 0.2829
0.4158 −0.3062
0.1396 −0.9090

[0.8987 0.4158 0.1396
0.2829 −0.3062 −0.9090

]
=

 0.8877 0.2870 −0.1316
0.2870 0.2666 0.3364
−0.1316 0.3368 0.8457

8.6 Examples

See associated slides for population structure in Europe (Novembre et al, Nature 2008,
http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html)and
Eigenfaces.

35

http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html

The “eigenfaces” example in the slides was developed by Matthew Turk and Alex Pent-
land (Journal of Cognitive Neuroscience, 1991, v3 (1)). The following quote is from their
abstract:

We have developed a near-real-time computer system that can locate and
track a subject’s head, and then recognize the person by comparing charac-
teristics of the face to those of known individuals. ... The system functions
by projecting face images onto a feature space that spans the significant
variations among known face images. The significant features are known as
”eigenfaces,” because they are the eigenvectors (principal components) of the
set of faces; they do not necessarily correspond to features such as eyes, ears,
and noses. The projection operation characterizes an individual face by a
weighted sum of the eigenface features, and so to recognize a particular face
it is necessary only to compare these weights to those of known individuals.
Some particular advantages of our approach are that it provides for the abil-
ity to learn and later recognize new faces in an unsupervised manner, and
that it is easy to implement using a neural network architecture.

8.7 What is connection between PCA and SVD?

Given A such that the rows of A have zero mean, define Y = 1√
n−1

AT (which has

columns with zero mean). Then YTY = Σ, the covariance of A. We have seen that the
principal components of A are the eigenvectors of Σ.

Now, if we calculate the SVD of Y to get Y = UDVT , the columns of V are the
eigenvectors of YTY = Σ. Therefore, the columns of V are the principal components
of A.

8.8 Problems with SVD and PCA

As we have seen, SVD and PCA are powerful analysis tools and SVD is a very stable
procedure. They do not, however, come free of cost.

The time complexity of SVD is O(m2n + n3) to calculate all of U,V and D (where,
typically, m� n) while faster algorithms are available when some elements of the SVD
are not required.

However, the matrices U and V are not at all sparse, where we say a matrix is sparse
when it mainly consists of zeros. Spareness is a commonly assumed property in large
systems as it reflects the observation that most effects are local and do not influence all
parameters in the system — a large world with small neighbourhoods. Sparse matrices
are typically computationally efficient to work with and store.

A second potential set-back is that SVD and PCA only work with data that can be (co-
herently) expressed as a two dimensional array (that is, a matrix). When data naturally
has 3 or 4 dimensions arrays (tensors), as is common in many engineering applications,
there is no perfect analogue to SVD or PCA or even eigenvectors.

36

Finally, when using PCA for data analysis, you should be aware of the strong assumptions
being made. In particular, dependencies in the data are assumed to be linear, which
may not be the case. PCA and SVD will always give an answer but it is up to the user
to interpret whether or not it is a valid answer to any question they are interested in.

9 Least squares

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

50

100

150

80 100 120 140
Mother's IQ score

C
hi

ld
's

 s
co

re
 in

 c
og

ni
tiv

e
te

st

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

50

100

150

80 100 120 140
Mother's IQ score

C
hi

ld
's

 s
co

re
 in

 c
og

ni
tiv

e
te

st

Figure 5: Left: Relationship between cognitive test scores for 3-4 year old children
and mother’s IQ score. Right: The same data with a least squares best fit line
added. Discussed in Gelman and Hill, 2007, Cambridge University Press, data at
http://www.stat.columbia.edu/ gelman/arm/examples/child.iq/kidiq.dta

You are probably familiar with the basic idea of least squares: we have a set of mea-
surements and we want to fit a model to them. But no sufficiently simple model exactly
fits all of the points at the same time. So how choose the model that is most satisfac-
tory? The answer often given is that we chose the model that satisfies the least squares
criterion: that is, the model for which the sum of the squares of differences between the
predictions from the model and the actual observations is minimised.

For example, in Figure 5, we might want to fit a linear model to the relationship between
a mother’s IQ score and her young child’s score in a cognitive test. This should be familiar
to you as the linear regression problem in statistics.

This problem arises when we have an overdetermined linear system: recall that Au = b
is overdetermined when A is m× n matrix with m > n:

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

u1

u2
...
un

 =

b1
b2
...
bm

 .
In this case, A−1 does not exist and there is no u that solves this problem. (We ignore
the highly unusual cases where a solution does exist.)

The goal, then, is to find the best solution u∗ to the problem.

37

http://www.stat.columbia.edu/~gelman/arm/examples/child.iq/kidiq.dta

Example 1: Fitting m = 4 measurements by a small number n = 2 of parameters (e.g.
linear regression in statistics)

Want to find the straight line bx = u1 + u2x where we have observed the points bx at x.
u1 + u2 · 0 = 1
u1 + u2 · 1 = 9
u1 + u2 · 2 = 9
u1 + u2 · 4 = 21

⇔

1 0
1 1
1 3
1 4

 [u1

u2

]
=

1
9
9

21

x0

b0 = 1

1

b1 = 9

2 3

b3 = 9

4

b4 = 21

5

The above set of equations clearly has no solution as vector b is not a linear combination
of the two column vectors from A:

1 0
1 1
1 3
1 4

[u1

u2

]
6=

1
9
9

21

For example, The line b = 1 + 8x through the first two points is almost certainly not the
best line:

x0

b0 = 1

1

b1 = 9

2 3

b3 = 9

4

b4 = 21

5

e3 = −16

38

But why is this not the best line: look at the error or residual , e = b −Au. For the
two points the line does not pass through the error is ex = bx− (1 + 8x) is large: e3 = 16
and e4 = 12. The Total square error, E(u) = 0 + 0 + 256 + 144 = 400 .

Notice that the total square error is given by.

E(u) = eTe ≡‖ e ‖2= (b−Au)T(b−Au)

The Least Squares method to find the chooses a solution u∗ that minimises E(u).

How do we find u∗? To find the minimum of E(u), we can differentiate with respect to
u, set to 0 and attempt to solve for u:

E(u) = (b−Au)T(b−Au)

= bTb− 2uTATb + uTATAu

Differentiating and setting to 0:

∂E(u)
∂u = 0

=⇒ −2ATb + 2ATAu = 0

=⇒ ATAu = ATb

This equation, ATAu = ATb is called the normal equation.

The least squares estimate, u∗, is the solution to the normal equation.

Notice that ATA is square and symmetric. In some cases it may be possible to directly
find the inverse (in particular, when A has independent columns, then ATA is positive
definite and ATA is invertible in which case u∗ = (ATA)−1ATb). In other cases, this
approach may be highly unstable, so stable numerical techniques need to be employed.

9.1 Understanding the Least Squares solution

This subsection is not examined. The main point of this section is to add some geometric
and algebraic understanding to our discussion. You are not expected to understand all
the detail in this section, but do familiarise yourself with the concept and definition of
the projection matrix P defined below.

The equation Au = b can be seen as attempting to represent b as a linear combination
of the n columns of A. This is impossible, since the n columns of A describe, at most,
an n-dimensional plane inside the much larger m dimensional space (recall that n < m).
Thus b is unlikely to fall on that plane. The plane is called the column space of A.

39

column space

column a1

column an

e = b−Au∗

‖ e ‖2=‖ b ‖2 − ‖ p ‖2

p = Au∗

The best Au∗ is the projection p

The best solution, Au∗, is the nearest point to b on that plane. Call this point p = Au∗.

Now, from a geometric argument, you can see that the error vector e is orthogonal
(perpendicular) to this plane. Thus AT e = 0.

Notice that 0 = ATe = AT (b−Au∗) = ATb−ATAu∗ =⇒ ATb = ATAu∗. This is
a geometric derivation of the normal equation that we earlier saw derived from calculus.

The point p (= Au∗) is the projection of b onto the column space of A:

p = Au∗ =

[
A
(
ATA

)−1
AT

]
︸ ︷︷ ︸

projection matrix P

b = Pb,

where we define the Projection matrix, P = A
(
ATA

)−1
AT. P is symmetric and of size

m×m but the rank of P is only n (as all the factors of P in the definition above have
rank n).

9.2 Computing the Least Squares solution, u∗

We consider three methods for computing the least squares solution to a linear sys-
tem. They are Gaussian elimination, QR Decomposition (aka Orthogonalisation) and
computation of the pseudo-inverse via SVD.

9.3 Computing u∗ via Gaussian elimination

Given the normal equation ATAu = ATb, we may be tempted to find the solution by
Gaussian elimination, where we reduce the the matrix ATA to upper triangular form
using elementary row operations.

This solution can work but is highly unstable. To see why it is unstable, consider the
condition number of the matrix ATA. It can be shown that the condition number of
ATA is the square of the condition number of A (if we take σmin to be the smallest
non-zero singular value in the definition of condition number). So even if A has only
moderately widely spread singular values, ATA can have a very large condition number
and solution by row reduction can be very unstable.

40

9.4 Computing u∗ via orthogonalisation (QR decomposition)

QR-decompostion presents a much more stable solution to the normal equation ATAu =
ATb.

The Orthogonalisation of matrix A is given by A = QR where

• Q is an m × n matrix with n orthonormal columns: . Construction of Q is
discussed below.

• R is an n× n upper triangular matrix: . R is given by R = QTA.

This factorisation reduces the normal equation to a much simpler equation:

ATAu = ATb

=⇒ (QR)TQRu∗ = (QR)Tb

=⇒ RTQTQRu∗ = RTQTb

=⇒ RTRu∗ = RTQTb since QTQ = I

=⇒ Ru∗ = QTb multiplying both sides by (RT)−1.

This is easy to solve via back-substitution, since R is upper triangular.

9.4.1 Constructing the orthogonal matrix Q by Gram-Schmidt

The orthonormal columns of Q, call them q1, . . . ,qn, are obtained iteratively from the
columns a1, . . . ,an of A. The basic idea is that we set q1 to be a1. q2 is then set to be
a2 and any part of it in the direction of q1(= a1) is subtracted out, so ensure that it is
orthogonal to q1. Similarly, q3 is set to be a3 with any parts in the direction of q1 or q2

are subtracted. All these vectors are normalised to have magnitude 1 at each step.

This is called the Gram-Schmidt process and is more formally defined as follows:

Set v1 = a1. Then q1 = v1
|v1| .

Set v2 = a2 −
(
aT

2 q1

)
q1. Then q2 = v2

|v2| .
...

...
...

...

Set vj = aj −
j−1∑
i=1

(
aT
j qi

)
qi. Then qj =

vj

|vj | .

Note that |v| = vTv is the norm of v.

Having found Q, find R by setting R = Q>A. R is indeed upper triangular since the
ith column of Q is, by construction, orthogonal to first i− 1 columns of A.

Producing Q and R takes twice as long as the mn2 steps to form ATA, but that extra
cost gives a more reliable solution.

41

There is another method of orthogonalisation that we don’t cover here which has better
numerical stability using so-called Householder reflectors.

Example: Use the Gram-Schmidt process to orthogonalise the matrix

A =

1 0 0
1 0 1
1 1 0
1 1 1

 .

Solution: Let v1 = a1 =

1
1
1
1

 and then normalise to get q1 = v1
|v1| =

0.5
0.5
0.5
0.5

. Now

set v2 = a2 − (a>2 q1)q1 =

0
0
1
1

 −
[0 0 1 1

]
0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

 =

−0.5
−0.5

0.5
0.5

.

Since v2 = 1, q2 = v2
|v2| = v2.

Finally, to get q3, set

v3 = a3 − (a>3 q1)q1 − (a>3 q2)q2

=

0
1
0
1

−
[0 1 0 1

]
0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

−
[0 1 0 1

]
−0.5
−0.5

0.5
0.5

−0.5
−0.5

0.5
0.5

=

0.5
−0.5

0.5
−0.5

which is also normalised, so q3 = v3 and

Q =
1

2

1 −1 1
1 −1 −1
1 1 1
1 1 −1

 .
We find R as follows:

R = QTA =
1

2

 1 1 1 1
−1 −1 1 1

1 −1 1 −1

1 0 0
1 0 1
1 1 0
1 1 1

 =

 2 1 1
0 1 0
0 0 −1

 .
�

42

9.5 Computing u∗ via SVD: the Pseudoinverse

The most stable computation to find the solution to the normal equation is given by
singular value decomposition (SVD).

Recall that SVD decomposes the m× n matrix A as A = UDVT where:

• U is a column-orthonormal n×m matrix, so UTU = In,

• V is an orthonormal n× n matrix so VTV = In (indeed, VT = V−1), and

• D = diag{σ1, . . . , σn} is a diagonal n × n matrix of singular values. Since D is
diagonal, DT = D.

Now consider the product ATA that arises in the normal equation. Substituting A =
UDVT in this product gives:

ATA = (UDVT)TUDVT = VDTUTUDVT = VDTDVT = VD2VT.

We can thus express the normal equation in a much simplified form:

ATAu = ATb

=⇒ VD2VTu∗ = VDUTb

=⇒ D2VTu∗ = DUTb

=⇒ VTu∗ =
(
D2
)−1

D︸ ︷︷ ︸
D+

UTb

=⇒ u∗ = VD+UTb.

The matrix D+ is called the “pseudoinverse” of D and is defined as follows: D+ =
diag

{
σ+

1 , . . . , σ
+
n

}
where

σ+
i =

{
σ−1
i = 1

σi
if σi > 0

0 otherwise.

Thus if rank(A) = n, then all the singular values of A are non-zero, in which case

D+ = D−1 = diag
{

1
σ1
, . . . , 1

σn

}
. In this case, In the former case, DD+ = D+D = In.

However, if rank(A) = r < n, there are only r < n non-zero singular values and D+ =
diag{ 1

σ1
, . . . , 1

σk
, 0, . . . , 0︸ ︷︷ ︸
n−r zeros

}. In this case, DD+ = D+D = diag{1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
n−r zeros

} —

which is very close to, but not quite, the identity matrix.

We call the product matrix VD+UT the pseudoinverse of A, written A+. That is ,

A+ = VD+UT.

If rank(A) = n, then A+A = VD+UTUDVT = VD+DVT = VVT = In, and A+ =
A−1.

43

Recall that the matrix ATA is ill-conditioned when the smallest singular value, σn, is
very small. This leads to instability in computing the solution to the normal equation.
The pseudo-inverse method provides a way of removing this instability to get an approx-
imate but stable solution by simply removing the smallest singular value or values.

9.5.1 Properties of the pseudo inverse A+

The pseudo-inverse of A always exists (all we need to do is calculate the SVD and form
the product described above).

The SVD of A gives A = UDVT from which we get AV = UD or, considering the
individual columns, Avi = σiui.

• If A is a square matrix such that A−1 exists, then the singular values for A−1 are
σ−1 = 1

σ and A−1ui = 1
σi

vi

• If A−1 does not exist, then the pseudoinverse matrix A+ does exist such that:

A+ui =

{ 1
σi

vi if i ≤ r = rank(A) i.e. if σi > 0

0 for i > r.

• Pseudoinverse matrix A+ has the same rank r as A

• The matrices AA+ and A+A are also as near as possible to the m×m and n×n
identity matrices, respectively

• AA+ – the m×m projection matrix onto the column space of A

• A+A – the n× n projection matrix onto the row space of A

Example: Find the pseudo-inverse of A =

 0 1
1 1
1 0

 .
Solution: The singular value decomposition of A is

A = UDV> =

1√
6

1√
2

2√
6

0

1√
6
− 1√

2

︸ ︷︷ ︸

U

[√
3 0
0 1

]
︸ ︷︷ ︸

D

[
1√
2

1√
2

− 1√
2

1√
2

]
︸ ︷︷ ︸

VT

.

So the pseudo-inverse of A is

A+ = VD+U> =

[1√
2
− 1√

2
1√
2

1√
2

]
︸ ︷︷ ︸

V

[
1√
3

0

0 1

]
︸ ︷︷ ︸

D+

[1√
6

2√
6

1√
6

1√
2

0 − 1√
2

]
︸ ︷︷ ︸

UT

=

[
−1

3
1
3

2
3

2
3

1
3 −1

3

]
.

44

Now let’s check the products AA+ and A+A:

AA+ =

 0 1
1 1
1 0

[−1
3

1
3

2
3

2
3

1
3 −1

3

]
=

2
3

1
3 −1

3
1
3

2
3

1
3

−1
3

1
3

2
3

while

A+A =

[
−1

3
1
3

2
3

2
3

1
3 −1

3

] 0 1
1 1
1 0

 =

[
1 0
0 1

]
.

�

We end our discussion on computational methods in linear algebra here. We have only
touched on a small number of the wide variety of techniques used in this area, but we
have tried to direct our attention to some of the more common and useful techniques.
This is a rich and extremely useful area of study and we encourage interested students
to look into fields where these tools and ideas are applied and explored further including
computer vision, engineering, physics, applied mathematics and statistics.

45

10 Introduction to stochastic processes and probability

Models and methods that have been considered so far in the course have been determinis-
tic — a single input produces the same answer every time while solutions to problems are
aimed at finding one correct answer or a close approximations to it. These deterministic
models, methods and approximations can be very accurate, particularly in engineering
and physical applications.

Many systems, however, are inherently random. Apparently identical inputs may pro-
duce radically different outputs and no two realisations of the system are exactly the
same. Whether that randomness is the result of our imprecise measurements (were the
inputs exactly the same?) or there is a fundamental randomness built into the system
(quantum uncertainty?), we should attempt to model and quantify this uncertainty. We
regularly refer to non-deterministic systems as stochastic rather than random to avoid
the common usage of random (where it is often used to mean uniformly random where
every outcome is equally likely).

The framework we use to make these models is probability theory and, ideally, we use
statistical inference to find the relationship between our models and the system we are
studying. Simulation is one of the tools we use to understand how our models behave and
is often used where exact statistical inference is prohibitively difficult. Both statistical
inference and simulation rely heavily on computational power and algorithms. Model
building is typically more of an art than a science and is done by hand (or mind).

In this section, we look at some of the basic terminology of probability theory, introduce
the fundamental ideas behind statistical inference and see how we can simulate stochastic
processes in silico.

11 Primer on Probability

The basic challenge of probability theory and applied probability is to understand and
describe the laws according to which events occur.

A event can be pretty much anything. Commonly used examples in probability are
rolling dice, picking balls out of an urn or tossing a coin — these are commonly used
because they are simple, easy to understand and aid our intuition. But all sorts of events
can be thought of as random: the amount of rain falling in an area in a given period,
the number of mutations that occur when a cell splits, the age of the person currently
reading this sentence. Indeed, if we consider randomness to a a property of our state of
knowledge of an event, any event can be considered random.

Formally, we define a probability to be a number between 0 and 1 assigned to a set of
outcomes of a random process called an event. This number is typically interpreted as
the chance of the event occurring or as the degree of plausibility we place on the event
occurring.

The set of all outcomes that the random process can take is known as the state space

46

and is often denoted Ω.

An event, A, is a subset of the state space: A ⊆ Ω. When Ω is finite or countable,
probability can be viewed as a function from the set of all subsets of Ω, written A, to
the interval [0, 1], that is P : A → [0, 1]. A, the set of all subsets of Ω, is called the
power set of Ω. That is, for some event or collection of events, we view the function P
as giving the probability of that event occurring.

This interpretation is not mathematically correct when Ω is uncountable (for example,
when our random process can take any value in continuous interval) but it will be
sufficient to guide our intuition here.

Example: Tossing a coin 2 times and recording the result of each toss. The random
process is tossing the coin twice. The state space is the set of all possible outcomes:
Ω = {HH,HT, TH, TT}.
An example of an event is that we throw a tails first: in this case A = {TH, TT}.
There are 24 = 16 possible events that we could consider here as that is the size of the
power-set (the set of all possible subsets) of Ω. For completeness, we write down all pos-
sible events: A = {∅, {HH}, {HT}, {HT}, {TT}, {HH,HT}, {HH,TH}, {HH,TT},
{HT, TH}, {HT, TT}, {TH, TT}, {HH,HT, TH}, {HH,HT, TT}, {HH,TH, TT}, {HT, TH, TT},
Ω}. �

Note that sometimes we distinguish between simple and compound events. In the above
example, the simple events are {HH}, {HT}, {HT}, {TT} while compound events are
combinations of simple events.

Example: Length of time waiting for bus, measured from arrival at bus stop until bus
arrives. Supposing the buses come every 15 mins. Then Ω = [0, 15] (that is, any time in
the interval between 0 and 15 minutes). An example of an event is A = [0, 1] being the
event that the wait for the bus is at most 1 minute. �

Let A and B be events. Then the event C that A and B occur is given by C = A ∩ B
while the event F that A or B occurs is given by D = A ∪ B. The event A does not
occur is given by Ac = Ā = Ω−A = Ω\A = {ω ∈ Ω : ω /∈ A}.
Example: Suppose we roll a fair die and record the value. Then Ω = {1, 2, 3, 4, 5, 6}.
Let A be the event that the roll is even, B be the event that we roll a 3 or a 6. Then
A = {2, 4, 6} and B = {3, 6}. The event that A and B occur is A ∩ B = {6} while the
event that A or B happens is A ∪ B = {2, 3, 4, 6}. The event that A does not occur is
Ac = {1, 3, 5} (A does not occur when the roll is odd). �

11.1 Axioms of probability

Any probability function must satisfy the 3 axioms (rules) of probability. The axioms
are:

1. P (Ω) = 1. That is, the total probability is 1.

2. 0 ≤ P (A) ≤ 1 for any A ⊆ Ω. The probability of any event is non-negative and

47

less than or equal to 1.

3. If A1, A2, . . . are mutually disjoint events (i.e., Ai ∩Aj = ∅ if i 6= j) then

P

(⋃
i

Ai

)
=
∑
i

P (Ai).

From the above axioms, all the useful rules of probability can be derived. For example,
P (Ac) = 1− P (A) since 1 = P (Ω) (axiom 1) = P (A ∪Ac) (definition of Ac) = P (A) +
P (Ac) (axiom 3 as A and Ac are disjoint).

11.2 Conditional probability and independence

For events A and B, if we know that B occurred, what can we say about the probability
of A given that knowledge? This is captured by the concept of the conditional probability
of A given B is written P (A|B) and defined by

P (A|B) =
P (A ∩B)

P (B)
.

This is only defined where P (B) > 0.

Example: Suppose we roll a fair die and record the value. Let A be the event that 2 is
rolled and B be the event that the roll is an even number. What is the probability that
the roll is a two given that we know it is even? This is just P (A|B). We calculate it as
follows. P (B) = 1/2 and P (A ∩B) = P (A) = 1/6 since A ∩B = A. Thus

P (A|B) =
P (A ∩B)

P (B)
=

1/6

1/2
=

1

3
.

�

We say that events A and B are independent when P (A ∩ B) = P (A)P (B). From the
definition of conditional probability, it is clear that if A and B are independent, then
P (A|B) = P (A) and P (B|A) = P (A).

Note that we usually write P (A,B) instead of P (A ∩ B). More generally, we write
P (A1, . . . , Ak) for P (

⋂k
i=1Ai).

Rearranging the definition of conditional probability, we see that P (A,B) = P (A|B)P (B) =
P (B|A)P (B). Repeated applications of this result gives

P (A1, . . . , Ak) = P (A1|A2, . . . , Ak)P (A2|A3, . . . , Ak) . . . P (Ak−1|Ak)P (Ak).

11.3 Bayes’ Theorem

From the definition of conditional probability, we can prove the following result, known
as Bayes’ theorem.

P (B|A) =
P (A|B)P (B)

P (A)
.

48

This simple result is important because it tells us how the forward probability P (A|B)
is related to the backward probability P (B|A). We’ll see that this relationship is crucial
to statistical inference.

11.4 Random variables

A random variable (r.v.) X is a variable whose value results from the measurement of
a random process. That is, a random variable is a measurement of some random event.
We use capital letters to denote random variables while lower-case letters to denote
particular observations or realisations of the random variable. So X = x is the event
that the random variable X takes the particular value x.

A discrete random variable takes a finite or countably infinite number of values, while
a continuous random variable can take an uncountable number of possible values.

Random variables are most commonly real valued (that is, their value is a real number)
but they can take any value. For example, we could consider random sequences, random
graphs or random trees. For now, lets stick with real valued random variables. Formally,
a real-valued random variable is a map from events to the real numbers: X : Ω→ R.

For discrete random variables, the probability distribution function (pdf) or prob-
ability mass function (pmf) is a function (rule, table) that assigns probabilities to
each possible value of X.

P (X = x) = p(x) is the probability that X = x. Sometimes write P (X = x) = px or
P (X = x) = f(x).

As usual, we have 0 ≤ P (X = x) ≤ 1 and
∑

x P (X = x) = 1.

For continuous random variables, the probability that a random variable takes any one
exact value is zero, that is P (X = x) = 0, so we consider instead the probability
density function, pX(x) (also written fX(x) or f(x)) from which we can calculate the
probability that X lies in the interval [a, b]:

Pr(a ≤ X ≤ b) =

∫ b

a
pX(x)dx.

pX(x) is real-valued, non-negative and normalised, i.e.,∫ ∞
−∞

px(x)dx = 1.

Note that the integral
∫ b
a pX(x)dx gives the area under the curve pX(x) between x = a

and x = b.

The cumulative distribution function (cdf), or simply the distribution function, is
defined, for both discrete and continuous random variables, by F (x) = P (X ≤ x).
This is a function that is monotonically increasing from 0 to 1. For continuous random
variables, the cdf is continuous, while for discrete random variables, it is a step function
with dis-continuities.

49

These ideas immediately extend to multiple random variables, so that the joint proba-
bility density function of n random valuablesX1, . . . , Xn takes n arguments, pX1,...,Xn(x1, . . . , xn)
that is real-valued, non-negative and normalised. The probability that the point (X1, . . . , Xn)
lies in some region is just the multiple integral over that region.

Given a joint probability density function, we obtain the probability density for a subset
of the variables by integrating over the ones not in the subset. For example, given
pXY (x, y), we have

pX(x) =

∫ ∞
−∞

pXY (x, y)dy.

This process is known as marginalization. The process is the same for a discrete
variable, if we replace the integral with a sum:

P (x) =
∑
y∈Y

P (x, y)

Two random variables X and Y are independent when

pXY (x, y) = pX(x)pY (y).

Equivalently, X and Y are independent when

pY |X(y|x) = pY (y).

The expected value of a random variable X is called the mean and is given by

E[X] =

∫ ∞
−∞

xpX(x)dx.

For discrete random variables, this is written

E[X] =
∑
x∈X

xpx.

The symbol µ is often used for the mean.

The variance of a random variable is Var(X) = E[(X − E[X])2] = E[X2] − (E[X])2.
The variance is a measure of the spread of a random variable about its mean.

The expected value of a function f of X is

E[f(X)] =

∫ ∞
−∞

f(x)pX(x)dx.

11.5 Commonly used distributions

In this course, we’ll primarily be discussing bioinformatics where some commonly used
discrete probability distribution functions are: Bernoulli, geometric, binomial, uniform
and Poisson. Commonly used continuous distributions are uniform, normal (Gaussian),
exponential, and gamma. Those are briefly described below. For more thorough de-
scriptions, refer to any decent statistics text or, more simply, the relevant Wikipedia
entries.

50

11.5.1 Bernoulli distribution

A random variable X with a Bernoulli distribution takes values 0 and 1. It takes the
value 1 on a ‘success’ which occurs with probability p where 0 ≤ p ≤ 1. It takes value
0 on a failure with probability q = 1 − p. Thus it has the single parameter p. If X is
Bernoulli, E[X] = q ·0+p ·1 = p and Var(X) = E[X2]−E[X]2 = q ·02 +p ·12−p2 = pq.

11.5.2 Geometric distribution

X has a geometric distribution when it is the number of Bernoulli trials that fail before
the first success. It therefore takes values in {0, 1, 2, 3, . . .}. If the Bernoulli trials have
probability p of success, the pdf for X is P (X = x) = (1− p)xp. If X is geometric,

E[X] =
q

p
and Var(X) =

q

p2
.

Note that the Geometric distribution can be defined instead as the total number of trials
required to get a single success. This version of the geometric can only take values in
{1, 2, 3, . . .}. The pdf, mean and variance all need to be adjusted accordingly.

11.5.3 Binomial distribution

X has a binomial distribution when it represents the number of successes in n Bernoulli
trials. There are thus two parameters required to describe a binomial random variable:
n, the number of Bernoulli trials undertaken, and p, the probability of success in the
Bernoulli trials. The pdf for X is

f(x) = P (X = x) =

(
n

x

)
px(1− p)n−x for x = 0, 1, 2, . . . , n.

where
(
n
x

)
= n!

x!(n−x)! . For a binomial variable X,

E[X] = np and V ar[X] = np(1− p) = npq.

We write X ∼ Bin(n, p) when X has a binomial distribution with parameters n and p.

11.5.4 Poisson distribution

The Poisson distribution is used to model the number of rare events that occur in a
period of time. The events are considered to occur independently of each other. The
distribution has a single parameter, λ, and probability density function

f(x) = exp(−λ)
λx

x!
for x = 0, 1, 2, 3,

If X is Poisson,
E[X] = λ and V ar[X] = λ.

We write X ∼ Poiss(λ) when X has a Poisson distribution with parameter λ.

51

11.5.5 Uniform distribution (discrete or continuous)

Under the uniform distribution, all possible values are equally likely. So if X is discrete
and takes n possible values, P (X = xi) = 1/n for all xi.

If X is continuous and uniform over the interval [a, b], the density function is f(x) = 1
b−a .

In this case, write X ∼ U([a, b]).

11.5.6 Normal distribution

The Normal, or Gaussian, distribution, with mean µ and variance σ2, (µ ∈ R;σ > 0)
has density function

f(x) =
1

σ
√

2π
exp

{
− 1

2σ2
(x− µ)2

}
We write X ∼ N(µ, σ2).

The normal distribution is a widely used distribution in statistical modelling for a number
of reasons. A primary reason is that it arises as a consequence of the central limit theorem
which says that (under a few weak assumptions) the sum of a set of identical random
variables is well approximated by a normal distribution. Thus when random effects all
add together, they often result in a normal distribution. Measurement error terms are
typically modelled as normally distributed.

11.5.7 Exponential distribution

The Exponential distribution describes the time between rare events so always takes
non-negative values. It has a single parameter, λ known as the rate and has density
function

f(x) = λe−λx,

where x ≥ 0. If X is exponentially distributed,

E[X] =
1

λ
and Var(X) =

1

λ2
.

Write X ∼ Exp(λ).

11.5.8 Gamma distribution

The Gamma distribution arises as the sum of a number of exponentials. It has two
parameters, k and θ, called the shape and scale, respectively. These parameters can be
used to specify the mean and variance of the distribution.

f(x) =
1

θkΓ(k)
xk−1 exp(−x/θ) for x > 0,

52

where Γ(k) =
∫∞

0 tk−1e−t dt is the gamma function (the extension of the factorial func-
tion, k!, to all real numbers). The mean and variance of a gamma distributed random
variable X is

E[X] = kθ and Var(X) = kθ2.

Write X ∼ Gamma(k, θ).

Note that the gamma distribution has different parametrisations which result in different
looking (but mathematically equivalent) expressions for the density, mean and variance
— be sure to check which parametrisation is being used.

11.6 Entropy

Seeing this is a computer science course we should briefly discuss an idea in computer
science which has deep connections to statistics: information theory. Central to informa-
tion theory is the concept of entropy. Entropy measures the unpredictability associated
with a (discrete) random variable. If X is a random variable with pdf p(X), the Shannon
entropy of X is

H(X) = −
∑
x∈X

p(x) log(p(x)) = −E[log(p(X))],

where we define 0 log 0 = 0. The base of the logarithm used is arbitrary though is
typically chosen to be 2, e or 10. When the base is 2, the units of entropy are bits, when
it is e, the units are nats, and when it is 10, they are dits.

The entropy of X is maximised when p is the uniform distribution, that is p(x) = 1/n
for each of the n possible outcomes of X. Intuitively, this makes sense as in this case
we are maximally uncertain about the outcome of X. At its maximum, H(X) = log n.
Conversely, the entropy is minimised taking value H(X) = 0 when p(x) = 1 for some x.
In that case, there is no uncertainty about the outcome of X.

Example: What is the entropy of a fair coin toss?

Solution: Let X be the outcome of the coin toss. Then p(x) = 1/2 for either value of
x. So, using log base 2, we get the entropy of X is H(X) = −

∑
x∈X p(x) log(p(x)) =

−(1
2 log(1

2) + 1
2 log(1

2)) = − log(1
2) = 1 bit. �

If the outcome of a random variable is known, the entropy (uncertainty) is reduced
to zero. For this reason, the information contained in a signal can be thought of
the difference in entropy before the signal was received to that after, that is, I(X) =
Hbefore −Hafter. If the signal is perfect so that the outcome of the random variable is
completely known after receiving the signal, the initial entropy and information content
are equivalent. If the signal is noisy, Hafter is not zero and the original entropy is greater
than the information content.

If we have two distributions, P and Q, we define the relative entropy (or Kullback-Leibler
divergence) by

H(P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
.

53

This quantity can be interpreted as the extra information required to code samples from
P using a code based on Q. Sometimes you may see this measure described as a distance
between two distributions, however H(P ||Q) 6= H(Q||P) so it not a distance (metric) in
the mathematical sense. The KL-divergence sometimes appears in Bayesian statistics
to measure the information gained by observing the data. In this case, we set P to be
the posterior distribution (the post-data distribution) and Q to be the prior distribution
(the pre-data distribution. Ideally, our experiments will be designed to maximise the
KL-divergence between the prior and posterior.

12 Inference

Let’s consider how we pose and tackle problems in a statistical framework. Suppose we
have a statistical model for some real process (from biology, physics, sociology, psychol-
ogy etc...). By having a model, we mean that given a set of control parameters, θ, we
can predict the outcome of the system, D. For example, our model may be that each
element of D is a draw from one of the distributions we described above so the control
parameters θ are just the parameter(s) of that distribution. Note that the model of the
process may include our (imperfect or incomplete) method of measuring the outcome.

In an abstract sense, then, we can consider the model as a black box with input vector
θ (the parameters) and output vector D, the data.

Parameter vector
θ

Model of system
Data

D

The model gives us the forward probability density of the outcome given the parameter,
that is, P (D|θ). This density is the called the likelihood, although, as we see below, we
don’t usually consider it as a density in the usual way.

This model is not deterministic. The data D can be seen as a random sample from the
probability distribution defined by the model (and parameters). Changing the value of
the parameters typically does not change the possible outcomes of the model but it will
change the shape of the probability distribution, making some outcomes more likely,
others less likely.

Example: Suppose we are interested the number of buses stopping at a bus stop over
the course of an hour. We watch for the hour between 8am and 9am every weekday
morning for 2 weeks. We observe the outcomes D = (10, 7, 5, 6, 12, 9, 10, 5, 14, 7). A
sensible model here might be the Poisson distribution where we say that the number
of bus arrivals in an interval is Poisson distributed with parameter λ. Our parameter
vector contains just the single parameter θ = (λ) and our data vector contains the 10
observed outcomes D = (D1, D2, . . . , D10) = (10, 7, 5, 6, 12, 9, 10, 5, 14, 7).

We derive the likelihood as follows.

The probability of observing the data D for a given value of λ is P (D|λ). Let’s assume
that each observation is independent of others then P (D|λ) =

∏
i P (Di|λ). That is, the

54

probability of observing this series of outcomes is just the product of the probabilities
of observing each particular outcome.

The likelihood of a single observation is given by the probability distribution function
for the Poisson since Di ∼ Poiss(λ) so:

P (Di|λ) =
λDi

Di!
e−λ.

And so the likelihood of observing the full data D is just

P (D|λ) =
∏
i

P (Di|λ) =
∏
i

λDi

Di!
e−λ.

�

Note that the likelihood is a probability density function for D. But D is typically fixed
in the sense that we make the observations which remain fixed through-out the analysis.
We will be interested in considering the likelihood as a function of the parameters θ. The
likelihood is not a probability density function for θ since, in general

∫
θ∈Θ P (D|θ) dθ 6= 1.

12.1 Bayesian inference

The statistical problem essentially comes down to one of observing the outcome, D and
wanting to recover the parameters θ.

That is, we want to estimate θ given D. We summarise our estimate of θ as a probability
distribution, conditional on having observed D: P (θ|D). This is called the posterior
distribution of θ.

From Bayes’ theorem, we can express the posterior in terms of the likelihood:

P (θ|D) =
P (D|θ)P (θ)

P (D)
,

where P (D|θ) is the likelihood, P (θ) is the prior distribution of θ and P (D) is a
normalisation constant.

The prior p(θ) summarises what we know about a parameter before making any obser-
vations.

The posterior, p(θ|D) summarises what we know about θ after observing the data.

The likelihood tells us about the likeliness of the data under the model for any value
of θ. Recall that we consider the likelihood a function of θ rather than a probability
density for D; to emphasise this fact, people often write it explicitly as a function of θ:
L(θ) = P (D|θ).
Bayes’ theorem tells us how we update our beliefs given new data. Our updated beliefs
about θ are encapsulated in the posterior, while are initial beliefs are encapsulated in the
prior. Bayes’ theorem simply tells us that that we obtain the posterior by multiplying the

55

prior by the likelihood (and dividing by P (D) which we can think of as a normalisation
constant).

Note that we need the normalisation constant as the posterior is a probability distri-
bution for θ, so its density must integrate to 1, i.e.,

∫
θ∈Θ f(D|θ) dθ = 1. Thus the

normalisation constant is P (D) =
∫
θ∈Θ P (D|θ)P (θ) dθ. Typically this integral is hard

to calculate so we try to find that will avoid having to calculate it.

Example: In the example above, we found an expression for the likelihood. To find
an expression for the posterior, we need to decide on a prior distribution. Suppose we
had looked up general info about bus stops in the city and found that the busiest stop
had an average of 30 buses an hour while the quietest had an average of less than 1 bus
per hour. We use this prior information to say that any rate parameter λ producing an
average of between 0 (λ = 0) and 30 (λ = 30) buses an hour is equally likely. This leads
us to the prior λ ∼ U(0, 30). The density of this prior is f(λ) = 1/30 for 0 ≤ λ ≤ 30.

To get the posterior density, we use the formula above:

f(λ|D) =
f(D|λ)f(λ)

P (D)
=

∏
i
λDi

Di!
e−λ 1

30

P (D)
.

The normalisation constant P (D) is the integral of the numerator over all possible values
of λ:

P (D) =

∫ 30

0

∏
i

λDi

Di!
e−λ

1

30
dλ.

�

While it is possible to calculate this particular integral analytically, for most posterior
distributions analytical integration is either very difficult or impossible. We’ll investigate
methods for avoiding calculating difficult integrals like this in later sections.

12.2 Maximum likelihood

It is often difficult or inconvenient to deal with the posterior distribution (when the prior
is hard to specify or the normalisation constant is impossible to calculate). In these cases,
we can still use our probabilistic model by concentrating solely on the likelihood function.
The aim here is typically to find the parameters that maximise the likelihood function.
That is, those parameters under which the observed data is most likely. We call this
parameter estimate the maximum likelihood estimate and write it as

θ̂ = arg max
θ
f(D|θ) = arg max

θ
L(θ;D)

This function can be maximise using standard tools from calculus (taking the derivative
and setting it to zero – it is often easier to work with the log of the likelihood function
as they both share a maximum) or using numerical techniques such as hill-climbing.

Many methods in statistics are based on maximum likelihood including regression,
χ2−tests, t−tests, ANOVA and so on.

56

Example: In the bus example above, we could find the maximum likelihood estimator
for λ by differentiating the log-likelihood, log(L(λ;D)) with respect to λ, setting the
result to zero and solving. Note that we often work with the log-likelihood rather than
the likelihood for a couple of reasons: it is often easier algebraically and it helps avoid
numerical under-flow when the likelihood itself is very small.

57

13 Simulation

In a statistical setting there are a number of reasons we may wish to simulate from a
distribution or a stochastic process. We may wish to get a feeling for how the process
behaves or estimate some quantity that we cannot calculate analytically. An example
of the latter case arises in Bayesian statistics, where the aim is to find the posterior
distribution f(θ|x). This can be very difficult for two main reasons:

• The normalising constant (P (D), above) involves a p−dimensional integral (where
p is the number of parameters of the model, that is, θ = (θ1, θ2, . . . , θp)) which is
often impossible to calculate analytically.

• Even if we are able to find f(θ|x), if we want to find the marginal distribution for
some part of θ this may again involve a high-dimensional integral.

Both of these reasons boil down to the fact that integration is hard.

To get around this problem, our approach will be to obtain a sample of values, {θ(i)} for
i = 1, . . . , n, from the distribution of interest and use this sample to estimate properties
of the distribution.

For example, the mean of the distribution is E[θ] =
∑

θ∈Ω θPr(θ). We can estimate this

from the sample set by E[θ] ≈ θ̄ = 1
n

∑n
1 θ

(i). This is called the sample mean of θ, and
is indicated by the bar over the variable. The sample mean is an estimator of the mean.
More generally, we estimate the mean of a function of θ by E[g(θ)] ≈ ḡ(θ) = 1

n

∑n
1 g(θ(i)).

How good are these estimates? Since each sample θ(i) is a random variable, ḡ is a random
variable. That is, each time we obtain a different sample of values of θ, we will get a
different value for ḡ. Clearly, as n, the size of the sample, increases our estimate will
become more accurate but by how much?

It turns out that under quite general conditions, the main being that the samples, θ(i)

are independent of each other, ḡ is normally distributed with mean E[g] and variance
var(ḡ) = var(g)/n. When stated formally, this is known as a central limit theorem.

Thus, if we have a method of simulating lots of independent samples, we can quickly get
extremely accurate estimates of the quantities we are interested in.

Note that we can estimate more complex things than simple means using these methods.
For example, we can estimate the shape of distributions by drawing a histogram of the
sampled points.

So our attention turns to how we can generate this random sample. First we consider
how we can generate or simulate randomness at all using (deterministic) computers.

13.1 Random number generation

All simulation relies on a ready supply of random numbers. There are currently no known
methods to generate truly random numbers with a computer without measuring some

58

physical process. There are, however, many fast and efficient methods for generating
pseudo-random numbers that, for most applications, are completely sufficient. The fact
that these are based on algorithms that are repeatable makes them superior to physically
based rngs for scientific simulation purposes.

We do not go into the mathematical details of pseudo-random number generators here
as most major languages have libraries that implement perfectly adequate algorithms.
It is worth considering briefly what we want in a RNG. The following quality criteria
are taken from L’Ecuyer in the Handbook of Computational Statistics, 2004.

The RNG must:

• have a very long period so that no repetitions of the cycle occur;

• be efficient in memory and speed;

• repeatable so that simulations can be reproduced;

• portable between implementations;

• have efficient jump-ahead methods so that a number of virtual streams of random
numbers can be created from a single stream for use in parallel computations; and,

• have good statistical properties approximating the uniform distribution on [0, 1].

It is relatively simple to come up with rngs that satisfy the first of these criteria, yet
the last is where the difficulties occur. The performance of rngs can be tested via the
diehard test suite (or more recently, the dieharder suite). See http://www.phy.duke.

edu/~rgb/General/dieharder.php.

13.1.1 Linear congruential generators

The most basic rngs are probably the linear congruential generators that have the form
Xn+1 = (aXn + b) mod m where the constants a, b and m need to be chosen. We divide
the number by m to get it in the range [0, 1], that is, set Ui = Xi

m .

These have poor statical properties, however, and should be avoided for simulations.

13.1.2 Shift register generators

All numbers in computers are stored as a group of bits (32 bits or 64 bits). Shift regis-
ter generators work directly with this representation to produce a sequence of random
numbers. Start with a seed U0 = 0.b01b02 . . . b0L (where L = 32 or L = 64). Then
get Ui = 0.bi1bi2 . . . biL by bij = fj(b(i−1)1, b(i−1)2, . . . , b(i−1)L) where fj is some function

f : {0, 1}L → {0, 1}.
Example: For L = 4, set f1 = b(i−1)3 XOR b(i−1)4 and fj = b(i−1)(j−1) otherwise. Starting
with 0101 we get the following sequence:

59

http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.phy.duke.edu/~rgb/General/dieharder.php

0101

1010

1101

1110

1111

0111

0011

0001

1000

0100

0010

1001

1100

0110

1011

0101

�

An rng that extends this idea is the so-called Mersenne Twister which is the statisticians
rng of choice for simulation. Most languages have an implementation of this algorithm.
See the wikipedia page http://en.wikipedia.org/wiki/Mersenne_twister for more
details.

The Mersenne Twister is implemented in the Colt library for Java (see https://acs.

lbl.gov/software/colt/). It is the default rng in the Python random library.

13.2 Simulating from univariate distributions via Inversion sampling

Simulation from discrete or continuous distributions with cumulative density function
F (X) relies on the following result which tells us that all we need to simulate draws
from an arbitrary univariate distribution is a draw from U(0, 1) and use the inverse of
the cdf:

Result (Inversion method): If U ∼ U(0, 1), then X = F−1(U) produces a draw from
X where F−1 is the inverse of X.

Thus when the cdf is known and we can find the inverse, sampling from the distribution
is easy, as the following example shows.

Example (simulating an exponential random variable): if X ∼ Exp(λ), then
F (x) =

∫ x
−∞ f(t)dt =

∫ x
−∞ λe

−λtdt = 1− e−λx.

It is simple to see (by setting u = 1−e−λy and solving for y) that F−1(u) = − log(1−u)/λ.

Since 1 − U ∼ U(0, 1) when U ∼ U(0, 1), we can use this expression to generate ex-
ponential random variables by generating the uniform random variable u and setting
x = − log(u)/λ. �

Note that with discrete random variables, a inverse of F is ambiguously defined (since

60

http://en.wikipedia.org/wiki/Mersenne_twister
https://acs.lbl.gov/software/colt/
https://acs.lbl.gov/software/colt/

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

cd
f

0.
72

1.273

Figure 6: Sampling an Exp(1) random variable using the inversion method. A uniform
sample u ∼ U(0, 1) is drawn. Here u = 0.72 shown on the vertical axis. This is mapped,
via the cdf, to x ∼ Exp(1) to produce x = − log(1−u) = 1.272 shown on the horizontal
axis.

F is a step function). It is possible to extend the definition of an inverse to derive the
following method for simulating discrete random variables.

Inversion sampling from a discrete distribution: If X is discrete with P (X =
xi) = pi, we generate U ∼ U(0, 1) and set X = x1 if u < p1 and X = xi if

∑i−1
j=1 pj <

u <
∑i

j=1 pj .

Example: Use the inversion method to obtain samples from X ∼ Binomial(n = 5, p
= 0.3).

Solution: The possible values X can take are (0, 1, 2, 3, 4, 5) with probabilities f(x) =
(0.168, 0.360, 0.309, 0.132, 0.028, 0.002), respectively (from Section 11.5.3). Obtain the
cdf by taking the cumulative sum of these probabilities: F (X) = (0.168, 0.528, 0.837,
0.969, 0.998, 1.000). Now obtain samples from X by sampling u ∼ U(0, 1) and finding
the index of the smallest value of the cdf which is larger than u. E.g. if u = 0.439,
x = 1 since F (0) = 0.168 < u < F (1) = 0.528, Similarly, if u = 0.972, x = 4 since
F (3) < u < F (4). �

61

13.3 Stochastic processes

So far we have talked about random variables which can be pretty much any object but
are only observed at one time. A stochastic process is a collection of random variables
that describes the evolution of a system that is subject to randomness. A stochastic
process could, for example, describe the position of a particle that is being buffeted by
other particles, the state of a genetic sequence that is subject to copying with mutation,
or the shape and size of a land mass that is subject to geological forces.

Mathematically, we consider a random process X as the set of random variables {Xt :
t ∈ T} where T is some index set, such as discrete time (T = 0, 1, 2, . . .) or continuous
time (T = [0,∞)).

We will try to get an understanding of these process by studying a few examples.

13.3.1 Random walk

One of the simplest stochastic processes is known as the simple symmetric random walk,
or drunkard’s walk. Imagine a person leaves the pub so drunk that their method of
getting home consists of taking random steps, with probability 0.5 the step is in the
direction of home with probability 0.5 it is in the other opposite direction. We can
model the drunk’s position after the ith step as a random variable Xi where X0 = 0
(that is, the pub is the origin). Then Xi+1 = Xi + Si where

Si =

{
+1 with probability 1/2

−1 with probability 1/2.

with is the direction of the ith step. Equivalently, Xi = X0 +
∑i−1

j=0 Sj . The process,
while amenable to analytic techniques, is extremely simple to simulate: we just need to
be able to simulate Bernoulli random variables.

The random walk has many variations: instead of looking at a symmetric walk, consider
Si = 1 with probability p; we can consider the random walk in higher dimensions,
choosing from 2d possible directions in d dimensions; and choosing a different step size
(Si = ±c, say).

The process has some very nice, and often surprising, properties. For example, the
simple symmetric random walk crosses every point an infinite number of times (this is
known as Gambler’s ruin, as if X models the amount a gambler is winning when betting
$1 on toss of a coin, the gambler will certainly eventually lose all their money if they
play for long enough against a casino with infinite resources).

Secondly, the random walk in d dimensions returns to the origin with probability 1 for
d = 1, 2, but for d ≥ 3, that probability is below 1 (about 0.34 in for d = 3, 0.19 for
d = 4 etc.).

62

13.3.2 Poisson process

The Poisson process is a simple yet incredibly useful model for events that occur inde-
pendently of each other and randomly in time (or space). It is commonly used to model
events such as:

• Genetic mutations

• arrival times of customers

• radioactive decay

• occurrences of earthquakes

• industrial accidents

• errors in manufacturing processes (e.g. silicon wafers or cloth)

We will consider processes in time although the concepts extend readily to space (the
last of the examples above could be spatial).

A Poisson process is sometimes called a point process. It is counts the number of events
in the time interval [0, t]. Let N(t) be the number of points in the interval, so that N(t)
is a counting process.

Define a Poisson process with intensity λ, where λ > 0 (also called the rate) to be
a process N = {N(t), t ≥ 0} that takes values in S = {0, 1, 2, . . .} that satisfies the
following properties:

1. N(0) = 0 and if s < t then N(s) < N(t).

2. If s < t then N(t) −N(s) is the number of arrivals in (s, t] which is independent
of the number (and times) of the arrivals in (0, s].

3.

Pr(N(t+ h) = n+m|N(t) = n) =

λh+ o(h) if m = 1

o(h) if m > 1

1− λh+ o(h) if m = 0.

Here the notation o(h) indicates that, as h gets small the bit of the expression that is
o(h) disappears. A strict definition is that function f is o(h) (‘of order little oh of h’) if

lim
h→0

f(h)

h
= 0.

Examples: Check that f(h) = h2 is o(h) while f(h) = h−
1
2 is not. �

The Poisson process is related to the Poisson distribution by the fact that N(t) has a
Poisson distribution with parameter λt so that

Pr(N(t) = k) =
(λt)k

k!
exp(−λt)

63

for k ∈ {0, 1, 2, . . .}.
Now look at the times between events in a Poisson process. Let Ti denote the time of
the ith event of the process and T0 = 0. Then the ith inter-arrival time, Xi = Ti+1−Ti,
is exponentially distributed with parameter λ, that is Xi ∼ Exp(λ), i = 1, 2, 3,

Poisson processes have some very nice properties.

Splitting: Let {N(t), t ≥ 0} be a Poisson process with rate λ. Suppose each event is
of type i, for i ∈ {1, . . . , k} with probability pi and suppose that this is independent of
other events.

If we observe just the events of type i, they form a Poisson process with rate λpi inde-
pendently of the remaining types of events.

For example, if we look at the request for different types of data in a network or arrivals
of different types of customer, we get the large Poission process separated out as multiple
smaller (lower rate) Poisson processes.

Merging: The converse of splitting is merging: Let N = {N(t), t ≥ 0} be a Poisson
process with rate λ and M = {M(t), t ≥ 0} be a Poisson process with rate µ independent
of N . Then L = {L(t) = N(t) +M(t), t ≥ 0} is a Poisson process of rate λ+ µ.

Together, these results tell us how to model multiple Poisson processes using a single
large process: Suppose we have n independent Poisson processes where process i has
rate λi. Then the merged process has events of n different types. If we observe an event
in the merged process, let pi be the probability of the event being of type i. What is pi?

According to the splitting theorem, the type i process has rate λi = λpi where
∑

i pi = 1
so that λ =

∑
i λi. So pi is given by

pi =
λi
λ

=
λi

λ1 + . . .+ λn
=

rate of type i

total rate
.

Example: We model arrivals at a bus stop as a Poisson process. Some people arriving
are students and some are office workers. Students arrive at rate λ1, office workers arrive
at rate λ2. Merging these processes tells us the total rate of arrivals is λ1 + λ2. The
probability that any given arrival is a student is λ1

λ1+λ2
while the probability that they

are an office worker is λ2
λ1+λ2

. �

14 Markov chains

We think of a random process as a sequence of random variables {Xt : t ∈ T} where T
is an index set. T can be thought of as time. If T is discrete, the process X(t) is called
a discrete time random process while if T is continuous, X(t) is called a continuous time
random process. The random walk example is an example of a discrete time process
(each time unit corresponds to a single step in the process) while the Poisson process is
a continuous time process (arrivals happen at any time). We will consider only discrete
time processes until further notice.

64

The random walk and Poisson processes described above both share an important prop-
erty, known as the Markov property. Intuitively, this is the property of memorylessness
in that future states depend only on the current state and not any past states. That is,
to propagate the process forward, we need only be told the current state to generate the
next state.

Formally, the sequence of random variables X1, X2, X3, . . . is a Markov chain if it has
the Markov property:

P (Xn+1 = x|Xn = xn, Xn−1 = xn−1, . . . , X2 = x2, X1 = x1) = P (Xn+1 = x|Xn = xn).

Markov chains are commonly used to model processes that are sequential in nature and
where the future state only depends on the current state. This limited dependence
property is called the Markov property (after Andrey Andreyevich Markov, a Russian
mathematician from the late 19th century).

Example 1: The random walk. Start at X0 = 0. If Xn is the current state, P (Xn+1 =
Xn + 1|Xn) = 1/2 = P (Xn+1 = Xn− 1|Xn). This is a Markov chain on an infinite
state space. A realisation of this chain: 0 1 0 -1 0 1 2 3 2 1 2 1 2 1 0 1

· · · -2 -1 0 1 2 · · ·
0.5 0.5 0.5 0.5 0.5 0.5

0.50.50.50.50.50.5

Example 2: Weather. The weather tomorrow depends on the weather today. If it is
sunny today, tomorrow it is sunny with probability 0.7 and rainy otherwise. Rain
clears a bit faster, so if it is rainy today, it is rainy tomorrow with probability 0.6
and sunny otherwise. This is a Markov chain with state space {R,S} (for rainy
and sunny, respectively). The following is a simulated realisation: S S S S S S R
S R R R

R S

0.4

0.6

0.3

0.7

Example 3: The following is not a Markov chain. Recall our random walk is called
a drunkard’s walk. Imagine someone occasionally helps the drunkard on the way
home by carrying him 10 paces either to the left or the right. This person has
limited patience, though, so will help at most 3 times. When the person has not
yet reached the limit of their patience, possible transitions include Xn+1 = Xn±10
orXn+1 = Xn±1. After the person has intervened to help 3 times, the only possible
transitions are Xn+1 = Xn ± 1. So to see if this large movement is possible, we
need to look back in history to see how many interventions have occurred. Thus
the distribution of the next state depends on more than just the current state and
the chain is not a Markov chain. �

65

The chain is homogeneous if Pr(Xn+1 = j|Xn = i) = Pr(X1 = j|X0 = i). If a chain
is homogeneous, we write Pij = Pr(X1 = j|X0 = i). The transition probabilities are
normalised so that

∑
j Pij = 1.

The matrix P = [Pij] is called a stochastic matrix as all its entries are non-negative and
its rows sum to 1, so that

∑
j Pij = 1.

Example: The transition matrix for the weather example given above is

[
0.7 0.3
0.4 0.6

]
where rows and columns 1 and 2 are indexed by S and R, respectively. �

A homogeneous Markov chain is completely defined by specifying an initial distribution
Pr(X0 = i) for X0 and the transition probabilities Xn+1 given Xn, Pij .

Example 4: Music. See Figure 7. This example taken from Tom Collins, Robin Laney,
Alistair Willis, and Paul H. Garthwaite. Chopin, mazurkas and Markov. Signifi-
cance, 8(4):154-159, 2011. doi:10.1111/j.1740-9713.2011.00519.x.

Example 5: A DNA sequence. State space is {A,C,G, T}. Need to specify transition
probabilities PAA, PAC , PAG etc. Then we obtain a random sequence by specifying
a starting state and recording each state visited. An example of a random sequence
looks as follows: AAGCTGCGTGTGGGGGAAGGAACTTTTGCGTGTTAGTA

The m−step transition probability is the probability of going from state i to state j in
exactly m steps, Pij(m) = Pr(Xn+m = j|Xn = m). Hence the m−step transition matrix
is Pm = [Pij(m)].

A result known as the Chapman-Kolmogorov equations tells us Pm+n = PmPn (where
the right-hand side is just standard matrix multiplication). In particular, this result
tells us that Pn = Pn, that is, the n-step transition matrix is just the nth power of the
(one-step) transition matrix.

66

http://onlinelibrary.wiley.com/doi/10.1111/j.1740-9713.2011.00519.x/pdf

155december2011

process. Observing composers at work and
asking them about the creative process are
complementary methods for investigating the
acquisition of compositional abilities, but the
latter method in particular is susceptible to
flights of fancy9. An algorithm for generating
stylistic compositions might be adapted to as-
sist students of music – it could offer students
an initial fragment, or an appropriate continu-
ation to a half-composed phrase. In England
and Wales alone, an estimated 50,000 students
each year respond to stylistic composition
briefs in music exams. “Compose a short Lied
in the style of Schumann” is a good example of
a stylistic composition brief.

Markov models of stylistic
composition

"e use of Markov chains is an important ap-
proach to algorithmic composition. "e tune
“"ree Blind Mice” shows this very simply
– see box. In that example, and below, pitch
classes – that is, pitch regardless of octave
– form the state space of the Markov chain,
while the relative frequencies with which one
pitch class leads to the following pitch class
form the matrix of transition probabilities.
(Other qualities of the notes, such as duration
or timbre, could be used instead or as well.) We
will illustrate this more fully using the melody
in Figure 1. "e piece of music contains all of
the natural pitch classes as well as B͖, so the
obvious choice for the state space (I) is the set
of pitch classes

I = {F, G, A, B͖, B, C, D, E}.

"e transition matrix in Table 1 records all the
transitions between notes, with their relative
frequencies. For example, there are four transi-
tions from F, of which three are to G, while
the fourth is to A. "is gives the first row of
the table: the transition probabilities are 3/4
from F to G, 1/4 from F to A, and 0 for other

transitions. Each row of the table corresponds
to transitions from a different pitch class. It
can be seen that most transitions are from one
pitch class to an adjacent one.

To use this matrix in a compositional
scenario we start by choosing an initial note –
say, A. We look along the A row of our table to
choose our second note; we randomly choose
between F, G, B and C, and with respective
probabilities 1/8, 1/2, 1/4 and 1/8.

Suppose we choose B. Looking along the
fifth row of Table 1, we select our third note,
making a random, equiprobable choice between
G, C, and D. And so on. We, or the computer,

can use random (or pseudo-random) numbers
to guide the choices at each note.

Every time we run the exercise, the result-
ing tune will be different . Below are three pitch
sequences generated from the Markov model
using pseudo-random numbers. For ease of
reading, each melody is split up according to
the phrase structure of the original music in
Figure 1 (to hear all of these melodies, visit
http://www.tomcollinsresearch.
net and follow the links).

1. A, G, F, G, F, G, A, B, G,
F, G, F, G, A, B, D, E,
B, C, A, F, G,
B͖, A, F, G, A, G, A, B, G, A.

2. A, G, A, B, D, C, B͖, A, F,
G, F, A, B, D, C, A, G,
A, G, F, A, F,
A, F, G, F, G, A, G, F, A, G.

3. F, A, B, G, F, G, F, G, A,
B, C, A, G, F, G, F, G,
B͖, A, G, A, G,
A, F, G, B͖, A, B, G, F, G, A.

Markov meets “Three Blind Mice”

A Markov chain is a succession of states; each state depends only on the one that preceded
it. A simple tune is a succession of notes. Assuming each note depends only on the note that
preceded it, it can be analysed as a Markov chain.

Suppose in a tune that whenever a note of pitch C occurs, it is followed half of the time
by a G, a quarter of the time by an E, and less frequently by other notes. Similar probabilities
would apply to every other note in the octave. To take a real-life example, the tune “Three
Blind Mice” can be written (ignoring octaves) as:

E D C, E D C,

G F F E, G F F E,

G C C B A B C G G,

G C C C B A B C G G,

G C C C B A B C G G G,

F E D C.

The first note, E, occurs 5 times. Three of those times it is followed by D, twice it is followed by
G, and it is never followed by any other note. D occurs 3 times. It is always followed by C.

A computer algorithm that generated a string of notes where D was always followed by C,
and where E had a 3/5 chance of being followed by D and a 2/5 chance of being followed by G,
would “compose” a “tune” that might be reminiscent of “Three Blind Mice”.

Chopin is more complex, but can still be analysed, and imitated, by Markov chain algorithms.
“Three Blind Mice” also has near or exact repetitions of three- and four-note phrases, and

longer ones as well. Sometimes these repetitions are at the same pitch, sometimes they are
transposed higher. These patterns too can be incorporated in the composing algorithm – in
nursery songs and in Chopin mazurkas.

�
 [Andante]

� �
F

3
p

	�
G A

	�

G F

	� 	�
G

	�
A B

	�
�
G,

	
A

	�
B

	� �
C

	�
D

	�
E

	
B

	�
D C,

	� �

� �
7

�
A

C

	
Bb

	�
A

	�
G,

Bb Bb

	� 	�
A G F

	 	 	 	�
G

	�
A

	�
F

	�
A

G

	 �

Figure 1. Bars 3–10 of the melody from “Lydia”, Op. 4 No. 2, by Gabriel Fauré (1845–1924).

Illustration: Tom Boulton

156 december2011

!e above example of constructing a
Markov model and using it to generate pitch
sequences raises several questions. First, the
majority of classical music is polyphonic (more
than one pitch is sung/played simultane-
ously), but above we modelled a monophonic
excerpt (only one pitch is sung/played at a
time). How should the definition of “state” be
altered to build analogous Markov models for
polyphonic music? Second, when a transition
matrix is constructed using one or more pieces
of music, how can we prevent generated pas-
sages replicating substantial parts of existing
work? !ird, repeated patterns play an impor-
tant role in music, so how can we ensure that a
generated passage contains repeated patterns,
be they short motifs or longer sections?

In answer to the first question, one
plausible definition of a polyphonic state is a
set of pitches, as opposed to lone pitches. For
example, the set {F, A, C} is a state that might
be followed by the state {E, G, B͖, C}. Another
plausible definition involves counting the in-
terval in semitones between simultaneous
pitches, when arranged in ascending order. For
example, there are four semitones from F to A,
and three semitones from A to C, so (4, 3) is
a state in such a state space. Determining the
best choice of state space for polyphonic music
is an open problem.

Turning to the second question – how
to avoid replicating too much of the original
composer – it is possible to retain the source
information (e.g., Fauré, Op. 4 No. 2) for
each observed state. In this way, we can im-
pose a constraint on the generation process,
stipulating that no more than four consecutive
generated states, say, may have the same source.
!is constraint reduces the likelihood of the
generated passage replicating substantial parts
of existing work.

To address the third question, on repeti-
tions, we introduce another topic where music
and statistics intersect: algorithms for discov-
ering repeated patterns in music.

Pattern discovery and pattern
inheritance

It is uncontroversial that repetition plays a
central role in our perception of musical
structure: “Only by repetition can a series of
tones be characterized as something definite.
Only repetition can demarcate a series of tones

and its purpose. Repetition thus is the basis
of music as an art”10. Hence, pattern discovery
and pattern inheritance should play a central
role in the algorithmic generation of music.

A pattern discovery algorithm takes a
symbolic representation of a single piece of
music as input, and produces a list (or graphical
representation) of the repeated patterns that
occur in the piece. Bioinformatics algorithms
that were originally intended for discovering
repetitions in DNA strings are easily adapted to
monophonic music, as such music can be repre-
sented as strings of pitches and/or durations11.
However, another approach, which works as
well for polyphony as it does for monophony,
is to use a point-set (or geometric) representa-
tion of a piece in order to discover repeated
patterns12. Methods that use this approach
have been developed by Meredith, Lemström
and Wiggins, and we have extended one of
their methods to give an algorithm we call
SIACT (Structure Induction Algorithm with
Compactness Trawling)13. Output from this
algorithm is illustrated in Figure 2, where it was
applied to an excerpt from a Chopin mazurka.

Musical patterns can be shifted as a block
by a number of notes (either up or down) and
our minds will hear the repetition. Analytically,

��

��

�������	������
��
�

� ����� ��
�

� � �

� � � � � �� �

� � � � � �
�

� � � � � ��
�

� � � � � �� �

� ����� � �� � � � � � � � �� � � �� � � � � ��� � �

�

� ����� � �

� �

� � �� ��
�

� � � �� ��� ��� �

�� � �� ��
�

� � � � � �� � � �

� �

� � ��

� ����� ��� � ����
�� ��� ����

� ��� ���� ��
�

�

� �� � � � �� ��� ����

��

� ����� ��
�

� � � �� ��� ��
���

�

�	 � �� ��� ��� �

� � �� � �
 � � � �
 � � � ���
�

� ����� �� ��� ����
��� �� � ��

� � �� ��
 � � � ��
 � � � ��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 2. SIACT was applied to a representation of bars 1–16 of the Mazurka in B major, Op. 56 No. 1, by Chopin,
and the results were filtered and rated. Occurrences of the top three patterns are shown.

Table 1. Transition matrix for the material shown in Figure 1. The ith row and jth column records the number
of transitions from the ith to the jth state in the melody, divided by the total number of transitions from the
ith state.

Pitch class F G A B͖ B C D E

F 0 3/4 1/4 0 0 0 0 0
G 2/7 0 4/7 1/7 0 0 0 0
A 1/8 1/2 0 0 1/4 1/8 0 0
B͖ 0 0 2/3 1/3 0 0 0 0
B 0 1/3 0 0 0 1/3 1/3 0
C 0 0 1/3 1/3 0 0 1/3 0
D 0 0 0 0 0 1/2 0 1/2
E 0 0 0 0 1 0 0 0

155december2011

process. Observing composers at work and
asking them about the creative process are
complementary methods for investigating the
acquisition of compositional abilities, but the
latter method in particular is susceptible to
flights of fancy9. An algorithm for generating
stylistic compositions might be adapted to as-
sist students of music – it could offer students
an initial fragment, or an appropriate continu-
ation to a half-composed phrase. In England
and Wales alone, an estimated 50,000 students
each year respond to stylistic composition
briefs in music exams. “Compose a short Lied
in the style of Schumann” is a good example of
a stylistic composition brief.

Markov models of stylistic
composition

"e use of Markov chains is an important ap-
proach to algorithmic composition. "e tune
“"ree Blind Mice” shows this very simply
– see box. In that example, and below, pitch
classes – that is, pitch regardless of octave
– form the state space of the Markov chain,
while the relative frequencies with which one
pitch class leads to the following pitch class
form the matrix of transition probabilities.
(Other qualities of the notes, such as duration
or timbre, could be used instead or as well.) We
will illustrate this more fully using the melody
in Figure 1. "e piece of music contains all of
the natural pitch classes as well as B͖, so the
obvious choice for the state space (I) is the set
of pitch classes

I = {F, G, A, B͖, B, C, D, E}.

"e transition matrix in Table 1 records all the
transitions between notes, with their relative
frequencies. For example, there are four transi-
tions from F, of which three are to G, while
the fourth is to A. "is gives the first row of
the table: the transition probabilities are 3/4
from F to G, 1/4 from F to A, and 0 for other

transitions. Each row of the table corresponds
to transitions from a different pitch class. It
can be seen that most transitions are from one
pitch class to an adjacent one.

To use this matrix in a compositional
scenario we start by choosing an initial note –
say, A. We look along the A row of our table to
choose our second note; we randomly choose
between F, G, B and C, and with respective
probabilities 1/8, 1/2, 1/4 and 1/8.

Suppose we choose B. Looking along the
fifth row of Table 1, we select our third note,
making a random, equiprobable choice between
G, C, and D. And so on. We, or the computer,

can use random (or pseudo-random) numbers
to guide the choices at each note.

Every time we run the exercise, the result-
ing tune will be different . Below are three pitch
sequences generated from the Markov model
using pseudo-random numbers. For ease of
reading, each melody is split up according to
the phrase structure of the original music in
Figure 1 (to hear all of these melodies, visit
http://www.tomcollinsresearch.
net and follow the links).

1. A, G, F, G, F, G, A, B, G,
F, G, F, G, A, B, D, E,
B, C, A, F, G,
B͖, A, F, G, A, G, A, B, G, A.

2. A, G, A, B, D, C, B͖, A, F,
G, F, A, B, D, C, A, G,
A, G, F, A, F,
A, F, G, F, G, A, G, F, A, G.

3. F, A, B, G, F, G, F, G, A,
B, C, A, G, F, G, F, G,
B͖, A, G, A, G,
A, F, G, B͖, A, B, G, F, G, A.

Markov meets “Three Blind Mice”

A Markov chain is a succession of states; each state depends only on the one that preceded
it. A simple tune is a succession of notes. Assuming each note depends only on the note that
preceded it, it can be analysed as a Markov chain.

Suppose in a tune that whenever a note of pitch C occurs, it is followed half of the time
by a G, a quarter of the time by an E, and less frequently by other notes. Similar probabilities
would apply to every other note in the octave. To take a real-life example, the tune “Three
Blind Mice” can be written (ignoring octaves) as:

E D C, E D C,

G F F E, G F F E,

G C C B A B C G G,

G C C C B A B C G G,

G C C C B A B C G G G,

F E D C.

The first note, E, occurs 5 times. Three of those times it is followed by D, twice it is followed by
G, and it is never followed by any other note. D occurs 3 times. It is always followed by C.

A computer algorithm that generated a string of notes where D was always followed by C,
and where E had a 3/5 chance of being followed by D and a 2/5 chance of being followed by G,
would “compose” a “tune” that might be reminiscent of “Three Blind Mice”.

Chopin is more complex, but can still be analysed, and imitated, by Markov chain algorithms.
“Three Blind Mice” also has near or exact repetitions of three- and four-note phrases, and

longer ones as well. Sometimes these repetitions are at the same pitch, sometimes they are
transposed higher. These patterns too can be incorporated in the composing algorithm – in
nursery songs and in Chopin mazurkas.

�
 [Andante]

� �
F

3
p

	�
G A

	�

G F

	� 	�
G

	�
A B

	�
�
G,

	
A

	�
B

	� �
C

	�
D

	�
E

	
B

	�
D C,

	� �

� �
7

�
A

C

	
Bb

	�
A

	�
G,

Bb Bb

	� 	�
A G F

	 	 	 	�
G

	�
A

	�
F

	�
A

G

	 �

Figure 1. Bars 3–10 of the melody from “Lydia”, Op. 4 No. 2, by Gabriel Fauré (1845–1924).

Illustration: Tom Boulton

Figure 7: An example showing how a piece of music can be modelled as a Markov chain.
The original piece, a fragment of Lydia by Fauré, is shown at the top. Just the pitches
are considered in this simple Markov model. The transition matrix between pitches
(centre) is constructed from empirical counts of the observed transitions. Three random
realisations of the process are given at the bottom.

67

15 Introduction to genetics and genetic terminology

The history of life can be viewed, in a rather mundane way, as a long running and very
complex stochastic (or random) process.

At a very basic level, and after many simplifying assumptions, we can think of the
historical process explaining the relationships between species as a tree. The points
where the tree splits are speciations and the leaves of the tree are different species. The
past is back at the base or root of the tree and time increases from the root to the tips.
Information is passed along the tree (away from the root) from one generation to the
next via genetic material.

Genetic material is thought to be the only means by which biological information is
passed from parent to offspring. The process of copying genetic material is imperfect, so
that children will differ slightly from the parent. These imperfections consist of errors
in the copying, known as mutations, and can be thought of as a stochastic process.

The fundamental objects we will be studying are sequences of characters represent-
ing biological macromolecules: DNA (Deoxyribonucleic), RNA (Ribonucleic acid) and
proteins. DNA are RNA are the primary forms of genetic material. The charac-
ters in DNA and RNA sequences are drawn from 4 letter alphabets: DNA has Ω =
{A,C,G, T} while RNA has Ω = {A,C,G,U}. The A stands for adenine, C for cy-
tosine, G for guanine, T for thymine and U for uracil. These are known as nucle-
obases or simply bases, with C, T, U being pyramidines and A,G being purines. Pro-
tein sequences consist of the twenty amino acids that are represented by the alphabet
{A,R,N,D,C,E,Q,G,H, I, L,K,M,F, P, S, T,W, Y, V } (that is, all the letters except
{B, J,O,U,X,Z}). We will refer to the bases in an DNA/RNA sequence or the amino
acids in a protein sequence as residues.

In eukaryotes (organisms with cells that have a nucleus), the three types of sequences
related to each other by the Central Dogma of Molecular Biology that states, DNA
makes RNA makes Protein. Or, more prosaically, DNA is transcribed into a type of
RNA called mRNA that is then translated into protein.

There are some good animations showing how translation and transcription work at
www.hhmi.org/biointeractive/animations/index.html, in particular see the DNA
transcription and translation animations. A Japanese anime style film of the central
dogma is also worth a look: http://www.youtube.com/watch?v=-ygpqVr7_xs.

Parts of the the DNA sequence encode information for proteins. These regions are known
as genes and must be transcribed to RNA before being built into proteins. When the
DNA is transcribed to RNA, all bases are copied exactly except that T (thymine) is
transcribed as U (uracil). Once copied, the RNA is edited at splice sites so that only
exons remain (the introns are edited out). This leaves the messenger RNA, mRNA,
which is then translated to a protein sequence (poly-peptide chain). This translation
occurs via the genetic code which translates consecutive triples of RNA bases (known as
a codon) into one of the 20 amino acids. There are 43 = 64 possible codes since there
is an alphabet of 4 bases. 60 of these code for proteins, 1 (AUG) is a start codon and

68

www.hhmi.org/biointeractive/animations/index.html
http://www.youtube.com/watch?v=-ygpqVr7_xs

3 (UAA, UGA and UAG) are stop codons signalling the start or finish of a protein. A
particular amino acid may be encoded by just one codon (e.g. AUG→Methionine(M)) or
up to 6 (e.g. any of UUA, UUG, CUU, CUC, CUA, CUG→Leucine (L)). Once the poly-
peptide chain is formed it folds into three dimensional molecule, taking on a particular
structure.

Example: The sequence atgaggttgacgctactttgttgcacctggagggaa can be split into
codons atg agg ttg acg cta ctt tgt tgc acc tgg agg gaa which translate into the
protein sequence MRLTLLCCTWRE. �

In this course, we are only interested in the primary structure of sequences, that is, the
order in which residues occur along the sequence. We will ignore the secondary, tertiary
and quaternary structure of proteins — secondary structure is the name for the regular
substructures such as alpha helices and beta sheets, the tertiary structure are the three
dimensional structures of single molecules while quaternary structure are the complex
forms taken by collections of single protein molecules. The study of these more complex
structures is known as structural bioinformatics.

When DNA is passed from one generation to the next, the copy made is not exact.
There are a number of processes that cause differences to arise between the parent
and child. Recombination is one such process and involves the mixing of the maternal
and paternal copies of DNA when the gametes (eggs or sperm) are produced. Other
processes are generally thought of as mutations. The simplest are point mutations where
the offspring sequence differs from the parent sequence by a single base (residue). This
type of mutation is called a single nucleotide polymorphism, abbreviated as SNP and
pronounced ‘snip’. Insertions (or deletions) refer to the child sequence gaining (losing)
one or more base than the parent. Larger scale mutations include: gene duplication
which is a large scale insertion where the child inherits extra copy of a region containing
a whole gene. Other large scale mutations include inversions (part of the sequence is
reversed end to end) and translocations (a piece of the sequence is copied out of order).

Examples of mutations: Consider the short sequence cgctcaccatgaagcgtttcactaat.
We demonstrate types of mutations showing the original sequence and a mutated version
of it below with X marking the mutation.

• Single nucleotide polymorphism (SNP)
cgctcaccatgaagcgtttcactaat

cgctcgccatgaagcgtttcactaat

.....X....................

• Insertion
cgctcacc----atgaagcgtttcactaat

cgctcacctgatatgaagcgtttcactaat

........XXXX..................

• Deletion
cgctcaccatgaagcgtttcactaat

69

cgct----atgaagcgtttcactaat

....XXXX..................

• Duplication (the copied region is marked with parentheses). Note that duplication
usually refers to gene duplication where whole genes are copied.
cgctcaccatgaagcgtttcacta-----------at

cgctcaccatgaagcgtttcactacaccatgaagcat

....(.........).........XXXXXXXXXXX..

• Inversion (again, this typically happens at a larger scale than shown here)
cgctcaccatgaagcgtttcactaat

cgctctaccagaagcgtttcactaat

.....XXXXX................

�

All these processes can be modelled and studied, with varying degrees of difficulty. We’ll
focus primarily on the question of how to align the sequences, how to identify regions
of interest in sequences (for example, genes), and given aligned sequences, how can we
reconstruct the evolutionary history (the tree) of those sequences. This last problem
will require us to model the the mutation process where we restrict ourselves to looking
at how point mutations arise.

The models we use will use are relatively simple, sometimes to the point of being down-
right crude. It is good to keep in mind the quote from the famous statistician George
Box who said, “All models are wrong but some are useful”.

15.1 Summary of above

• We model genetic sequences: think of them as strings of letters.

• There are 3 types of sequence, DNA, RNA or Protein.

• DNA sequences are composed of the 4 letters, or bases, {A,C,G, T}, RNA is
made of the bases {A,C,G,U} while protein sequences are made up of the 20
amino acids.

• The three types of sequence are related by the central dogma of molecular biology:
DNA is transcribed to RNA and then translated to protein.

• Protein sequences fold up into more complex structures. We will ignore this struc-
ture in this introductory course.

• DNA is copied from parent to child.

• At copying, mutations are introduced.

• Mutations may be single nucleotide polymorphisms (SNPs), insertions, deletions
or of other types.

70

• We use a tree to model the history of relationships between individuals (which are
represented by their sequences).

To model the complex random process of genetic mutation and inheritance, we will need
tools from applied probability and statistics. The next few sections are concerned with
introducing the main tools and concepts that we will use for our study. All of you will
have previously encountered at least some of the ideas we discuss here but, as with the
linear algebra sections, it helps to review the main points before plunging in to new
material.

16 Alignment

16.1 Homology

Homology (from the Greek, to agree) is a crucial concept in biology referring to traits
or, in the case of sequences, sequence regions that share a common ancestry. We expect
homologous regions to be similar to each other where the level of similarity will depend
on how recently they shared a common ancestor.

Thus to say two regions are homologous is an evolutionary hypothesis. Mrs Darwin
(in Carol Ann Duffy’s poem from the collection The World’s Wife) was making an
evolutionary hypothesis of homology:

7 April 1852
Went to the Zoo.
I said to Him —
Something about that Chimpanzee over there reminds me of you.

The claim does not imply that the regions share a similar function now or, depending
on the time since divergence, that they even particularly similar, just that they share
a common ancestor. Therefore, sequences are either homologous or not, there are no
degrees of homology. We often infer homology between two sequences when they are
similar but we must be careful as we can get similarity without homology. Homologous
sequences are sometimes referred to as homologs.

There are two main ways that we get similarity without homology: either by chance
or by convergent evolution. Similarity by chance will occur even in completely random
sequences on a finite alphabet. In two random sequences of four letters, we would expect
similarity by chance of 25%.

Convergent evolution occurs when similar functions evolve independently of each other.
An example of this are the wings of birds and insects. We don’t believe these two very
different creatures had a common ancestor that evolved wings but that wings evolved
indecently of each other in the insect and bird lineages. Thus, while wings in a fly and
a sparrow may be superficially similar, they are not considered homologous. The same
applies to sequences that code for similar proteins (i.e., have similar function) but have
evolved independently. Such traits/regions are called analogous.

71

We distinguish between two types of homology: orthology and paralogy:

Orthology occurs when two genes are separated by a speciation event and evolve in-
dependently from there on.

Paralogy occurs when a region of the genome is duplicated in the same genome (a
duplication event) and they evolve in parallel in the same genome. The two copies
are said to be paralogs.

16.2 Pairwise alignment

Given two sequences, if they are homologues, how do they align with each other? That
is, exactly which sites in the sequence are homologous with each other?

We consider pairs of sequences, x and y of length m and n, respectively. xi is the ith
symbol of x. These symbols are usually the 4 DNA or RNA bases or the 20 amino acids.
We refer to the symbols as residues.

We will allow gaps to be introduced in either sequence to allow them to align better.
Biologically, gaps correspond to insertions or deletions in the sequence.

Clearly, there are many ways of aligning a pair of sequences (how many?), but what is
the best alignment?

Example: x = GAATTC and y = GATTA

GAATTC or GAATTC-

GA-TTA -GATT-A

are two possible alignments. �

16.3 Scoring alignments

The best alignment will depend on how we score alignments. It is easy to come up with
different scoring regimes (e.g., score 1 for a match, -1 for a mismatch) but we really
want to compare two models — that the similarity we see is just chance vs. that the
sequences are homologs.

We initially consider alignments without gaps.

16.3.1 Model of non-homologous sequences

The most basic model is that each letter appears with some probability, letter a appears
with probability qa (note that the probabilities summed over the alphabet are 1), that
each site is independent and that the each sequence is independent. Then the probability
of seeing sequence x is

P (x) =
n∏
i=1

qxi

72

and the joint likelihood of an alignment is just the joint probability of the sequences x
and y,

P (x, y) = P (x)P (y) =
n∏
i=1

qxi

m∏
i=1

qyi =

n∏
i=1

qxiqyi .

16.3.2 Model of homologous sequences

An alternative model is that the two sequences are related and the probability of seeing
the pair of residues a (from x) and b (from y) aligned at a locus is pab. The probability
of the alignment is then the product of the loci,

P (x, y) =
n∏
i=1

pxiyi .

To compare these two models, we take ratio of these likelihoods:∏n
i=1 pxiyi∏n
i=1 qxiqyi

=
n∏
i=1

pxiyi
qxiqyi

.

It is easier to work with log-likelihoods (and addition) than likelihoods and multiplica-
tion, so we take the log of this quantity to get

S =
∑
i

s(x,yi)

where

s(a, b) = log

(
pab
qaqb

)
.

The score of the alignment then is the sum over the local score s(a, b). s can be thought
of as a matrix and is often referred to as a score matrix or substitution matrix.

There are various methods for deciding reasonable values for the entries of the matrix,
discussed below. Note that even when ad hoc values are chosen for the matrix, the
underlying probabilities, pab and qa can be derived by reversing the above argument.
That is, when a score matrix is selected we are making implicit assumptions about the
qas and pabs.

Example: If x = GAATTC and y = GGATTA are aligned as

GAATTC

GGATTA

where s(a, b) = 2 if a = b and s(a, b) = −1 if a 6= b, the alignments scores 2 − 1 + 2 +
2 + 2− 1 = 6. �

73

16.4 Choosing the substitution matrix

For protein sequences, the quantities pab and qa have been empirically estimated to
produce score matrices. In particular, the BLOSUM (BLocks SUbstitution Matrix)
matrix of which there are various types, e.g. Blosum 45 and Blosum 80.

These matrices were calculated by studying a large number of confirmed alignments
where there was considerable agreement between the sequences. The relative frequency
of residues was calculated (to estimates for the qas.) and the relative frequencies of
pairs of residues was calculated (to give estimates for the pabs). The relative frequencies
were then scaled to give integer entries in the matrix. The number after the matrix
represents the similarity of the sequences used to estimate the matrix, so matrices with
higher numbers are used for less divergent sequences.

The Blosum matrices are generally the most effective and widely used but see also PAM
(Point Accepted Mutation) matrices.

Figure 8: The Blosum 45 score matrix. The matrix is symmetric as s(a, b) = s(b, a).

16.4.1 Scoring gaps

To make sequences align fully, we add gaps to one sequence or the other. A gap in x
corresponds to an insertion in y with respect to x or a deletion in x with respect to y.
Adding gaps comes with a penalty, so reduces the score for the match.

For a gap of length k, write γ(k) for the penalty. We consider two forms for γ.

A linear penalty is defined by γ(k) = −dk for some d > 0. That is, each deleted base

74

adds a penalty of d.

An affine penalty is defined by γ(k) = −d − (k − 1)e where d > e > 0. d is the gap
open penalty and e is the gap extension penalty. The affine penalty is more biologically
appropriate as insertions or deletions are typically created in a single event rather than
building up one residue at a time.

More complex gap penalties can be used, for example, we may wish to have different
penalties for gaps matched with different residues, or non-linear functions of gap length.
Such penalties come at the cost of more difficult implementation.

In the algorithms below, we’ll first consider the simple case of the linear penalty.

75

16.5 Global alignment: Needleman-Wunsch algorithm

We can’t calculate all possible alignments of a pair of sequences. (There are
(
n+m
m

)
possi-

ble alignments for a pair of sequences of length n and m.) We use dynamic programming
approaches that allow is to quickly calculate the best possible alignment (that is, the
one that gives us the highest score).

Dynamic programming is technique of solving complex problems by reducing them to a
number of much simpler subproblems that we can easily solve then re-assemble to find
the answer to the complex problem. It uses the structure of the problem itself and so
is only applicable to problems that possess a certain type of structure and to which we
can apply the Principle of Optimality: “a sub-optimal solution of a sub-problem cannot
be part of optimal solution of original problem”.

The the alignment context, the principle of optimality holds in that if we know the score
of an optimal alignment of length k then the score of the first k−1 parts of the alignment
must be optimal.

To see why this is, let Fi,j be the score of the optimal alignment between x[1 : i] and
y[1 : j]. Let s(xi, yj) be the score for matching residue xi to residue yj and assume a
linear gap penalty (so that the penalty for adding the gap (xi,−) or (−, yj) is d). The
optimal alignment up to xi, yj either has xi and yj aligned, or yj aligned to a gap or xi
aligned to a gap. For example, it looks like

I G A yj
L G V xi

or
I G A yj
V xi − − or

G A yj −
L G V xi

In any case, the first part of the alignment must be optimal (If that first k−1 parts were
not optimal, we’d find the optimal alignment for the first parts, add the kth bit on in
one of the 3 possible ways and have a better alignment for the first k parts, contradicting
our assumption that our original alignment was optimal for length k). Thus, if we know
score of the best alignment for k− 1 parts, we can extend it to the best alignment for k
parts. This observation allows us to write the problem as a recurrence relation:

F (i, j) = max

F (i− 1, j − 1) + s(xi, yj),

F (i− 1, j)− d,
F (i, j − 1)− d.

The first case we have matched xi, yj , the second case we have matched xi to a gap and
the final case we have matched yj to a gap.

So we want to find Fn,m and we have the boundary conditions F (0, 0) = 0 (start at 0),
F (i, 0) = −id and F (0, j) = −jd (linear gap penalties for initial gaps).

Note that all the above can be phrased in terms of mismatches and penalties, rather than
matches and scores. To do so, simply reverse the signs of the scores and take minimums
rather than maximums.

If we use a naive recursive method to calculate F (n,m), we still get an exponential
number of calls. But notice that there are only m× n possible combinations we need to

76

calculate. We can do this in a tabular manner, calculating the matrix F from the top
left to the bottom right in a progressive fashion.

To calculate the (i, j)th entry, we only need to know the 3 entries to the left and above
it. The (i, j)th entry s then a maximum over 3 numbers. We keep a pointer to indicate
which cell the (i, j)th entry was derived from.

F (i− 1, j − 1) F (i− 1, j)

F (i, j − 1) F (i, j)

+s(xi, yj) −d

−d

Once we have filled out the matrix, we trace back from F (n,m), following the path
that led us here. That is, the score at the (n,m)th position came from one of position
(n − 1,m), (n,m − 1), or (n − 1,m − 1) by adding a gap or a match. We move to
whichever position it came from either adding the gap or the match in the process. In
doing so, we build up the alignment from right to left, eventually arriving at F (0, 0) at
which point we can reverse the alignment to get the full

Our method is thus based on three things: a recurrence relation, tabular computing and
then traceback. These methods turn an what is naively an exponential algorithm into a
quadratic algorithm (O(nm)).

Example: Align x = ATA and y = AGTTA with the following scores: the purines are A
and G, while the pyrimidines are C and T. Let s(a, b) = 2 if a = b, 1 if a is purine and
b is a purine or a is a pyrimidine and b is a pyrimidine, and -2 if a is a purine and b is a
pyrimidine or vice versa. Let the gap score be d = −2.

Solution: Filling out the matrix and drawing arrows to show where each entry is derived
from we get the following:

A G T T A

0 -2 -4 -6 -8 -10

A -2 2 0 -2 -4 -6

T -4 0 0 2 0 -2

A -6 -2 1 0 0 2

The score of the best alignment is given in the bottom right: F (3, 5) = 2. To find the
alignment with the best score, we traceback from this point. At F (2, 4) there are two
choices that produce the same score. One alignment, found by following the arrow from

77

F (2, 4) to F (1, 3) is
A − − T A
A G T T A

while the other is obtained by following the arrow from F (2, 4) to F (2, 3) and looks like

A − T − A
A G T T A

�

16.6 Elements of an alignment algorithm

We emphasise that these dynamic programming algorithms for sequence alignment are
based on following elements:

• a recurrence relation for the quantity we are trying to optimise, including specifi-
cation of the boundary conditions,

• tabular computing to efficiently calculate the recurrence, and

• traceback (includes specifying rules for where to start and stop the traceback).

By altering the recurrence relation, the boundary conditions or the traceback, we will
find different types of best alignment. Local alignment is the most common form and is
defined below.

16.7 Local Alignment: Smith Waterman algorithm

The Needleman-Wunsch algorithm looks only at completely aligning two sequences.
More commonly, we want to find the best alignment for some subsequence of two se-
quences. This is the local alignment problem.

The resulting algorithm that solves this problem is very similar to the one that solve
the global alignment problem. We derive it as follows. Redefine F (i, j) to be the score
of the best suffix alignment of x1x2 . . . xi and y1y2 . . . yj , where a suffix alignment is any
alignment of xsxs+1 . . . xi and yryr+1 . . . yi for some 1 ≤ s ≤ i and 1 ≤ r ≤ j. Note that
this suffix alignment could be the empty alignment with score 0.

We thus get the recursion

Fi,j = max

0

F (i− 1, j − 1) + s(xi, yi),

F (i− 1, j)− d,
F (i, j − 1)− d.

So instead of a letting a score for an alignment to go negative, we start a new alignment.
To find the best subsequence alignment, then, we simply look for the best score and

78

trace it back until we hit a 0. Note than we can now start and finish anywhere in the
matrix.

Example: Find the best local alignment using the score matrix and sequences given in
the previous example: x = ATA and y = AGTTA

Solution: Fill out the matrix, drawing an arrow when a cell has a predecessor to get
the following.

A G T T A

0 0 0 0 0 0

A 0 2 1 0 0 2

T 0 0 0 3 2 0

A 0 2 1 1 1 4

The score of the highest scoring local alignment is the largest entry in this matrix. We
find this at (5, 3) where F (5, 3) = 4. The sub alignment is found by tracing back from
that cell and stopping at the first cell with no predecessor (or at the first 0 encountered).
This produces the local alignment

T A
T A

�

16.7.1 Overlap matches

As an example of how easy it is to establish different types of alignment algorithm we
consider a special type of alignment known as an overlap alignment.

When we expect one sequence to completely contain another or that they overlap, we
want a global type alignment that does not penalize the unmatched overhanging ends.
The boundary conditions are F (i, 0) = F (0, j) = 0 for all i, j, the recurrence relation
is just the global recurrence and we start the traceback at the position on the right or
top boundary the maximum score taken over all scores on those boundaries is achieved,
F (i,m) or F (n, j). The traceback stops when either the left or top border is reached,
F (i, 0) or F (0, j).

16.8 Pairwise alignment with non-linear gap penalties

In our pairwise alignment discussion, we only considered linear gap penalties. As we
noted earlier, linear penalties are a poor model for biological sequence data where we
expect gaps (that is, insertions or deletions) to be quite rare but if there is a gap it may
be multiple bases in length. Thus, an affine penalty, which penalises the start of the gap
more heavily than any extension to the gap is favoured.

79

For an arbitrary gap penalty, γ(k), we can continue to use a similar dynamic program-
ming approach as before, but a direct adoption of that approach results in a much slower
algorithm. Let’s investigate: With a general gap penalty, γ(k), the recurrence relation
becomes

Fi,j = max

F (i− 1, j − 1) + s(xi, yj),

F (k, j) + γ(i− k), k = 0, . . . , i− 1,

F (i, k) + γ(j − k), k = 0, . . . , j − 1.

This means that to calculate the value of each cell in the matrix F (i, j) we need to
consider i + j + 1 other cells — the i previous cells in the row, the j previous cells in
the column, and the one adjacent diagonal cell — rather than the 3 as we had with the
linear gap penalty (see Figure below). This results in a O(n3) algorithm rather than a
O(n2)

To calculate an unknown cell of F , the scores for gaps of all possible lengths need to
be calculated meaning that a calculation for each previous cell in the row and column
needs to be made:

A G T T A

0 -2 -4 -6 -8 -10

A -2 2 0 -2 -4 -6

T -4 0 0 ?

A

16.9 Alignment with affine gap scores

In the case of an affine gap score (which has the form γ(k) = −d− (k−1)e) it turns out
that we can, once again, construct a O(n2) dynamic programming algorithm to solve the
alignment problem. The only difficulty is that we now have to keep track of 3 possible
states corresponding to 3 cases:

1. Let M(i, j) be the best score of the alignment up to (i, j) given that xi is aligned
to yj . This case looks like
A C C xi
A C G yj

2. Let Ix(i, j) be the best score of the alignment up to (i, j) given that xi is aligned
to a gap. This case looks like
A C C xi
G yj - -

80

3. Let Iy(i, j) be the best score of the alignment up to (i, j) given that yj is aligned
to a gap. This case looks like
C C xi -

A C G yj

Given those definitions, and assuming that a gap cannot directly follow an insertion (that
is, we can’t go directly from Ix to Iy or vice versa), we have the following recurrence
relations:

M(i, j) = max

M(i− 1, j − 1) + s(xi, yj),

Ix(i− 1, j − 1) + s(xi, yj),

Iy(i− 1, j − 1) + s(xi, yj);

Ix(i, j) = max

{
M(i− 1, j)− d,
Ix(i− 1, j)− e;

and,

Iy(i, j) = max

{
M(i, j − 1)− d,
Iy(i, j − 1)− e.

It should be clear that we can calculate this recursion efficiently using tabular compu-
tation where we have 3 arrays: one for each of M , Ix and Iy. We can use a similar
back-tracking mechanism to find the best alignment once we have calculated the scores.

This results in an quadratic time and space algorithm once again but the coefficient of
the quadratic term is greater for this algorithm than the linear gap penalty one. For
example, the space requirement here is 3n2 while it is only n2 with a linear gap penalty.

The above recursions can be very neatly represented as a finite state automaton, or FSA.

In an FSA, each of the three possibilities, match, insertion in x or insertion in y, corre-
sponds to a state (drawn as circles).

The transitions each carry a score, as indicated next to the arrow.

The new value for the state variable at (i, j) is the maximum of the scores corresponding
to the transitions coming into the state. Each transition score is given by is given by
the value of the source state at the offsets specified by the δ(i, j) pair of the target state
plus the specified score increment.

An alignment corresponds to a path through the states.

V L S P A D - K

H L - - A E S K

m m Ix Ix m m Iy m

These automata are known in computer science as Moore machines.

We’ve already seen one type of FSA: a Markov chain can be represented as a stochastic
FSA. We’ll look at another stochastic FSA, the hidden Markov model or HMM, shortly.

81

M
(+1,+1)

Ix
(+1, 0)

Iy
(0,+1)

−d

s(xi, yj)

s(xi, yj)

−e

s(xi, yj)
−e

−d

Figure 9: A finite state automaton describing the affine gap alignment recurrence re-
lation. The pairs of numbers below the state names indicate how we increment the
position in sequence x and y.

16.10 Linear space alignment

If sequences are large, even a quadratic algorithm can be difficult to work with. We
can’t improve the speed of the algorithm but we can reduce the amount of memory we
need (currently at that is O(n2) too).

If all we require is the score of the best alignment, we immediately see that we don’t
need to keep the whole matrix until the end of the alignment. In the case of global
alignment, the score of the best alignment is given by the entry F (m,n). To calculate
any score in the ith row, all we need to know is the (i − 1)th row, so we only need to
keep the a single row of the matrix in memory. A similar argument can be made for the
score of the best local alignment.

If we actually want the best alignment, it turns out that we can still produce a linear
space algorithm. We employ a divide and conquer approach. Suppose we could find a
cell, (i∗, j∗) what we knew to lie on the optimal alignment. Then we could divide the
alignment problem into two halves: from (0, 0) to (i∗, j∗) then from (i∗, j∗) to (m,n). In
the best case, this reduces the amount of storage space require by 2. This process can
be iterated, so (i∗∗, j∗∗) is found to reduce the space required for the (0, 0) to (i∗, j∗)
section and so on. It turns out that given an i∗, a suitable j∗ can be found. We omit
the details here (they are not too difficult) but details and references are given towards
the end of chapter 2 in the Durbin et al book.

82

17 Multiple sequence alignments (MSA)

In pairwise alignment, we were given two sequences, x and y and wanted to align them by
judiciously inserting gaps so that homologous residues were lined up with one another.

Multiple alignment is similar except now we have k ≥ 3 sequences to align, so we want
to form columns of homologous residues by adding gaps to each sequence.

Experts can construct multiple alignments by hand by considering a number of factors
like secondary and tertiary protein structure, highly conserved regions, patterns of gaps,
evolutionary processes etc. This is, however, subjective, difficult and tedious.

We want to come up with a method that is probabilistic, automatic and produces align-
ments that experts are happy with.

A good entry point to understanding the problem of global alignment is the Phylo puzzle
game at http://phylo.cs.mcgill.ca/ where you work on short multiple alignments
by hand.

17.1 Dynamic programming

It is tempting to try to extend the dynamic programming methods that we used for
pairwise alignments to the MSA problem. It is relatively easy to write down the naive
extension of pairwise alignment algorithms to more than 2 sequences. But the naive
implementation quickly becomes impossible as the number of sequences and the length
of the sequences increases.

For example, for 2 sequences of length L, the Needleman-Wunsch algorithm requires a
2-dimensional array with L2 cells in total to be stored in memory. The MSA analogue on
n sequences requires storing an n-dimensional array containing Ln cells in total. Even
for short sequences of L = 100, we would require memory for 1005 = 1010 cells (at 4
bytes per cell, that’s about 37 GB).

Some clever work from Lipman, Altschul and Kececioglu (the first two co-wrote BLAST)
managed to reduce the size of the space that needs to be considered. That is, instead
of calculating all Ln cells, they calculate upper and lower bounds on the score of the
best MSA and then need only calculate the cells in the n-dimensional array that will
produce scores lying between these two bounds. This work allows a few sequences (5-10)
of moderate length (300 residues) and not too far diverged to be optimally aligned but
even this requires a large computational resource.

17.2 Progressive alignment

Finding the optimal MSA is computationally prohibitive, as discussed in the previous
Section. Typically, we resort to finding a good-enough alignment using heuristic tech-
niques. The most widely used heuristic is progressive alignment.

Progressive alignment involves a series of successive pairwise alignments. At it’s most
basic, an initial pair of sequences are chosen and aligned, a third is chosen and aligned to

83

http://phylo.cs.mcgill.ca/

the first two and so on until all sequences are included in the MSA. Other methods also
allow the aligning of two alignments to each other. For example, if there are 4 sequences,
two pairs may be aligned first then the two alignments aligned to complete the MSA.

These methods require that we can: decide on an order in which to align the sequences,
align two sequences together, align a sequences to a MSA and align two MSAs together.

The typical way to decide on the order in which to align the sequences is to build a guide
tree, using a clustering methods such as UPGMA, and align sequences in the order that
nodes occur from the leaves to the root of the tree.

17.3 Building trees with distances and UPGMA

UPGMA is a method of building trees based on distances: we are given a set of objects,
and for each pair of objects we have some measure of the distance between them.

UPGMA stands for unweighted pair group method using arithmetic averages and is a
simple method with an ugly name. The idea can be thought of as a clustering algorithm
where we start with all individual sequences and start clustering them together, building
the tree up from the leaves to the root. The height of the internal nodes (or, equivalently,
the edge lengths) is determined by the distances between the two clusters being joined.

For two sequences, x and y, we assume we have a method of defining the distance dxy.
We define the distance between two clusters of sequences, Ci and Cj as the average
distance between all pairs between clusters:

dij =
1

|Ci||Cj |
∑

x∈Ci,y∈Cj

dxy

where |C| is the number of sequences in cluster C.

We define the algorithm as follows:

Initialise Assign each sequence i to it’s own cluster Ci. Assign a leaf node to each
cluster and give it height 0.

Repeat until there only one cluster remains Find clusters Ci and Cj such that
dij is minimal (choose randomly between equidistant candidates).

Join i and j to make the new cluster Ck = Ci ∪ Cj .
Define a node k in the tree placed at height dij/2 with child nodes i and j.

Update the distance matrix.

This procedure results in a well-defined tree (we need to check that all node heights
are above the heights of the their children). The algorithm is quadratic (O(n2)) in the
number of sequences.

84

Example: Given 4 sequences, A,B,C and D, which have the pairwise distances given
by the distance matrix d below, construct the UPGMA tree.

d =

A B C D
A − 4 8 8
B − 8 8
C − 6
D −

Solution: Start by assigning leaf nodes to each of the sequences with height 0:

A B C D
0

Now choose the pair of clusters that are closest to each other according to the distance
matrix d. This is the pair (A,B) with distance d(A,B) = 4. Join the cluster E =
A ∪B = {A,B} which has height d(A,B)/2 = 2.

A B C D

E

0

1

2

The distance matrix is by calculating d(E,C) and d(E,D). d(E,C) = 1
2·1(d(A,C) +

d(B,C)) = 1
2(8 + 8) = 8 and similarly for d(E,D).

E C D
E − 8 8
C − 6
D −

Now form the cluster F = {C,D} and place the node at d(C,D)/2 = 3.

A B C D

E

F

0

1

2

3

The distance matrix is now the single distance between the remaining clusters: d(E,F) =
1

2·2(d(A,C) + d(A,D) + d(B,C) + d(B,D)) = 1
4(8 + 8 + 8 + 8) = 8. So make the last

node G = {E,F} and place it at height 8/2 = 4. The UPGMA tree is thus

85

A B C D

E

F

G

0

1

2

3

4

�

17.4 Feng-Doolittle progressive alignment

The Feng-Doolittle algorithm (1987) takes the approach described above. The steps for
aligning n sequences are as follows.

1. Calculate the n(n− 1)/2 distances between all sequences pairs. The distances are
found by aligning each pair and recording a normalized score. The score used is

D = − logSeff = − log
Sobs − Srand
Smax − Srand

where Sobs is the score from the pairwise alignment, Smax is the average of scores
obtained by aligning each sequences of the pair to itself and Srand is the expected
score for an alignment of the pair when the residues are randomly shuffled. The
effective score Seff can thus be viewed as a normalised percentage similarity which
roughly decays exponentially towards zero with increasing evolutionary distance.
Thus, we take − log to make the score decay approximately linearly with evolu-
tionary distance.

2. Build a guide tree based on the recorded scores (we use UPGMA).

3. Build the alignment in the order that nodes were added to the tree.

A pair of sequences is aligned in the normal way. A sequence is aligned to an MSA by
aligning it to each sequence in the MSA and choosing the highest scoring alignment.
Two alignments are aligned to each other by aligning all pairs of sequences between the
two groups and choosing the best alignment.

After a sequence or group of sequences is added to an alignment, the introduced gap
characters are replaced with a neutral X character which can be aligned to any other
character (gap or residue) with no cost. Crucially, there is no penalty for aligning a gap
to an X which tends to make gaps align with each other, giving us the characteristic
pattern we see in multiple alignments of gaps clustered in columns.

Once the initial MSA has been found, we can use further heuristics to improve it and
lessen any effect of the order in which sequences were added. For example, we can choose

86

a sequence uniformly at random, remove it from the MSA and then realign it to the the
MSA. This process can be iterated until the MSA becomes stable, that is, no or very
few changes occur when a sequence is removed and re-aligned

87

18 Hidden Markov Models

In Markov models, we directly observe the state of the process (for example, in a random
walk, the state is completely described by the position of the random walker). We can
easily imagine a system where we don’t directly observe the state but observe some
outcome which depends on the state. Call the observed outcomes symbols. We thus
make a distinction between the sequence of states and the sequence of symbols.
We formally model these systems as hidden Markov models (HMMs).

Example: Weather. Suppose we live in a place that gets winds either from the south
or north. On days the wind is from the south, it is rainy and cold 75% of the days, and
warm and sunny the other 25% of the days. When the wind is from the north, is is rainy
and cold 20% of days, and warm and sunny 80% of the days. If it is northerly today, it
will be northerly tomorrow with probability 0.7. If it is southerly today it will be south
with prob. 0.6. �

N

0.7

S

0.3

0.4

0.6

Rain (R)

0.2 0.75

Sun (U)

0.8 0.25

Figure 10: The chance of Sunny or Rainy weather on a day is determined by the wind
direction. When it is Northerly, Sun is more likely, when it is Southerly, Rain is more
likely.

The idea in the HMM is that we only observe the sequence of symbols but to understand
what is going on, we need to know what the underlying state is.

Example cont.: A state sequence for the weather example might be NNNSSNS
while the emissions sequence looks like (using R for rain and U for sun) UUUURUR.
We might observe the weather (rainy or sunny) and wonder what is causing the patterns
we see. The pattern is best understood by knowing the sequence of states (direction of
wind). �

Notation for HMMs

The ith state of the state sequence is πi and transitions (of the states) is given by
akl = P (πi = l|πi−1 = k). We use b’s to represent the symbols so we get a new set

88

of parameters called emission probabilities, eπ(b) = P (xi = b|πi = π) is the prob of
emitting symbol b given that we are in state π.

Example cont.: In the weather example aNN = 0.7, aNS = 0.3, aSS = 0.6 and
aNS = 0.4. The emission probabilities are eN (R) = 0.2, eN (U) = 0.8, eS(R) = 0.75 and
eS(U) = 0.25. �

NaNN = 0.7 S

aNS = 0.3

aSN = 0.4

aSS = 0.6

Rain (R)

eN (R) = 0.2 0.75

Sun (U)

0.8 eS(U) = 0.25

Figure 11: The chance of Sunny or Rainy weather on a day is determined by the wind
direction. When it is Northerly, Sun is more likely, when it is Southerly, Rain is more
likely.

Example: Cheating Casino. A casino tips things in its favour at a dice table by
occasionally switching from a fair die to a loaded one. The loaded die produces a 6 50%
of the time, and each of 1-5 just 10% of the time. Call the fair die F and the loaded die
L. We have transitions aFL = 0.05 and aLF = 0.1. aFF = 1− aFL and aLL = 1− aLF .
Emissions are eF (b) = 1/6 for b = 1, . . . , 6 while eL(b) = 1/10 for b = 1, . . . , 5 and
eL(6) = 0.5.

FaFF = 0.95 L

aFL = 0.05

aLF = 0.1

aLL = 0.9

1

eF (x) = 1/6

2 3 4 5 6

eL(6) = 1/2, else eL(x) = 1/10

Figure 12:

A run of the chain might look like:
F F F F L F F F L L L L L L L L F F F F F F F F F F F F F F L L L L F F F

89

F L L L L L L F F F F F F F F

producing rolls
2 5 1 6 6 2 4 2 4 5 6 6 3 6 2 4 2 2 3 4 6 3 6 5 3 4 5 2 3 5 1 6 6 6 6 2 4

6 6 2 6 6 6 6 6 1 5 1 6 4 1 2. �

Think of HMMs as a generative process where the first state π1 is chosen according to
probability a0i. From that state, a symbol is emitted according to the probabilities eπ1 .
State 2 is then chosen according to transition probs aπ1i which emits a symbol and so
on.

The joint probability of states and symbols is then,

P (x, π) = a0π1

L∏
i=1

eπi(xi)aπiπi+1

18.1 The Viterbi algorithm for finding the most probable state path

Multiple underlying states could produce the same path. Clearly, though, some states
are more likely than others given the emissions. If we see lots of very good weather,
for example, we may guess that northerlies are predominating in our city. If we see
long strings of 6s, we might guess that the casino has switched to the loaded die, while
sequences of apparently evenly distributed throws suggest a fair die is being used.

If we want to work with just one state path, it can be argued that the state path with
the highest probability is the one to choose. Let

π∗ = arg max
π

P (x, π).

We can find π∗ using a recursive algorithm due to Andrew Viterbi (an Jewish Italian
refugee from the fascists who grew up in the USA, wrote this algorithm while at MIT
and then started Qualcomm, a now huge technology company).

Let vk(i) be the probability of the most probable state path ending in state k at obser-
vation i (that is, considering only the first i observations). Suppose vk(i) is known for
all states k. Then the next probability vl(i + 1) can be calculated for observation xi+1

as
vl(i+ 1) = el(xi+1) max

k
(vk(i)akl).

If we insist that all sequences start in a begin state called 0, we have v0(0) = 1 and we
can use a backtracking procedure like we saw in the pairwise alignment algorithm to find
the most probable path.

The Viterbi algorithm thus proceeds as follows:

Initialisation i = 0: v0(0) = 1, vk(0) = 0 for k > 0.

Recursion i = 1, . . . , L: vl(i) = el(xi) maxk(vk(i− 1)akl).
Pointeri(l) = arg maxk(vk(i− 1)akl)

90

Termination: P (x, π∗) = maxk(vk(L)ak0). π∗L = arg maxk(vk(L)ak0).

Traceback i = L, . . . , 1: π∗i−1 = Pointeri(π
∗
i).

Here we assume an end state is modeled, as ak0. If the end is not modeled, this term
disappears.

Even the most probable path typically has a very low likelihood, so it is important to
work in log units. The recursion in log units is

Vl(i+ 1) = log(el(xi+1)) + max
k

(Vk(i) + log(akl))

where Vk(i) = log(vk(i)).

Example: In the human genome, the dinucleotide (that is, two base pairs next to each
other in the sequence) CG, written CpG to distinguish it from the nucleotide pair C-G,
is subject to methylation. Methylation changes the G to a T. That means we see the
CpG dinucleotide less frequently than we would expect by considering the individual
frequencies of C and G. In some functional regions of the genome, such as promoter and
start regions of genes, methylation is suppressed and CpG occurs at a higher frequency
than elsewhere. These are called CpG islands.

To detect these regions we model each region of a sequence as having either high or
low CG content. We label the regions H and L. In high CG regions, nucleotides
C and G each occur with probability 0.35 and nucleotides T and A with probability
0.15. In low CG regions, C and G are probability 0.2 and T, A are 0.3. The initial
state is H with probability 0.5 and L with probability 0.5. Transitions are given by
aHH = aHL = 0.5, aLL = 0.6, aLH = 0.4. Use the Viterbi algorithm to find the most
likely sequence staes given the sequence of symbols x = GGCACTGAA.

Solution: We work in the log space (base 2) so that the numbers don’t get too small.
We’ll need the log values of each of the above probabilities which are best represented
as matrices: set A = log2(a) where a is the transition matrix

A =
H L

H log(aHH) = −1 −1
L −1.322 −0.737

and if E = log2(e) where e is the matrix if emission probabilities then

E =
A C G T

H log(eH(A)) = −2.737 −1.515 −1.515 −2.737
L −1.737 −2.322 −2.322 −1.737

The matrix V , with row indices k and column indices i (so that the (k, i)th element is
Vk(i)) along with the pointers to allow traceback is

− G G C A C T G A A

0 0

H −∞ −2.51 −5.03 −7.54 −11.28 −13.12 −16.85 −18.65 −22.39 −25.41

L −∞ −3.32 −5.84 −8.35 −10.28 −13.34 −15.81 −18.87 −21.35 −23.82

91

The first column in this matrix is simple: every sequence is in state 0 at step 0, so
V0(0) = log(1) = 0 while other states have VH(0) = VL(0) = log(0) = −∞.

The second column is derived from the first as follows:
VH(1) = log(eH(G)) + max {V0(0) + log(a0H), VH(0) + log(aHH), VL(0) + log(aLH)} =
−1.515 + (V0(0) + log(a0H)) = −1.515− 1 = −2.515 and similarly for VL(1).

Traceback begins in the final column where we see the state that maximises the joint
probability is L. Following the pointers from this position and recording the state at
each step gives us the state path with the highest probability is π∗ = HHHLLLLLL.
Note that π∗ is built from right to left in the traceback procedure. �

The schematic below shows how the (i+ 1)th column is derived from the ith column in
a Viterbi matrix. Here, there are 3 possible states, 1, 2 and 3. The 0 state is omitted in
this diagram.

column i column i+ 1

v1(i) v1(i+ 1) = e1(xi+1) max (v1(i)a11, v2(i)a21, v3(i)a31)

v2(i)

v3(i)

a11

a21

a31

The same diagram shown using log units:

column i column i+ 1

V1(i) V1(i+ 1) = E1(xi+1) + max (V1(i) +A11, V2(i) +A21, V3(i) +A31)

V2(i)

V3(i)

a11

a21

a31

18.2 The forward algorithm and calculating P(x)

We have seen that it is easy to calculate P (x, π). However, we usually only observe
x so can’t directly calculate P (x, π). We could tackle this by finding a suitable state
path, such as the Viterbi path, π∗, and calculate P (x, π∗). But calculating P (x, π∗) does
not adequately tell us the likelihood of observing x which may have arisen from a large
number of possible state paths.

What we really want is calculate is P (x), the probability of observing x without taking
any particular state path into account. This involves marginalizing over all possible

92

paths: that is,

P (x) =
∑
π

P (x, π).

The number of possible state paths grows exponentially so we cannot enumerate them all
and naively calculate this sum. Instead, we use another dynamic programming algorithm
called the forward algorithm and calculate P (x) iteratively.

The forward algorithm iteratively calculates the quantity

fk(i) = P (x1:i, πi = k),

the joint probability of the first i observations and the prob that πi = k. The recursion
used is that

fl(i+ 1) = el(xi+1)
∑
k

fk(i)akl. (6)

Initialisation i = 0: f0(0) = 1, fk(0) = 0 for k > 0.

Recursion i = 1, . . . , L: fl(i) = el(xi)
∑

k fk(i− 1)akl).

Termination: P (x) =
∑

k fk(L)ak0.

If the end state 0 is not modelled, simply set ak0 = 1 to get P (x) =
∑

k fk(L).

Here’s a diagram showing how to get the (i + 1)th column from the ith column in the
forward algorithm. The example shown has three states 1, 2 and 3.

column i column i+ 1

f1(i) f1(i+ 1) = e1(xi+1) (f1(i)a11 + f2(i)a21 + f3(i)a31)

f2(i)

f3(i)

a11

a21

a31

Once again, we’ll need to work with the log quantities as the qualities of interest get
very small very fast. However, if we take the log of both sides of Equation 6, the log of
the sum on the right hand side does not simplify immediately.

Let Fk(i) = log(fk(i)) and Akl = log(akl). Then Equation 6 becomes

Fl(i) = log[el(xi)
∑
k

fk(i− 1)akl)] = log[el(xi)] + log

[∑
k

exp(Fk(i− 1) +Akl)

]

Directly calculating a sum of the form log(c) = log(ea + eb) requires calculating ea

and eb which we were trying to avoid all along. Instead, note that log(ea + eb) =
log(ea(1 + eb−a)) = log(ea) + log(1 + eb−a) = a + log(1 + eb−a). If the difference b − a
is not too large, this method never need store an extremely large or small number so is
numerically stable. This extends to finding the log of a sum of multiple logged numbers:

93

function logsum(x)

return x[0] + log(sum(exp(x - x[0])))

or, if you are using log2,

function log2sum(x)

return x[0] + log2(sum(2^(x - x[0])))

Example cont: For the CG island example above, use the forward algorithm to calcu-
late the probability of the sequence x = GGCACTGAA.

Solution: The matrix produced by the forward algorithm is given below, in log units
(base 2). The first column is based on the start state, 0. The first entry of the second
column is log(fH(1)) = log(eH(G)) + log(1/2)

− G G C A C T G A A

0 0

H ∞ −2.51 −4.49 −6.39 −9.51 −10.49 −13.55 −14.53 −17.58 −19.78

L ∞ −3.32 −5.08 −6.97 −8.27 −10.89 −12.30 −14.92 −16.33 −18.37

The log probability is thus log(P (x)) = log(2−19.78 + 2−18.37) = −17.91.

18.3 The backward algorithm and calculating P(x)

The backward algorithm is similar and if we run it to the end, we again calculate P (x).
This starts from the end of the sequence and works back to the beginning. Define

bk(i) = P (x(i+1):L|πi = k)

the probability observing the last part of a sequence, xi+1, xi+2, . . . , xL conditional on
starting in state k at time i.

Once again, this is calculated using tabular computation:

Initialisation i = L: bk(L) = ak0 for all k.

Recursion i = L− 1, . . . , 1: bk(i) =
∑

l aklel(xi+1)bl(i+ 1).

Termination: P (x) =
∑

l a0lel(x1)bl(1).

If we don’t model the end of the sequence, ak0 = 1.

Here’s a diagram showing how to get the ith column from the (i + 1)th column in the
backward algorithm. The example shown has three states 1, 2 and 3.

94

column i column i+ 1

b1(i) = a11e1(xi+1)b1(i+ 1) + a12e2(xi+1)b2(i+ 1) + a13e3(xi+1)b3(i+ 1) b1(i+ 1)

b2(i+ 1)

b3(i+ 1)a11

a12
a13

The log version of the algorithm is (writing Bk(i) = log bk(i)):

Initialisation i = L: Bk(L) = Ak0 for all k (or Bk(L) = 0 if end not modelled)

Recursion i = L− 1, . . . , 1: Bk(i) = log [
∑

l exp(Akl + El(xi+1) +Bl(i+ 1))].

Termination: P (x) = log [
∑

l exp(A0l + El(x1) +Bl(1))].

18.4 The posterior probability of being in state k at time i P (πi = k|x)

The final product of this backward algorithm is not usually what we are interested in (we
use the forward algorithm to calculate that) but the combined forward and backward
algorithms allow us to calculate the joint probability of the all observations and the prob
that πi = k

P (x, πi = k) = P (x1:i, πi = k)P (xi+1:L|x1:i, πi = k) since P (A,B) = P (A)P (B|A)

= P (x1:i, πi = k)P (xi+1:L|πi = k) by Markov property

= fk(i)bk(i)

Of more interest is the posterior probability P (πi = k|x) which we obtain directly by

P (πi = k|x) =
fk(i)bk(i)

P (x)
,

where the denominator is calculated either from the forward or backward algorithm.

18.5 What can we do with the posterior estimates?

We saw that the Viterbi path, π∗, is the most likely single path. But usually the most
likely path is not very likely at all — there may be many other paths the are nearly as
likely. We can use the posterior P (πi = k|x) to get some other likely paths.

The first is π̂, the maximum posterior path, where

π̂i = arg max
k

P (πi = k|x).

95

Note that π̂ is often not a legal path through the state space as it may include transitions
that are not allowed.

The second is when we are interested in some function of the states, g(k). In these cases,
we calculate the the posterior expectation of g at a particular position,

G(i|x) = Ek[g(πi|x)] =
∑
k

P (πi = k|x)g(k).

In particular, if g is an indicator function, that is, g takes the value 1 for some subset of
states and 0 for all others, Ek[g(πi|x)] is just the posterior probability that πi is in the
specified subset.

18.6 Estimating the parameters of an HMM

So far we have assumed we know the structure of the HMM and the associated parameter
values (the transition probabilities akl and emission probabilities ek(b)). In general,
we don’t know either of these. What we usually do is decide on a model (based on
our knowledge of the system) and then estimate the parameters of the model. Let
θ = {akl, ek(b)} be the set of all parameters of the model.

Then we are interested in finding the set of parameters that maximizes the (log) likeli-
hood

l(x1, . . . , xn|θ) = logP (x1, . . . , xn|θ) =
n∑
j=1

logP (xj |θ).

The likelihood of the jth sequence, P (xj |θ), is just what we have been referring to as
P (xj) up to this point as we had always assumed the parameter values, θ, were known.
Writing it as P (xj |θ) simply emphasises the fact that we think of it now as a function
of the unknown θ.

If we knew the state paths for a long sequence (or many short sequences), we could
estimate the parameters simply by using the empirical proportions of transitions and
emissions as our probabilities:

âkl =
Akl∑
iAki

and êk(b)
Ek(b)∑
j Ek(j)

whereA and E are empirical counts. Note that, as some transitions or emissions probably
wouldn’t occur in smaller datasets, it is advisable add a small number of ‘pseudo-counts’
to the empirical counts so that none are zero). But assuming we know the state paths
is unrealistic, so we proceed assuming we have only observed sequences x1, x2, . . . , xn.

18.7 Baum-Welch algorithm for estimating parameters of HMM

The Baum-Welch algorithm is an iterative algorithm that attempts to maximize the
(log) likelihood of an HMM. Unlike earlier algorithms we have seen, it is not exact, so

96

the estimate it finds is not guaranteed to be the best. It may also get stuck in local
maxima, so different starting points are necessary.

The idea of the algorithm is to pick a starting value for θ = (a, e). Probable paths for
this value of θ are found. From these probable paths, a new value for θ is found by
calculating A and E. This process repeats until the likelihood of θ converges on some
value (that is, no change or a very small change is seen in l(x1, . . . , xn|θ) from one step
to the next).

In one version of the algorithm, the probable paths used are the Viterbi paths for each
sequence and the values A and E are calculated from these paths. This seems reasonable
and can produce satisfactory results but it does not converge to the maximum likelihood
estimate.

It turns out that we can avoid actually imputing a probable path by directly calculating
the probability that the transition from k to l occurs at position i in x:

P (πi = k, πi+1 = l|x, θ) =
fk(i)aklel(xi+1)bl(i+ 1)

P (x)
.

Thus, to get a the expected value of Akl, we simply sum over all possible values of i. A
similar argument can be made for E. The expected values for Akl and Ekl are then:

Akl =
∑
j

1

P (xj)

∑
i

f jk(i)aklel(x
j
i+1)bjl (i+ 1) (7)

Ek(b) =
∑
j

1

P (xj)

∑
i:xji=b

f jk(i)bjk(i) (8)

The Baum-Welch algorithm proceeds as follows:

Initialise: Set starting values for the parameters. Set log-likelihood to −∞.

Iterate: 1. Set A and E to their pseudo count values. For each training sequence xj :

(a) Calculate fk(i) for xj from forward algorithm

(b) Calculate bk(i) for xj from backward algorithm

(c) Calculate Aj and Ej and add to A and E using Equations 7 and 8 above.

2. Set new values for a and e, based on A and E

3. Calculate log-likelihood of model

4. If change in log likelihood is small, stop, else, continue.

See lecture slides for a detailed example of applying the Baum-Welch algorithm.

18.7.1 Comments on the Baum-Welch algorithm

The Baum-Welch algorithm is guaranteed to converge to the local maximum — exactly
which local maximum it converges to depends on the initial state. Any local maximum

97

is not necessarily the global maximum so the algorithm should be run from multiple
different start states to check that a global maximum has been found.

Also remember that convergence is only guaranteed in the limit of an infinite number of
iterations so the exact local maximum is never achieved.

The algorithm is a type of Expectation-Maximisation (EM) algorithm that is widely
used for maximum likelihood estimation.

18.8 Sampling state paths

The probabilities fk(i) we calculate in the forward algorithm can be used to sample
possible state paths in proportion to their probability. Recall that the Viterbi algorithm
provides a method of finding the most probable state path by tracing back though the
a matrix, taking the direction that led us to the highest score at each point. We adopt
the traceback idea but apply it to the matrix fk(i) and at each step of the traceback, we
choose the state in proportion to the amount it contributed to the current probability.

Assuming an end state is not modelled, the probability of a sequence x is P (x) =∑
k fk(L). So the probability that the last state is k is given by

P (πL = k|x) =
fk(L)∑
i fi(L)

.

Now, suppose we are in state l at position i + 1. We know from the forward algorithm
that

fl(i+ 1) = el(xi+1)
∑
k

fk(i)akl.

Thus we move to state k in the ith position with probability

fk(i)akl∑
j fj(i)ajl

=
el(xi+1)fk(i)akl

fl(i+ 1)
.

Depending on what you have stored in your algorithm, it may be easier to work with
either the left or right hand side of this equation.

Example: Looking again at the CpG island example, sample state paths according to
their posterior probabilities for the given sequence x = TACA.

Solution: First, get the forward matrix, f . To make it simple, don’t use the log
transform:

- T A C A

0 1

H 0 0.075 0.014625 0.007914375 0.0009567281

L 0 0.150 0.038250 0.006052500 0.0022766062

Now, P (x) =
∑

k fk(L)ak0 = 0.003233334 where ak0 = 1. So simulate the 4th element

of the state path by drawing from {H,L} with probabilities {fH(4)
P (x) = 0.2958952, fL(4)

P (x) =

98

0.7041048}, respectively. Suppose we sampled H. Then the 3rd element of the state
path is a draw from {H,L} with respective probabilities{

fH(3)aHH
fH(3)aHH + fL(3)aLH

= 0.6204251,
fL(3)aLH

fH(3)aHH + fL(3)aLH
= 0.3795749

}
Suppose we sampled H again. We now repeat the process, sampling from{

fH(2)aHH
fH(2)aHH + fL(2)aLH

,
fL(2)aLH

fH(2)aHH + fL(2)aLH

}
and so on. We’ll end up with a state path, for example, LLHH. �

18.9 HMM model structure

Defining the correct structure, or ‘topology’, of an HMM is crucial to good estimation but
there are no solid rules for doing so. Usually data is limited so we can’t over-parametrise
otherwise our estimation algorithms with never find decent values. So we can’t simply
allow all possible transitions and let the computer estimate the correct model. We must
decide ourselves, as much as possible, which transition we allow (so that akl > 0) and
which we disallow (by setting akl = 0).

18.9.1 Duration modeling

If we want to accurately model the length of a sequence along with the contents, we must
model an end state as well as the start state. The basic end state, which is connected to
every other state, and has transition probability q = 1−p produces a sequence of length
l with probability

P (L = l) = qpl−1.

This is a geometric distribution and is the discrete analogue of the exponential distri-
bution. In general, it is not a very good model for lengths and is used largely for the
convenience of its mathematical form.

Also note that the length of time an HMM spends in any one state where the probability
of leaving that state is q is geometric.

An easy way to get a more flexible and, perhaps, more realistic distribution of lengths
is to have, say, n copies of the HMM linked together an it stays in each one for a
geometrically distributed number of steps.

An example with 4 states linked together (the states here could be HMMs themselves).

p p p p

q q q q

This produces a negative binomial length distribution, so that

P (L = l) =

(
l − 1

n− 1

)
pl−nqn.

99

B

X

M E

Y

δ

δ

1− 2δ − τ

τ

ε

τ1−
ε−

τ
ε

τ1
−
ε
−
τ 1− 2δ − τ

τ

δ

δ

Figure 13: A pair HMM model for global alignment. Emission probabilities for states
M, X, Y are pxiyj , qxi and qyj , respectively. Compare it to the simpler FSA in Figure
9.

19 Applications of HMMs in bioinformatics

19.1 Pairwise alignment with HMMs

We saw that we could tackle the pairwise alignment problem with finite state automata.
We now tackle the problem using an HMM, which is sometimes called a stochastic FSA.

We define a pair HMM as emitting a pair of sequences (x, y) as opposed to the standard
HMMs we have considered so far that emit a single sequence.

The basic HMM which produces a global alignment has three states, X,Y and M . M
emits a match, X emits a residue from sequence x and a gap in sequence y (an insertion
in x relative to y), while Y emits a residue from y and a gap in x. Emission probabilities
for states M,X, Y are pxiyj , qxi and qyj , respectively. We also include begin and end
states, B and E. Non-zero transition probabilities are aMX = aMY = δ, aXX = aY Y = ε,
aBX = aBY = δ, akE = τ for any k, and akM 6= 0 for k 6= E and can be calculated using
the fact that

∑
k aik = 1.

All the algorithms we saw for standard HMMs will work for these pair HMMs but we
need a little bit of accounting for the 2 sequences — instead of vk(i) or fk(i), we need to
work with vk(i, j) or fk(i, j) etc where k is one of the 3 states M , X or Y . In each case,
we keep 3 score matrices instead of 1 to keep track of which state we are in at every
point in the alignment.

Durbin et al show how the parameters in these pair HMMs work within the Viterbi
algorithm to produce exact analogues of the dynamic programming algorithms we saw
earlier.

100

For example, to the standard quantities we use in the Needleman-Wunsch algorithm
from the Viterbi HMM formulation of global alignment, set

s(a, b) = log
pab
qaqb

+ log 1− 2δ − τ(1− η)2

d = − log
δ(1− ε− τ)

(1− η)(1− 2δ − τ)

e = − log
ε

1− η
.

These pair HMMs give us more than just another way of viewing the basic alignment
algorithms. Since they are couched in the language of probability, we can answer ques-
tions about alignments with more depth and nuance than we can with the standard
deterministic tools.

101

19.1.1 Probability that two sequences are related

For example, given a pair sequences, x and y, we can ask what probability that two
sequences are related without relying on any particular alignment. This is given by the
quantity

P (x, y) =
∑
π

P (x, y, π)

where the sum is over all possible alignments, π. As in the standard HMM case, we
calculate this quantity via the forward algorithm or the backward algorithm.

19.1.2 Sampling alignments

Further, instead of relying on a single alignment, we could sample possible alignments
in proportion to their probability using the techniques described in Section 18.8.

That is, we could calculate the forward fM (i, j), fX(i, j) and fY (i, j) from the forward
algorithm and then traceback to find a state path which is an alignment. The traceback
from the current state chooses the next state (M , X, or Y) at each step according to
it’s contribution to the probability of the current state. This is exactly the technique
described in the Section 18.8.

19.1.3 Probability that xi and yj are aligned

Consider two residues, xi and yj , in our given sequences x and y. What is the probability
that they are actually aligned to each other? Write 〈xi, yj〉 to mean xi and yj are aligned,
so the probability of interest is Pr(〈xi, yj〉|x, y). We could estimate this probability
by sampling many alignments using the technique described above and counting the
proportion of times that 〈xi, yj〉.
But it turns out that we can calculate this number exactly using the general technique
of finding the posterior probability of being in a state at some time described in Section
18.4. xi is aligned to yj exactly when the HMM is in state M at (i, j). Thus

Pr(〈xi, yj〉|x, y) = P (π(i, j) = M |x, y) =
P (π(i, j) = M,x, y)

P (x, y)
=
fM (i, j)bM (i, j)

P (x, y)
.

The last equality is exactly the same as the one derived in Section 18.4 and, as usual,
the quantity P (x, y) can be calculated using either the forward or backward algorithm.

19.2 Profile HMMs

The canonical problem in genetics is to find a group of sequences that are homologous.
In particular, we are interested in finding homologous genes that share a similar function.
We say such sequences or genes belong to the same family in the sense that they share a
common ancestor and have maintained the same (or similar) functionality. They may be
the same sequence in different species or in the same species but in different parts of the

102

genome (having arrived there through duplication). Sequences in the same family will
often have features in common, particularly where they share the same function and,
therefore, the same basic secondary structure.

If we can characterise these families accurately, by finding features that almost certainly
share in common and identifying regions where more variation is seen, we will be able
to better align sequences known to belong to the family and more easily identify other
members of the family. We achieve this characterisation by modelling the family using
an HMM, known as a profile HMM.

We’ll start by assuming that we are given a family of homologous sequences that are
already aligned into a multiple sequence alignment (MSA). See a very small example in
Figure 14.

VGA--HAGEY

V----NVDEV

VEA--DVAGH

VKG------D

VYS--TYETS

FNA--NIPKH

IAGADNGAGV

Figure 14: Ten columns from a given multiple alignment of seven globin sequences.

From a given alignment, we wish to characterise a typical sequence in the alignment at
each position. Once we have made this characterisation, we could use it to search for
other sequences (or parts of sequences) that fit the profile and so are candidates to be
members of this family.

We model the alignment as an HMM, where each position in the alignment is a state
with a distinct probability of emitting the various residues.

We’ll start by supposing the alignment that is largely free of gaps (by ignoring, say,
columns in the alignment that are more than 50% gaps). With each position in the
alignment, associate a state in the HMM. Call this state a match state and label the
ith match state Mi. The (ungapped) alignment is then modelled as a HMM with only
the trivial transitions, Mi to Mi+1 (with additional begin and end states). Let emission
probabilities from the i match state be eMi . A model for a MSA of length 3 looks like:

B M1 M2 M3 E

Now let’s allow gaps in the alignment. How do we handle them? To handle an insertions
(with respect to the alignment — parts of a sequence x that are not matched by anything
in the model) we introduce a new set of states Ii which matches the residues in x after i
to a gap. These states have emission probabilities eIi(a) which we set to the background
rate: eIi(a) = qa.

There is a transition from Mi to Ii, a loop at Ii, and a transition from Ii to Mi+1.

103

B Mj

Ij

E

A gap of length k therefore has log-odds score

log aMiIi + log aIiMi+1 + (k − 1) log aIiIi ,

the same as an affine gap penalty.

A deletion relative to the model corresponds to skipping ahead in the model. To allow
transitions from every match state to every other state ahead of it in the model would
introduce too many transitions (how many would we need?) so we introduce instead a
silent delete states Di next to every match state. Silent states emit no residues. We
allow transitions aMi−1Di , aDiMi+1 and aDiDi+1 .

B Mj

Dj

E

A full model incorporates both insert and delete states and is drawn below. Notice that
we have not drawn transitions between I and D states though it simplifies computation
to allow them (we’d allow Dj → Ij and Ij → Dj+1).

B Mj

Dj

E

Ij

This profile HMM model is equivalent to a pair HMM model for pairwise alignment
where the given MSA is summarised into a single sequence y . So when we seek to fit a
candidate sequence x to our profile HMM, it is as though we are aligning x and y with
a pair HMM (with appropriately chosen emission probabilities).

104

19.2.1 Estimating the parameters of a profile HMM

We can choose the parameters of the profile HMM using the empirical counts (Akl and
Ek(b)) with pseudo-counts added. Remember that the number of possible transitions is
limited: in our full drawn model we only allow non-zero transitions for aMiMi+1 , aMiDi+1 ,
aMiIi , aIiIi , aIiMi+1 , aDiDi+1 and aDiMi+1 . We have emissions for all possible residues at
each site so we add pseudo-counts to ensure eMi(a) > 0 for all a. Then we use the rule
we saw earlier to estimate transition and emission probabilities:

akl =
Akl∑
j Akj

and ek(b) =
Ek(b)∑
j Ek(j)

.

A simple way of assigning pseudo-counts is to add 1 to all scores (including zero scores).
There is a lengthy discussion of which pseudo-count values to choose in the Durbin et al
book and many more sensible schemes are proposed – none are particularly complicated
but we don’t have time to cover them all here.

We assume emissions from insert states are at the background rate (that is, that rate
the residue occurs at at any position).

In the example in Figure 14, the first column has all seven sequences in the match state
with 5 Vs, and 1 each of F and I. The 17 other possible residues are not observed, so have
frequency 0. Adding a pseudo-count of 1 to each observed frequency gives us emission
probabilities eM1(V) = 6/27, eM1(F) = eM1(I) = 2/27 and the other 17 residues have
eM1(b) = 1/27. 6 of the 7 transitions to the next column are to the match state again
while one is to a delete state. Again, adding pseudo-countsof one gives aM1M2 = 7/10,
aM1D2 = 2/10 and aM1I1 = 1/10. Transitions from the insert and delete states are just
based on the pseudo-counts here.

19.2.2 Finding matches

Once the model has been set and the parameters estimated, we can set about seeing
whether other sequences match the family. Call M the model and x a sequence we wish
to test against the model. To do so, we align proposed sequences to the family using
the now familiar tools of the Viterbi algorithm, giving the Viterbi path π∗ (and the
associated score, P (x|π∗,M)) or, better, the full probability of a sequence summed over
all alignments, P (x|M).

These scores can be used to compare the hypotheses that x belongs to family M or x
is no more like M than we would expect at random. Call R the random model and let
P (x|R) =

∏L
i=1 qxi be the likelihood of x under the random model where qa is simply the

background rate of occurrence of residue a. If the log ratio log(P (x|M)/P (x|R)) > 0, x is
more likely associated with the modelled family than not. To find more certain matches,
we may chose a threshold that this ratio must exceed before we call it a member of the
family.

Note that if we wish to fit new found sequence x to the family, we can simply use the
Viterbi alignment to align it to the family and update parameters of the model.

105

19.2.3 Alignment with a known profile HMM

The simplest case is when we have a known aligned family to which we have already
fitted a profile HMM and we wish to add a number of sequences to the profile. In this
case, we use the Viterbi algorithm to find the most probable alignment for the new
sequences.

The Viterbi path will consist of matches, insert and delete states. At the delete states, we
add a gap character, –, to the sequence we are aligning. At an insert state, the unaligned
residue of the sequence we are aligning is emitted, forcing a gap like character in the
already aligned profile. In the profile, we placeholder character, . , at these positions.
Note that if there are multiple insertions in different sequences at a position, there are
many ways to align them against each other. Since we believe insertions are not shared
between all members of the family, we can set an arbitrary rule for aligning them, such
as using simple left-justification.

19.2.4 Alignment from unaligned sequences with HMMs

If we do not have a pre-existing aligned family and/or profile HMM, we need to first
specify an HMM and then use the Baum-Welch algorithm to estimate the parameters.
After we have done that, we are in the same position as above and can construct the
MSA from the fitted profile HMM.

A rule of thumb for specifying the HMM in the absence of prior knowledge is to allow
M match states where M is the average length of the training sequences. In general, it
is difficult to fit an HMM of this size. A number of heuristics have been developed to
avoid local maxima.

ClustalΩ implements this method and is quick enough to align thousands of sequences
in reasonable time. Currently, ClustalΩ can only be used for protein sequences. See
Fabian Sievers et al, 2011, Molecular Systems Biology 7, http://www.nature.com/msb/
journal/v7/n1/full/msb201175.html for a full description.

19.3 Gene finding

A DNA sequence can roughly be divided into two types of region: genes and non-genes
or inter-genic regions. Genes are regions that code for proteins which actually perform
biological functions in an organism so these regions are of primary interest. The role
played by intergenic regions is not yet clear and it is often referred to as ‘junk DNA’.

We are interested, then, to find a method of finding regions of a given sequence that are
genes. To do so, we need to look at how a gene is structured along a sequence. Recalling
that a sequence has a direction with one end being 5’ end, the other being the 3’ end.
Moving forward in the sequence is going from the 5’ end towards the 3’ end.

Our model of a gene has the following elements occurring in the order listed here: an
inter-genic region, a promoter region, a 5’ un-transcribed region, a series of exons and

106

http://www.nature.com/msb/journal/v7/n1/full/msb201175.html
http://www.nature.com/msb/journal/v7/n1/full/msb201175.html

Figure 15: Gene structure and transcription. The DNA of the coding region is composed
of exons (coding DNA) interspersed with introns (non-coding DNA) and is flanked by
untranslated regions (UTRs). Upstream of the coding regions within the gene are DNA
sequences that control (promoter) and regulate (enhancers) gene expression. During
transcription, the initial nuclear transcript includes RNA sequence complementary to
the entire coding region and the UTRs. In a subsequent step, the introns are spliced out
to form mRNA which translocates to the cytoplasm where it is translated into protein.
Source: http://dx.doi.org/10.1093/bja/aep130 by UoA subscription

introns, a 3’ un-transcribed region, a poly-A region and then back to another inter-genic
region.

These regions are described in more detail below.

Inter-genic region: A non-coding region between genes.

Promoter: a region of DNA that facilitates the transcription of a particular gene. Pro-
moters are located near the genes they regulate, on the same strand and typically up-
stream (towards the 5’ region of the sense strand). For the transcription to take place,
the enzyme that synthesizes RNA, known as RNA polymerase, must attach to the DNA
near a gene. Promoters contain specific DNA sequences and response elements that pro-
vide a secure initial binding site for RNA polymerase and for proteins called transcription
factors that recruit RNA polymerase. These transcription factors have specific activator
or repressor sequences of corresponding nucleotides that attach to specific promoters and
regulate gene expressions.

As promoters are typically immediately adjacent to the gene in question, positions in the
promoter are designated relative to the transcriptional start site, where transcription of
RNA begins for a particular gene (i.e., positions upstream are negative numbers counting
back from -1, for example -100 is a position 100 base pairs upstream).

In eukaryotes, the process is complex and promoters may occur hundreds of base-pairs
upstream.

107

http://dx.doi.org/10.1093/bja/aep130

In prokaryotes, the promoter consists of two short sequences at -10 (that is 10 bases up-
stream from the UTR and is called the Pribnow box which typically looks like TATAAT)
and at -35 (the -35 element, usually TTGACAT). The promoter regions are not tran-
scribed to RNA.

Untranslated regions (UTR 5’ or 3’) : These are regions immediately flanking the trans-
lated region. They are transcribed into RNA but not translated into proteins.

Exons and introns: An exon is transcribed into RNA and is further translated into a
protein. An intron is transcribed into a form of RNA and then spliced out of the RNA
sequence that finally gets translated in a protein. In any gene, there could be one or
many exons and zero or many introns. Exons and introns alternate along the sequence.

Figure 16: A figure showing how the transcribed precursor to messenger RNA includes
the UTRs, exons and introns. The introns are spliced out to form the messenger RNA.
The Exons in the mRNA are translated into proteins. Souce: http://en.wikipedia.

org/wiki/File:Pre-mRNA_to_mRNA.svg

Poly(A) signal: After the 3’ UTR on the RNA, a number of adenines (As) is added —
this is called the poly(A) tail. The poly(A) signal, or polyadenylation signal, is thus a
stretch of DNA that signals to the RNA transcription mechanism to begin the addition
of the poly(A) tail.

A method first described in Burge and Karlin 1997 (see http://www.ncbi.nlm.nih.

gov/pubmed/9149143) describes a generalized HMM incorporating all these regions. See
Figure 17 for a sketch of the structure of the HMM. The states of the HMM are N (cor-
responding to an inter-genic region), P (promotor), F (5’ UTR), E (exons), I (introns),
T (3’ UTR) and A (poly(A) signal). The multiple states for introns, I0, I1 and I2 and
exons E0, E1 and E2 indicate the relation of the reading frame of the exon to the reading
frame of the initial exon (Einit). Recall that three bases of DNA code for a single amino
acid, with each group of 3 bases call a codon. If an exon or intron does not have length
that is a multiple of 3, then the start of the next exon or intron may be out of phase
with it. A subscript of 0, 1 or 2 represents in phase or lagging 1 or 2 steps out of phase,
respectively.

The GHMM produces a set of states q = q1 . . . qn with an associated set of lengths
(durations) d = d1 . . . dn and for each state qi, it produces a sequence of length di
according to a probability model associated with the state qi. Algorithms to analyse
sequences according to this model are implemented in Genscan and GlimmerHMM.

108

http://en.wikipedia.org/wiki/File:Pre-mRNA_to_mRNA.svg
http://en.wikipedia.org/wiki/File:Pre-mRNA_to_mRNA.svg
http://www.ncbi.nlm.nih.gov/pubmed/9149143
http://www.ncbi.nlm.nih.gov/pubmed/9149143

tal functional units of a eukaryotic gene, e.g. exon,
intron, intergenic region, etc. (see Figure legend for
details), which may occur in any biologically con-
sistent order. Note that introns and internal exons
in our model are divided according to ``phase'',
which is closely related to the reading frame. Thus,
an intron which falls between codons is considered
phase 0; after the Ærst base of a codon, phase 1;
after the second base of a codon, phase 2, denoted
I0, I1, I2, respectively. Internal exons are similarly
divided according to the phase of the previous in-
tron (which determines the codon position of the
Ærst base-pair of the exon, hence the reading
frame). For convenience, donor and acceptor splice
sites, translation initiation and termination signals
are considered as part of the associated exon.
Reverse strand states and forward strand states

are dealt with simultaneously in this model, some-
what similar to the treatment of both strands in the
GENMARK program (Borodovsky & McIninch,
1993); see the legend to Figure 3. Though somewhat
similar to the model described by Kulp et al. (1996),
our model is substantially more general in that it in-
cludes: (1) single as well as multi-exon genes; (2)
promoters, polyadenylation signals and intergenic
sequences; and (3) genes occuring on either or both
DNA strands. In addition, as mentioned previously,
partial as well as complete genes are permitted as is
the occurrence of multiple genes in the same se-
quence. Thus, the essential structure of most ver-
tebrate genomic sequences likely to be encountered
in genome sequencing projects can be described by
this model structure. The most notable limitations
are that overlapping transcription units (probably
rare) cannot be handled and that alternative spli-
cing is not explicitly addressed.
The model, essentially of semi-Markov type, is

conveniently formulated as an explicit state dur-
ation Hidden Markov Model (HMM) of the sort
described by Rabiner (1989). BrieØy, the model is
though of as generating a ``parse'' f, consisting
of an ordered set of states, ~q à fq1; q2 . . . ; qng,
with an associated set of lengths (durations),
~d à fd1; d2; . . . ; dng which, using probabilistic
models of each of the state types, generates a DNA
sequence S of length L à ⌃n

i à 1 di. The generation
of a parse corresponding to a (pre-deÆned) se-
quence length L is as follows:
(1) An initial state q1 is chosen according to

an initial distribution on the states, ~p, i.e.
pi à P{q1 à Q(i)}, where Q(j)(j à 1, , 27) is an in-
dexing of the state types (Figure 3).
(2) A length (state duration), d1, corresponding

to the state q1 is generated conditional on the value
of q1 à Q(i) from the length distribution fQ(i).

Figure 3. Each circle or diamond represents a functional
unit (state) of a gene or genomic region: N, intergenic
region; P, promoter; F, 50 untranslated region (extending
from the start of transcription up to the translation in-
itiation signal); Esngl, single-exon (intronless) gene (trans-
lation start! stop codon); Einit, initial exon (translation
start! donor splice site); Ek (04 k4 2), phase k in-
ternal exon (acceptor splice site! donor splice site);
Eterm, terminal exon (acceptor splice site! stop codon);
T, 30 untranslated region (extending from just after the
stop codon to the polyadenylation signal); A, polyade-
nylation signal; and Ik (04 k4 2), phase k intron (see
the text). For convenience, translation initiation/termin-
ation signals and splice sites are included as subcompo-
nents of the associated exon state and intron states are
considered to extend from just after a donor splice site
to just before the branch point/acceptor splice site. The
upper half of the Figure corresponds to the states (desig-
nated with a superscript á) of a gene on the forward
strand, while the lower half (designated with superscript
�) corresponds to a gene on the opposite (complemen-
tary) strand. For example, proceeding in the 50 to 30

direction on the (arbitrarily chosen) forward strand, the
components of an Eák (forward-strand internal exon)
state will be encountered in the order: (1) acceptor site,
(2) coding region, (3) donor site, while the components

of an E�k (reverse-strand internal exon) state will be
encountered in the order: (1) inverted complement of
donor site, (2) inverted complement of coding region,
(3) inverted complement of acceptor site. Only the inter-
genic state N is not divided according to strand.

86 Gene Structure Prediction

Figure 17: The structure of the (generalised) HMM used for gene finding from Burge
et al 1997. See text for details. The full HMM includes a mirror image corresponding
to the reverse strand which has been deleted here.

109

20 Reconstructing trees

The fastest ways of constructing trees rely on defining a distance between sequences. We
have already one method that does this: UPGMA in Section 17.3. We looked at UPGMA
in the context of multiple sequence alignment where a sensible choice of distance between
sequeces to use was D(x, y) = − logSeff (x, y). We’ll briefly look at other, more widely
used distance measures.

20.1 Defining distances between sequences

There are numerous ways of defining distances between sequences. The simplest, for an
aligned pair of sequences x and y of length L is to count the number of positions where
they differ, Dxy say, and define the distance to be

fxy = Dxy/L,

which is simply the fraction of sites at which they differ. This method works well for
related sequences where f is expected to be small, but doesn’t grow as much as we would
like as sequences become less and less related since even unrelated sequences share many
bases in common due to chance.

The Jukes-Cantor distance is based on the simplest model of sequence evolution where
mutations between all four bases are equally likely. The distance includes a correction
for the fact that unrelated sequences will agree simply due to chance. The distance is
defined by

dxy = −3

4
log (1− 4fxy

3
).

Since the background level of dissimilarity (given by fxy) for unrelated sequences is 3
4 ,

(1− 4fxy
3) tends to zero as sequences become more unrelated so dxy tends to infinity for

unrelated sequences.

20.2 Ultrametric distances

UPGMA produces the correct tree (i.e., produces the tree along which the sequences
actually evolved) if the sequences evolved according to a molecular clock in which se-
quences evolved at a constant rate over the whole tree. In that case, the number of
mutations is proportional to the temporal distance of a node to the ancestor.

In these cases, the distances are said to be ultrametric and UPGMA will reconstruct the
correct tree. The ultrametric condition is that dij is ultrametric when, for and points
i, j, k, the distances dij , djk, dik are either all equal or two are equal and the remaining
one is smaller.

More simply, in an ultrametric tree, the distance from the root to the leaves is the same
for every leaf. So if all leaf nodes are sampled at the same time and the ultrametric

110

property holds, the tree displaying the distances will have all the leaf nodes at the same
level.

The tree on the left is ultrametric, the tree on the right is not.

In most cases, the ultrametric assumption is not a good one, as different regions of
sequences vary at different rates and different lineages of the tree may have different
rates of mutation. Thus, UPGMA will not reconstruct the correct tree in most cases.

20.3 Additive distances

A less stringent condition is that distances are additive. A tree is said to have additive
edge lengths if the distance between two leaves is the sum of the edge lengths connecting
them. You can show that ultrametric distances are additive but the reverse does not
hold. In an additive tree, the four point condition is satisfied, in which any four leaves
can be relabelled so that d(x, y) + d(u, v) ≤ d(x, u) + d(y, v) = d(x, v) + d(y, z).

A set of additive distance can be thought of as tree-like — there is a tree that correctly
displays those distance as branch lengths.

So the question is, given a set of additive distances, can we reconstruct the correct tree?

20.4 Neighbour joining

The answer turns out to be yes, and the algorithm that lets us achieve this is known as
neighbour joining (NJ). NJ is similar to UPGMA but instead of simply using a pairwise
evolutionary distance matrix, NJ takes that matrix as a starting point and then builds
a rate-corrected distance matrix before proceeding to join nearest neighbours.

First, note that to find the nearest neighbour on a tree, it is not sufficient to simply
calculate the smallest distance.

Example: Consider the tree

A

B C

D

0.5

0.1

0.1 0.1

0.1

0.5

111

from which we derive the pairwise distance matrix

d =

A B C D

A 0 0.6 0.8 1.2
B 0 0.4 0.8
C 0 0.6
D 0

.
If we try to reconstruct the tree using UPGMA, the first step is to choose the pair with
the smallest distance and join them. That has us choosing B and C first as sharing a
common ancestor before anything else. This immediately leads to the the wrong tree
topology. �

To find the nearest neighbour instead of just the node at the smallest distance, we need
to subtract the average distance to all other leaves. Let Dij = dij − (ri + rj) where

ri =
1

|L| − 2

∑
k∈L

dik

and L is the number of leaves (sequences). Note that the denominator in calculating r is
deliberately one less than the number of items summed. It can be shown (with a bit of
work, omitted here) that the pair of leaves i, j for which Dij is minimal are neighbouring
leaves.

This leads us to the NJ algorithm, which progressive builds up a tree T by keeping a list
of active nodes L and finding the closest amongst them.

Neighour joining algorithm

1. Let T be the set of all leaf nodes and set L = T .

2. Iterate until |L| = 2:

(a) Calculate (or update) D from the distance matrix d.

(b) Pick i, j for which Dij is minimal.

(c) Define k so that dkm = 1
2(dim + djm − dij) for all m ∈ L.

(d) Add k to T with edges joining to i and j with lengths dik = 1
2(dij + ri − rj)

and djk = dij − dik.
(e) Set L = L− {i, j}+ k.

3. |L| = 2, so add remaining edge connect i, j with length dij .

To see this works, consider the reverse process where we strip away leaves from an
additive tree by removing neighbouring pairs. Find leaves i, j with parent k. Remove
i, j and add k to the list of leaves, defining dkm = 1

2(dim + djm − dij) where m is some
other leaf node.

112

Figure 18: Example from wikipedia http://en.wikipedia.org/wiki/Neighbor_

joining: Starting with a star tree in which all leaf nodes are active (A). The ma-
trix D is calculated and used to choose a pair of nodes for joining, in this case f and g.
These are joined to a newly created node, u, as shown in (B). The part of the tree shown
as dotted lines is now fixed and will not be changed in subsequent joining steps. The
distances from node u to the nodes a-e are computed from the formula given in the text.
This process is then repeated, using a matrix of just the distances between the nodes,
a,b,c,d,e, and u, and a new D matrix derived from it. In this case u and e are joined to
the newly created v, as shown in (C). Two more iterations lead first to (D), and then to
(E), at which point the algorithm is done, as the tree is fully resolved.

113

http://en.wikipedia.org/wiki/Neighbor_joining
http://en.wikipedia.org/wiki/Neighbor_joining

Example: Perform neighbour joining on the distance matrix from the previous example

d =

A B C D

A 0 0.6 0.8 1.2
B 0 0.4 0.8
C 0 0.6
D 0

.
Solution: We first need to calculate D for which we will need r. Here L = 4, so

rA =
1

2
(dAB + dAD + dAD) =

1

2
(0.6 + 0.8 + 1.2) = 2.6/2 = 1.3.

Get other elements of r similarly so r = (1.3, 0.9, 0.9, 1.3).

From r and d we can thus calculate

D =

A B C D

A − −1.6 −1.4 −1.4
B − − −1.4 −1.4
C − − − −1.6
D − − − −

.
D is symmetric and the diagonal is irrelevant so only need calculate either the elements
of the upper or lower traingle.

The minimum value of the rate-adjusted matrix is found at AB and CD. Choose AB to
merge into new node E. The length of the edge from A to E is dAE = 1

2(dAB+rA−rB) =
1
2(0.6 + 1.3− 0.9) = 0.5 while the distance from B to E is found by dAE = dAB − dAE =
0.6− 0.5 = 0.1. Check these branch lengths against the values in the original tree: they
match.

A and B can now be removed from the leaf set and replaced with E and a new rate
adjusted matrix D derived. Completing a further iteration and the final step reconstructs
the original tree. �

20.4.1 Unrooted vs rooted trees

Notice that the neighbour-joining algorithm produces a tree with no root. That is, we
known branch lengths (in terms of distance between sequences — roughly, the number
of changes along a branch) but we don’t know the actual times of the nodes, so we don’t
know the position of the root. A tree with no root is an unrooted tree and a tree with a
known root position is called a rooted tree.

In some cases we can determine the position of the root by including a known out-
group in the analysis. For example, if we have samples from 20 hominids, we could
include a chimp as an out-group since we know that the hominids all share a recent
common ancestor before the most recent common ancestor of hominids and chimps. In

114

this example, we would place the root on the branch separating the chimp from the
hominids.

The number of trees, rooted or unrooted is huge. If we have n taxa, there are

(2n− 5)!

2n−3(n− 3)!

unrooted trees and
(2n− 3)!

2n−2(n− 2)!

rooted trees. So when n = 5, we have 15 unrooted and 105 rooted trees, but for n = 10
there are about 2 million unrooted and 3.5 million rooted trees.

20.4.2 Complexity of neighbour jointing and UPGMA

UPGMA has time and space complexity of O(n2) while neighbour-joining has the same
space complexity but time complexity of O(n3).

However, these are worst case complexities, and there are various heuristics that result
in average time performance for neighbour-joining appears somewhat better than O(n3).

20.5 Parsimony

Parsimony is form of Occam’s razor. It postulates that the best tree is the one that
requires the fewest changes along it to explain all sequences. This best tree is called the
most parsimonious tree or the (maximum) parsimony tree.

The main algorithm that we discuss here is not actually a method for constructing the
maximum parsimony tree but rather provides a way of calculating the cost of any given
tree. We must then search over trees to find the tree of minimal cost.

Example: suppose we have four sequences AAG,AAA,GGA and AGA. Consider the
two trees given below.

AAG AAA GGA AGA

AAA AGA

1

AAA

1

1

AAG AGA AAA GGA

AAA AAA

1 1

AAA

2

The number of mutations on each branch is shown to the left of the branch. The tree
topology on the left has requires 3 mutations to explain the given sequences, while
the tree on the right requires 4 mutations to explain the same sequences. The more
parsimonious tree is therefore the one on the left. The sequences given at the internal

115

vertices and the positions of the mutations could be altered in these examples but the
total parsimony score for each tree would remain the same. �

An algorithm to compute the parsimony cost of a tree is given below. This finds the
minimum number of substitutions to explain given sequences and tree. It assumes that
all changes have equal cost. A similar algorithm accounts for the case where different
substitutions have different costs. The algorithm is given in terms of rooted trees but
the parsimony score is independent of the position of the root so this algorithm applies
to unrooted trees.

Parsimony (Fitch 1971)

Number the nodes, in descending order, so that the root node is 2n − 1. Let u be the
site for which we are considering the cost. Let B be the parsimony cost.

Initilise Set Bu = 0 and k = 2n− 1.

Recursion To obtain the set Rk:

If k is a leaf node: Set Rk = xku.

If k is not a leaf: compute Ri and Rj for child nodes of k. Set Rk = Ri ∩ Rj if
Ri ∩Rj 6= ∅. Otherwise, set Rk = Ri ∪Rj and set Bu = Bu + 1.

Stop Return Bu, the minimal cost of the tree at site u.

A traceback procedure can be used to construct possible ancestral states. Starting at
the root, choose a residue from R2n−1 and go to the daughter nodes. Having chosen a
residue at Rk, pick the same residue from the child set Ri if possible, otherwise choose
a random reside of Ri.

The total cost for a tree and sequences is the sum of costs over all positions in the
sequence. That is, if we have sequences of length L and Bi is the parsimony score for
site i, then the total parsimony score for the tree and sequences is

B =
L∑
i=1

Bi.

Example: Given the following tree with just a single site at the 4 leaves we want to
calculate the parsimony cost. Label the nodes as shown. There is just a single site so
set u = 1.

116

1: A 2: G 3: C 4: C

5 6

x
7

We set B = 0 and k = 7. Now try to find R7.

7 is not a leaf node, so recurse down to its children. Want to find R5 and R6. 5 is not
a leaf node so recurse down to its children. 1 is a leaf node so set R1 = {A}. Similarly,
R2 = {G}. Now, R1∩R2 = ∅ so we set R5 = R1∪R2 = {A,G} and B = B+1 = 0+1 = 1.

In a similar manner we get R3 = {C} and R4 = {C} so R6 = R3 ∩R4 = {C}.
Now, since R5 ∩R6 = ∅ we set R7 = R5 ∪R6 = {A,C,G} and B = B + 1 = 2.

Thus we have the sets Rk as follows:

R1 ≡ {A} R2 ≡ {G} R3 ≡ {C} R4 ≡ {C}

{A,G} {C }

x
{A,C,G}

From these sets, we can traceback from the root, picking possible ancestral states that
would give us the parsimony score for the tree. For example, at the root choose A, which
forces us to choose A at node 5. Clearly, at node 6, we only have the choice of C.

A G C C

A C

x
A

�

117

20.5.1 Weighted parsimony

The basic parsimony idea easily extends to the case where instead of counting each
mutation equally, different costs apply to different mutations.

Let S(a, b) be the cost of mutating from a to b and again calculate the parsimony score
at a single site u.

Initilise Set k = 2n− 1.

Recursion If k is a leaf node: Set Sk(a) = 0 when a = xku and Sk(a) =∞ otherwise.

If k is not a leaf: Compute Si(a) and Sj(a) for all a and children i and j of k. Set

Sk(a) = min
b

(Si(b) + S(a, b)) + min
b

(Sj(b) + S(a, b)) .

Stop Return
Bu = min

a
S2n−1(a).

The total cost of the tree is

B =
L∑
u=1

Bu

Weighted parsimony reduces to the standard parsimony algorithm when S(a, a) = 1 and
S(a, b) = 0 if a 6= b.

A traceback procedure to recover the ancestral states is again available by keeping track
of which residue, b, gave the minimum at each step. For exact details of the traceback,
see Durbin et al.

20.5.2 Parsimony informative sites

Many sites in an alignment will have the same parsimony score on every tree. For
example, consider sites that have the same residue for all taxa (an invariant site). This
will have a parsimony score of 0 regardless of the tree. Sites that have different scores on
different trees are known as parsimony informative. It is easy to show that parsimony
informative sites have at least two characters that each occur in two or more taxa.

In the detailed example given above, the site studied (which would be written as the
column AGCC in a multiple sequence alignment for the 4 taxa) is not parsimony infor-
mative since there is only one site that appears more than once. If we instead considered
the site corresponding to the column AACC, it would be parsimony informative.

20.6 Finding the maximum parsimony tree

The number of substitutions on a tree (the parsimony score) is sometimes called the
length of a tree. This corresponds to the molecular clock idea where, under a constant
rate mutation model, we will only see more substitutions if we wait for a longer time.

118

Thus finding the maximum parsimony tree is equivalent to finding the shortest tree.
We’ll consider a number of methods for finding the maximum parsimony tree for a given
set of sequences.

20.6.1 Exhaustive search

Finding the maximum parsimony tree is a very hard problem computationally. Naive
methods which attempt to score all possible unrooted trees fail when the number of
sequences is even moderate due the huge number of possible trees.

We therefore need to resort to more clever methods and heuristic search algorithms.

The simplest of the smarter search algorithms are based on the idea of branch-and-bound.

(The following section of notes on parsimony is based on notes from http://www.fos.

auckland.ac.nz/~biosci742/4_3_2.html#4.3.4)

20.6.2 Branch and bound

Branch and bound is a method of systematically analysing all possible trees by building
up a tree one taxon (leaf) at a time and only continuing to build up a tree if it could
potentially lead to the best tree.

Given n taxa, build an initial tree, t∗ using some method. The score of that tree is s∗.
Now we begin to systematically build up trees one taxon at a time as follows:

Initialise: Choose 3 taxa and form the (unique) unrooted partial tree.
Add this tree to a queue.

Iterate: Choose a taxon and add to previous best partial tree (at front of queue) in
each possible position to get a k new partial trees, t1, . . . , tk
If score(ti) ≤ s∗, add ti to queue and order the queue by score.
If score(ti) > s∗, discard ti.
If ti is complete (all taxa have been added) and score(ti) < s∗, set s∗ = score(ti).

Finish: When queue is empty, return tree with lowest score.

This becomes clearer by looking at an explicit example so refer to Figure 19.

The result is effectively the same as an exhaustive search, without wasting time on
topologies that we know will be rejected.

The algorithm can be optimised by having having a good initial tree (try perhaps using
a neighbour-joining tree) and by ordering the taxa so that they are added in a way that
promoter earlier cutoffs.

This is an improvement over exhaustive search (which is feasible for up to about 10
sequences) and is feasible for around 20-30 sequences.

119

http://www.fos.auckland.ac.nz/~biosci742/4_3_2.html#4.3.4
http://www.fos.auckland.ac.nz/~biosci742/4_3_2.html#4.3.4

Figure 19: Say we have sequences from 5 taxa. We start by building the single 3-taxon
tree using taxa A, B and C (tree a). Next the fourth taxon D is added in all three
possible positions to generate trees b1, b2, and b3. One of these trees, say b1, is chosen.
Then the fifth taxon E is added in all possible positions to give trees c1.1, c1.2, c1.3,
c1.4, and c1.5. The length of each of these five 5-taxon trees is calculated. The shortest
of these is the most parsimonious found to this point. Now return to the partial tree
b2. If the length of b2 is equal to, or greater than, that of the shortest seen so far, then
we know that adding any more taxa will only make the tree longer. If this is the case,
then we stop using b2, and don’t consider any of the trees built upon it. If b2 is shorter
than the best seen so far, then it is used as the basis of further tree building, until
the threshold length is reached. As we work through new topologies, we continuously
update our record of the shortest seen so far. Once we have exhausted all possibilities,
the shortest tree is the most parsimonious for that alignment.

120

20.6.3 Heuristic search

Heuristic methods search for the optimal tree but offer no guarantee that it will be (or
has been) found. These methods use hill-climbing to seek the optimal tree:

• choose an initial tree

• Iterate:

– modify the tree and assess it

– if the modified tree is an improvement, keep it. Else, return to the previous
tree

– stop when no improvement occurs

The initial tree can be chosen using stepwise attachment, a greedy algorithm that starts
by joining 3 taxa into a tree and then progressively adds further taxa by finding the best
place to attach a taxon and leaving it there. Since taxa are never moved once they have
been attached even if it becomes obvious that something has been attached in the wrong
place, this method will almost never find the best tree to start with. It will, however,
nearly always give us something better than the worst tree.

Modifications to the tree can be made by various methods of detaching and reattaching
branches in different a different place. This is known as branch swapping. An example
of one type of re-arrangement method is given in Figure 20.

Figure 20: An example of a way of modifying the tree: subtree pruning and regrafting.
An edge is chosen and the subtree at that point is removed. Another edge is chosen on
the remainder of the tree and the removed subtree is reattached at that point.

The method described above is guaranteed to find a local minimum of the parsimony
score, but may not find the global minimum as the starting tree may be too far from
the best tree.

121

To improve the chances of finding the best tree, the method for building the initial tree
can be randomised so the the starting point is different in every case. For example, if
the initial tree is built by stepwise attachment, the order in which the taxa are added
can be randomised. Different starting points may end up finding different local minima.

20.7 Disadvantages of parsimony

Beyond the difficulty of finding the maximum parsimony tree, parsimony has several
disadvantages.

Firstly, parsimony does not account for hidden or multiple substitutions at the same site
as it explains all substitutions with the minimum possible number of changes. So if we
observe a locus in three sequences, one with an A, the other two with a C. Reconstructing
the parsimony tree, we will assume that the ancestral state was a C and a single mutation
had occurred to produce the A. There are clearly many other explanations for this data
set (for example, there were multiple mutations so that the ancestral state was A and
two mutations to C occurred or the was a hidden mutation where the ancestral state
was a C, there was a mutation to a G and then an A) which, although each less likely
than the single mutation, collectively are quite likely. This effect means that parsimony
tends to underestimate the length of trees.

The most serious problem with maximum parsimony is long-branch attraction, a conse-
quence of the failure of the method to estimate multiple or hidden substitutions. When
a tree has some branches with significantly greater length than other branches, MP will
underestimate how many substitutions have occurred on the long branches. Homoplasies
(parallel or convergent substitutions) will cause MP to underestimate the evolutionary
difference between the branch tips. Conversely it will over-estimate the degree to which
those tips have shared an evolutionary past. The long branches will be joined erroneously
as near- or sister-clades, that is they will “attract” one another. Using longer genomic
sequences in the analysis will only increase the number of variable sites exhibiting ho-
moplasies, without improving the phylogenetic signal. As a consequence of this, MP is
statistically inconsistent, that is, the chance of obtaining the wrong answer increases as
more data are used. It can be positively misleading. See Figure 21.

So while parsimony is simple to understand as a heuristic, relatively quick to implement
and compute and will do a good job of reconstruction when substitutions are rare, it does
not explain the process of sequence evolution well (no physical model of the process) and
is prone to failing when there are hidden and multiple substations, especially when there
are long branches (highly diverged sequences) in the tree. A further problem is that
the maximum parsimony tree is just a single tree that contains no information about
uncertainty — we aren’t sure which splits in the tree we are certain about or which splits
could be rearranged to produce an equally likely (or very near to equal) tree.

We thus seek a method of reconstructing a tree that is based on statistical principles,
one that will find the most likely tree taking into account a model of the process that
gave rise to the data. The method should also give us an idea of the uncertainty in the

122

Figure 21: The tree on the left is the true tree. It has a pair of sequences (A, and B)
which are highly diverged. Reconstructing the tree from these sequences using Maximum
Parsimony (MP) results in the wrong tree (right). The two highly diverged sequences
look closer to each other than they should due to chance mutations.

reconstruction. Indeed, we will look at methods that provide us with many different
possible trees that all represent feasible reconstructions of the evolutionary relationships
between sequences.

21 Statistical approaches to modelling evolution

Distance and parsimony based methods for tree reconstruction are based on a number of
assumptions that often do not hold. Distance methods are simple and fast to implement
but are only guaranteed to reconstruct the correct tree under very restrictive circum-
stances. Parsimony is not based on a realistic model of evolution and, as we have seen,
is statistically inconsistent (it reconstructs the wrong tree even with infinite data).

Our approach then will be similar to the approach we have taken in other parts of the
course: we will model the process of sequence evolution, and based on that model we will
write down the likelihood of a tree. We will then seek to find the maximum likelihood
tree and finally look at Bayesian approaches to finding the best tree.

We model only the substitution process in which one base is replaced by another, for
example A→ T or A→ C. We will ignore the (more complicated) processes of insertions,
deletions, recombination etc.

21.1 Likelihood of a given tree

Consider a tree with four leaves and sequence at each leaf consisting of a single site. An
example of such a tree with four sequences, labeled A, B, C, and D is shown in Figure
22. The values of the sequences are C, C, T and T , respectively.

123

The maximum parsimony tree for these sequences groups A and B together and has a
parsimony score of 1. But how likely is it? Inherent in the parsimony idea is that only
one mutation occurred on the tree and it must have occurred along the branch between
the two ancestral nodes. That mutation was from a C to a T (or vice-versa) implying
that the unknown ancestral values at the ancestral nodes were also C and T , as shown
on the left in Figure 22.

Figure 22: The parsimony tree on the left with the ancestral states reconstructed. Under
parsimony, this is considered to be the one true tree. Under likelihood methods, we want
to decide how likely the tree is given the data (observed values at the leaves). That
requires summing over all possible ancestral values (shown in 23).

Ideally, we would account for all possibilities for the ancestral values: they could be
any of (A,A), (A,C), . . . (T, T). All possibilities are shown in Figure 23. That is, if the
unknown ancestral states are X and Y , then we could look at the likelihood of the tree
for each possible combination of X and Y and sum these together. This is the principle of
marginalisation introduced in Section 11.4: we want to know the probability of the tree
and the data, but have some other random variables floating about too (the ancestral
states X and Y) which we deal with by simply summing over all possible values to get

P (Tree and data) =
∑
x∈X

∑
y∈Y

P (Tree and data, x, y)

It turns out that once we have a tree with values for the site known at all nodes (not
just the leaves), we can calculate the likelihood with relative ease. That is, we know how
to calculate P (Tree and data, x, y) for any value of x and y, a sketch of which is given
in Figure 24.

124

Figure 23: All possible ancestral value for the tree considered in Figure 22. The
likelihood of the tree is the sum of the likelihoods of the tree and the ancestral values,
where the sum is over all ancestral values. That is, to find the likelihood of the tree in
on the right in Figure 22, we need to find the likelihood of each of the trees in this figure
and sum them up.

125

Figure 24: The likelihood for a tree with data at the leaves and imputed ancestral data
is given by a product of the probabilities of mutating between the different values along
each branch: that is the probability of mutating from C to G along the branch of length
t1 multiplied by the probability of mutating from C to G along the branch of length t2
multiplied by the probability of mutating from G to A along the branch of length t3 and
so on. How these probabilities are calculated in developed in Section 21.2

126

Let’s formalise the discussion above.

The data we have about a tree can be considered as the matrix D, where Dij is the value
of the jth residue in the ith individual. For a given data set, D, we want to calculate
the likelihood of a given tree, T , which is binary and has a leaf associated with each
individual (each row of the matrix).

So we want L(T) = P (D|T). We saw that model each site as being independent of all
other sites. That is, we consider

P (D|T) =
L∏
i=1

P (D:,i|T).

But we saw that to calculate P (D:,i|T), we need to sum over all possible unknown values
for the sites at the internal nodes. For a given tree, let A be the matrix of unknown
ancestral sequences at each node of the tree, where each row corresponds to an ancestral
node and each column to a site.

Then for each column i,

P (D:,i|T) =
∑
A:,i

P (D:,i, A:,i|T).

That is, for each site we sum of all possible assignments of ancestral values to get the
likelihood for that site. It turns out that this sum over all ancestral values is easy enough
to calculate using a dynamic programming approach, so we just need to figure out how
to calculate each element of the sum: P (D:,i, A:,i|T).

We make one further assumption: that each lineage is independent. In that case, the
probability of the tree with states known at every node, P (D:,i, A:,i|T), becomes a simple
product of the likelihoods of each lineage of the tree.

That means all we need is a model that gives us the probability of mutating from base
a to base b over an arbitrary length of time (which is given by the branch length).

We have omitted one detail here, and that is the probability of observing the sequence
of the most recent common ancestor of the full sample.

The schematic of this argument is given in Figure ??.

We introduce the model we use for mutations down each lineage in next Section and
also briefly discuss how the sum

∑
A:,i

P (D:,i, A:,i|T) can be calculated efficiently.

127

Pr)(
CCT

t3 t4

t2

GTT CCG

Pr)(D|T
t1CCT

t3 t4

t2GTT
CCG =Pr)(t1

| which we'll write as

CCT

t3 t4

t2

GTT CCG

Pr)(t1

C

t3 t4

t2

G C

Pr)(t1

 C

t3 t4

t2

 T C

Pr)(t1

 T

t3 t4

t2

 T G

Pr)(t1

=

C

t3 t4

t2

G C

Pr)(t1

= A

A

C

t3 t4

t2

G C

Pr)(t1

C

A

C

t3 t4

t2

G C

Pr)(t1

G

A

C

t3 t4

t2

G C

Pr)(t1

G

T

C

t3 t4

t2

G C

Pr)(t1

T

T

+ +

+...+

+...

C

t3 t4

t2

G C

Pr)(t1

C

t3 t4

t2

G C

Pr)(t1

A

A

= Pr)(A at root Pr)(t1

A

A

t2

C

Pr)(
A

C

t3Pr)(A

t4

G

Pr)(A

i

ii

iii

Figure 25: A schematic representation of calculating the likelihood of a tree P (D|T). Equation i holds since each site (column
of D) is assumed independent, so P (D|T) =

∏L
i=1 P (Di|T). Equation ii expands the first term on the right of equation

i. It shows all possible ancestral values (shown in red) being summed over, P (Di|T) =
∑

Ai
P (Di, Ai|T). The sum, here

containing 16 terms, can be efficiently calculated using dynamic programming. Equation iii expands the first term on the
right of equation ii and relies on an assumption of independent evolution down different lineages. The probability of the root
value is given by the stationary distribution π, while the probability of having X at the top of a lineage of length t and Y at the
bottom is given by PXY (t) = [exp (tQ)]XY . So the right of equation iii equals the product πAPAA(t1)PAC(t2)PAC(t3)PAG(t4).

128

21.2 Markov processes

The model we use is a continuous time Markov model (often called Markov processes).
We haven’t got time to go into this in much detail but the main idea behind it is relatively
intuitive.

We’ve already seen a simple Markov process, in the form of the Poisson process. Recall
that in the Poisson process, ‘events’ can occur at any time, times between events are
exponentially distributed and, in a very period of time, we expect either to see no events
or one event (but not two or more). In the Poisson process, we only considered a single
type of event and simply counted them when they occurred so that the state of the
process was just a count of the number of things that had occurred so was strictly
increasing.

The model we use for mutations is similar to the Poisson process in that waiting times
between events are exponential and, in a short slice of time, nothing or just one event will
occur. The events are substitutions so we want to keep track of the state of the process
at each time point. Let X(t) the state of the process at time t (so X(t) ∈ {A,C,G, T}).
The difference from a Poisson process is that we allow that the rate of different events
occurring may be different. For example, the rate of mutations from state A to state G
may be different from the rate at which A mutates to T .

Let qab be the instantaneous rate of transitions from state a to state b, for any states
a 6= b. It may help to think of this in terms of flow: qab is the rate of flow form state a
to state b.

qaa is the total rate of flow out of a, so it is the sum of rates from a to b for b 6= a and
is defined to be negative, qaa = −

∑
a6=b qab. This means that the length of time spent

in state a is exponentially distributed with rate −qaa.
Now define the rate matrix Q to have off diagonal elements qab and diagonal elements
qaa = −

∑
a6=b qab.

In the case of modelling DNA mutations, Q has the form

Q =

−
∑

j 6=A qAj qAC qAG qAT

qCA −
∑

j 6=C qCj qCG qCT

aGA qGC −
∑

j 6=G qGj qGT

qTA qTC qTG −
∑

j 6=T qTj

 .

where qij , i 6= j can be interpreted as the instantaneous rate that i mutates to j.

Now define Pab(t) = Pr(X(t) = b|X(0) = a) the probability of starting in state a at time
0 and being in state b at time t and form the matrix P (t) = [Pab(t)]. It turns out that
we can derive P (t) from Q by taking the matrix exponential:

P (t) = exp(Qt) =

∞∑
k=0

(Qt)k

k!
.

129

The matrix exponential can sometimes be calculated analytically but, for general Q, use
numerical methods which are available for many standard numerical libraries.

The matrix exponential follows the rules we would hope for the exponential function.
For example:

• exp(0) = In

• when AB = BA, exp(A + B) = exp(A) exp(B)

• When B is invertible, exp(BAB−1) = B exp(A)B−1

• If A = diag(a1, . . . , an), then exp(A) = diag(exp(a1), . . . , exp(an)).

21.3 Models of sequence mutation

There are a lot of parameters to specify or estimate in a full model of sequence mutation:
on the face of it, we need to specify each of the qabs (giving us 12 parameters when there
are 4 bases). In reality, we make various simplifying assumptions to reduce the number
of parameters and make estimation simpler.

We insist that models of mutation are reversible and stationary.

A process is stationary when , if run for long enough, it settles down to some equilibrium,
π = [πA, πC , πG, πT]. Formally, π is defined by the equation πP (t) = π for any t.
That is, if the process starts in equilibrium, running the process further will leave it in
equilibrium. π is called the equilibrium distribution or the stationary distribution.

A process is reversible when it looks the same running backwards as it does running
forwards. Strictly, a process is reversible when it satisfies the detailed balance conditions
πipij(t) = πjpji(t) for all values of i, j and t.

It helps when specifying substitution matrices to normalise them so that the average
number of mutations per unit time is one. Given an unnormalised matrix Q̂, it can be
normalised by multiplying each entry by some constant β, so that the normalised matrix
is Q = βQ̂. The value of β depends on Q̂.

Scaling the substitution matrix in this manner means that time is measured in substi-
tutions. That is, one time unit corresponds to the time in which we would expect to see
one mutation at any given site.

Summary of assumptions we make

• Each site is identical to all others in the evolutionary processes operating on it.

• Each site is free to change independently of all other sites.

• These two assumptions are usually stated as sites are independent and identically
distributed, or i.i.d.

130

• Substitution probabilities do not change with time or over the tree. This is known
mathematically as a homogeneous Markov process.

• The mutation process is time-reversible meaning that the process looks the same
whether it is run forward or backward in time.

• Mutation process are independent across across different branches.

So given a mutation model (that is, given Q and µ), we can easily determine the prob-
ability of observing a descendant sequence given an ancestral sequence. For example,
given the sequence x1 = ACTT at time t1 and the x2 = AGGT at time t2 and assuming

x2 = AGGT

t2

x1 = ACTT

t1

But given a tree with samples at the tips, the ancestral sequences are unknown to us.
But how does this work when we don’t know the ancestral sequences? We need to sum
over all possible ancestral sequences. It turns out that this is relatively easy to achieve
using a dynamic programming approach known as Felsenstein’s peeling (or pruning)
algorithm (1981) which performs this calculation in polynomial time based on a post-
order traversal of the tree. We omit the details.

21.3.1 Jukes-Cantor model

The simplest model is the Jukes-Cantor model (1969) which has equal rates of mutation
between all bases so that qij = 1 for i 6= j,

Q = β

−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

 .
In this case, β = 1/3 so

Q =

−1 1/3 1/3 1/3
1/3 −1 1/3 1/3
1/3 1/3 −1 1/3
1/3 1/3 1/3 −1

 .
The equilibrium of this process is π = (1/4, 1/4, 1/4, 1/4).

131

The transition matrix P (t) = exp(Qt) for the Jukes-Cantor model has off-diagonal en-
tries

Pij(t) =
1

4
− 1

4
exp (−tµ)

and diagonal entries

Pii(t) =
1

4
+

3

4
exp (−tµ) .

21.3.2 Kimura model

The Kimura model (1980) distinguishes between transitions (A ←→ G and C ←→ T
state changes) and transversions (state changes from a purine to pyrimidine or vice
versa). The model assumes base frequencies are equal for all characters. This transi-
tion/transversion bias is governed by the κ parameter and the Q matrix is:

Q = β

−2− κ 1 κ 1

1 −2− κ 1 κ
κ 1 −2− κ 1
1 κ 1 −2− κ

 ,
The normalized Q is obtained by setting β = 1

2+κ . This model has one free parameter,
κ. The transition probabilities are:

pij(d) =

1
4 + 1

4 exp(− 4
κ+2d) + 1

2 exp(−2κ+2
κ+2 d) if i = j

1
4 + 1

4 exp(− 4
κ+2d)− 1

2 exp(−2κ+2
κ+2 d) if transition

1
4 −

1
4 exp(− 4

κ+2d) if transversion

.

21.3.3 F81 and HKY models

In 1981, Joe Felsenstein proposed a model that extends the Jukes-Cantor model to allow
for unequal equilibrium base frequencies, that is π for which πa 6= πb. This is known
as the F81 model. The F81 model has 3 parameters, one less than the number of
equilibrium base frequencies since there is the restriction that

∑
i πi = 1.

In 1985, the F81 model was extended to incorporate the Kimura model, so allows different
rates for transitions and transversions as well as unequal base frequencies. The resulting
model is known as the HKY model and has rate matrix of the form:

Q = β

· πC κπG πT
πA · πG κπT
κπA πC · πT
πA κπC πG ·

where the diagonal elements are defined in the usual way so that the row sums are zero.
The transition matrix P can be calculated analytically for this model but it is omitted
here.

132

21.3.4 GTR model

In 1986, the most general reversible model was developed which can have an arbitrary
stationary distribution, and given the restriction of reversibility, 6 parameters for ad-
justing the rates of mutation between bases. The rate matrix is

Q = β

− aπC bπG cπT

aπA − dπG eπT

bπA dπC − fπT

cπA eπC fπG −

 .

The diagonal elements are calculated in the normal way.

Where the normalization is β = 1/[2(aπAπC+bπAπG+cπAπT +dπCπG+eπCπT +πGπT)]

This model has 9 parameters to be specified: the parameters of the equilibrium distri-
bution, π = (πA, . . . , πT), (since

∑
i πi = 1, this only counts for 3 parameters) and the

parameters a, b, c, d, e, f > 0. Note the form of the Q matrix here is chosen so that π is
indeed the equilibrium distribution, that is, as t → ∞, every row of P (t) → π. Recall
that P (t) = exp(tQ), where exp() is the matrix exponential.

The same modelling tools can be used when the bases are the 20 amino acids, the
difference being that the Q matrix is now 20× 20.

21.3.5 Rate variation across sites

An obvious property many real alignments share is that different sites (i.e., columns) in
the alignment appear to mutate at different rates: some sites appear to essentially be
at equilibrium (so bases in that column are close to what you would expect if they were
randomly drawn from the stationary distribution) while other sites may be constant.

To account for this, multiply the rate matrix for each site by some multiplier ri, i =
1, . . . , L, where L is the number of sites. Typically, the ris are modelled as coming from
a gamma distribution with mean 1 and variance determined by the shape parameter α.
To simply computation, the gamma distribution is discretised into K categories (that
is, it is approximated by a discrete distribution taking K possible values), so that ri can
only take one of K possible values. The ri are known as relative rates. Seeing the mean
of the ris is 1, the expected number of mutations per unit time per site is still 1.

Finally, the constant sites in the alignment can be dealt with directly by allowing the
the relative rate to be zero at those sites.

The shorthand used for these models is, for example, GTR+Γ+I, meaning that the
general time reversible model is used with rate variation treated under the (discrete)
gamma model with invariant sites allowed for.

133

21.4 Estimating the maximum likelihood tree

According to the substitution model we are using, the best tree is the one which max-
imises the likelihood L(T) = Pr(D|T) under that model. This is called the maximum
likelihood tree. Since there is no way to analytically find the maximum likelihood tree
under general model of mutation, we can use similar techniques to those used for maxi-
mum parsimony to find something close to the maximum likelihood tree.

That is, we can start at some tree and use a stochastic search to propose new trees which
are accepted if they have a higher likelihood. Note that we have the added complication
when dealing with likelihoods that branch lengths now influence the likelihood of a tree,
so for each tree topology, the branch lengths need to be optimised.

The hill-climbing algorithm we introduced in the context of parsimony trees is restated
here for likelihood trees:

• choose an initial tree and calculate its likelihood.

• Iterate:

– modify the tree and calculate its likelihood.

– if the modified tree has a higher likelihood then the unmodified tree, keep it.
Else, return to the previous tree

– stop when no or minimal increase in likelihood occurs

Modifications to the tree can either change the tree topology (shape) or the length of
the branches. The same topology changing operations as we used in the equivalent
parsimony algorithm, such as SPR, can be extended to work with trees with explicit
branch lengths as we have here. Modifications that change only the branch lengths are
also used in this context.

21.5 Bayesian approach to phylogenetics

What we really want is not just the likelihood, but the posterior probability of the tree
(and other model parameters) given the data. That is, given data D we want to find
the posterior distribution P (g,Q, µ|D). From Bayes’ Theorem,

P (g,Q, µ|D) =
P (D|g,Q, µ)P (g,Q, µ)

P (D)

where P (D|g,Q, µ) is the likelihood for the parameters with fixed data, P (g,Q, µ) is the
prior distribution for the parameters and P (D) is a normalisation constant.

Once again, we are unable to calculate this analytically so resort to numerical tech-
niques to study this object. The primary computational tool that is used in Bayesian
phylogenetics is Markov chain Monte Carlo (MCMC). MCMC gives us a method of gen-
erating samples from the posterior distribution. These samples form the basis of our
investigation of the posterior distribution.

134

21.6 Models for trees: Yule trees and the coalescent

We look at two basic models for trees, the Yule tree and the coalescent. Yule trees
are typically used when we have observed sequences from multiple different species. It
models speciation as rare, random events. The coalescent is used to model trees when
all sequences came from the same population and species. It is based on a model of how
individuals in a population interact.

21.6.1 Yule trees

A Yule tree can be viewed as a realisation of the Yule process which is a pure both
process. It starts at time t0 = 0 with one lineage (species). Each lineage branches
according to a Poisson process with rate λ. That is, a lineage branches after some time
t ∼ Exp(λ). When a lineage branches it produces an exact copy of itself that proceeds in
the same way and will go on to branch according to this same process. Here, branching
model speciation events, where all species are equally likely to speciate.

So when there are k lineages, branching occurs at according to Poisson process with
total rate kλ.

We usually ignore the branch above the root, so start the process with k = 2. So to
simulate the Yule process, set k = 2 and t = 0 and make a root node at time t with
two lineages. Iterate: Draw tk ∼ Exp(kλ) and set t = t + tk. Pick one of the lineage
uniformly at random by copying it by making a node with time t and two children.
Increment k.

To produce a tree with n leaves, stop the process immediately before the n+ 1th lineage
is produced (at time

∑n
k=2 tk.

We could have produced this tree in reverse by starting with n leaf nodes and n lineages
above them. Let k = n. Simulate a time tk ∼ Exp(kλ) and set t = t+ tk. Choose a pair
of lineages uniformly at random. Make a node at time t with these two chosen lineages
as children. Decrement k. Stop when k = 1.

Given a tree, g, that was produced according to this process we can write down the
probability density of this tree. Label the nodes with time increasing back into the past,
so leaf nodes to have time tn = 0 and node k has time tk and there are k lineages between
time tk and tk−1. Then the probability density function of a tree, given the branching
rate λ is,

f(g|λ) =
n∏
k=2

λ exp (−kλ(tk−1 − tk)) .

21.6.2 The coalescent

The coalescent comes from considering how two individuals in a simple population are
related. The population is modelled by one of the simplest models of a interacting
population used in population genetics, known as the Wright-Fisher model. The Wright-

135

Fisher model has a constant size population consisting of N individuals and generations
are discrete. All individuals are equally likely to produce offspring in the next generation.
That is, at the end of a generation, the whole current population dies and is replaced
by their offspring.

This can be modelled as thinking of each of the N offspring in the (k + 1)th generation
choosing a parent uniformly at random from the kth generation (that is, the previous
generation). So, on average, each individual in the kth generation has one child surviving
in the k + 1th generation but some will have 0, 1, 2, etc.

The coalescent comes about by considering the process going backward in time and asks,
if we choose two individuals in the current generation uniformly at random, who many
generations do we have to go back until this pair shares a common ancestor?

The chance that they share an ancestor in the previous generation is simply that the
probability that they share a parent, which has probability 1/N (recall that N is the
population size), while the probability they do not share a parent is 1 − 1/N . If they
don’t share a parent, the same argument holds for each preceding generation: they share
a parent with probability 1/N and not with probability 1− 1/N . When the pair share
a parent, we say that they ‘coalesce’ in the parent generation. Let T be the number of
generations back to coalescence. Then

Pr(J = j) =
1

N

(
1− 1

N

)j−1

which is just a geometric distribution. So the expected time to coalescence is N gener-
ations. It is natural to chose a time scale so that one time unit is N generations and
consider the limit as N gets large.

So set t = j
N where j is time measured in generations. Now, j = tN Then the probability

that the two lineages have not coalesced in t time units is(
1− 1

N

)tN−1

−→ e−t as N →∞.

That is, the expected time to coalescence for a pair of individuals in a large population
is exponentially distributed with parameter 1. The result is true for any pair, so if we
choose k indidividalusl and trace their ancestry back, each pair coalesces at rate 1 and,
since there are

(
k
2

)
pairs, coalesences occur at total rate

(
k
2

)
(that is the first coalescence

between some pair will occur after an exponentially distributed time with parameter(
k
2

)
). Remember that time was scaled so that 1 time unit was equal to N generations,

so the time to coalescence is proportional to the population size.

Thus we have a method of simulating coalescent trees.

1. Set k = n, t = 0.

2. Make n leaf nodes with time t. This is the set of available nodes.

3. While k ≥ 2, iterate:

136

4. Generate a time tk ∼ Exp(
(
k
2

)
). Set t = t+ tk.

5. Choose two nodes uniformly at random and let them coalesce at a new node with
time t. Replace the two chosen nodes in the set of available nodes with this new
node.

6. Set k = k-1.

A coalescent tree reflects the ancestry of a sample of n individuals drawn from a large
population of N .

It is often convenient to measure time in units of expected mutations. Consider a Wright-
Fisher model in which mutations occur with probability u at each generation. That is,
there is a probability u that an individual differs from its parent by a single mutation.
Let θ = 2Nu, so θ is the expected number of mutations separating 2 sequences (since
there are N generations back to a common ancestor, on average, each lineage picks up
Nu, so there are a total of 2Nu mutations between the two lineages).

So if we want to define time in units of expected number of mutations, we multiply
coalescent time (which is measured in units of N generations) by θ

2 , that is multiple all

branch length by θ
2 . So instead of a rate of coalescence of 1 for each pair, we have a

rate of coalescence of 2
θ for each pair (recall that the mean of an exponential is 1/rate,

so mean time to coalescence for a pair with rate 2
θ is θ

2).

The total coalescence rate when there are k lineages is thus

2

θ

(
k

2

)
=

2

θ

k(k − 1)

2
=
k(k − 1)

θ
.

The density for a coalescent tree is similar to that of a Yule tree. With a coalescing rate
of 2

θ , the density is

f(g|θ) =
n∏
k=2

2

θ
exp(−k(k − 1)

θ
(tk−1 − tk)).

Note that different time scales may be encountered in the literature: actual calendar
time, time scaled so that N generations passes in 1 time unit, time scaled so that 2N
generations passes in 1 time unit (to account for the fact that in a diploid population
of N individuals, there are 2N copies of every gene) or evolutionary time where θ is the
time unit.

21.6.3 Properties of the coalescent

Let Hn be the height of a coalescent tree with n leaves, then

E(Hn) = 2

(
1− 1

n

)
.

137

Let Ln be the total length of a coalescent tree with n leaves. Then

E(Ln) = 2
n−1∑
k=1

1

k
≈ 2 log(n).

138

	Introduction
	Mathematical modelling and why we need computers
	Why we need to be clever about our computing

	Approximating a function by a Taylor series
	Finding the roots of equations
	Bisection method
	Newton's method

	Numerical linear algebra
	Review
	Review of eigenvectors and eigenvalues
	Review of systems of linear equations

	Solving linear equations
	Easily solvable systems 1: Diagonal matrix
	Easily solvable systems 2: Triangular matrix
	Easily solvable systems 3: Orthonormal or orthogonal matrix

	Factorising matrices
	LU decomposition via Gaussian elimination
	Gaussian elimination to solve systems linear equations (review)
	Gaussian elimination as LU decomposition

	Eigenvalues and eigenvectors of real symmetric matricesThis section is taken, with few modifications, from notes written by Sze Tan for Physics 707: Inverse Problems.

	Singular Value Decomposition (SVD)
	Overview of an SVD
	How does this all work?This section is taken, and condensed, from notes written by Sze Tan for Physics 707: Inverse Problems.
	Structure of SVD
	Condition number of a matrix
	Image compression
	Gene expression

	Principal Components Analysis (PCA)
	Examples
	What is connection between PCA and SVD?
	Problems with SVD and PCA

	Least squares
	Understanding the Least Squares solution
	Computing the Least Squares solution, u*
	Computing u* via Gaussian elimination
	Computing u* via orthogonalisation (QR decomposition)
	Constructing the orthogonal matrix Q by Gram-Schmidt

	Computing u* via SVD: the Pseudoinverse
	Properties of the pseudo inverse A+

	Introduction to stochastic processes and probability
	Primer on Probability
	Axioms of probability
	Conditional probability and independence
	Bayes' Theorem
	Random variables
	Commonly used distributions
	Bernoulli distribution
	Geometric distribution
	Binomial distribution
	Poisson distribution
	Uniform distribution (discrete or continuous)
	Normal distribution
	Exponential distribution
	Gamma distribution

	Entropy

	Inference
	Bayesian inference
	Maximum likelihood

	Simulation
	Random number generation
	Linear congruential generators
	Shift register generators

	Simulating from univariate distributions via Inversion sampling
	Stochastic processes
	Random walk
	Poisson process

	Markov chains
	Introduction to genetics and genetic terminology
	Summary of above

	Alignment
	Homology
	Pairwise alignment
	Scoring alignments
	Model of non-homologous sequences
	Model of homologous sequences

	Choosing the substitution matrix
	Scoring gaps

	Global alignment: Needleman-Wunsch algorithm
	Elements of an alignment algorithm
	Local Alignment: Smith Waterman algorithm
	Overlap matches

	Pairwise alignment with non-linear gap penalties
	Alignment with affine gap scores
	Linear space alignment

	Multiple sequence alignments (MSA)
	Dynamic programming
	Progressive alignment
	Building trees with distances and UPGMA
	Feng-Doolittle progressive alignment

	Hidden Markov Models
	The Viterbi algorithm for finding the most probable state path
	The forward algorithm and calculating P(x)
	The backward algorithm and calculating P(x)
	The posterior probability of being in state k at time i P(i = k|x)
	What can we do with the posterior estimates?
	Estimating the parameters of an HMM
	Baum-Welch algorithm for estimating parameters of HMM
	Comments on the Baum-Welch algorithm

	Sampling state paths
	HMM model structure
	Duration modeling

	Applications of HMMs in bioinformatics
	Pairwise alignment with HMMs
	Probability that two sequences are related
	Sampling alignments
	Probability that xi and yj are aligned

	Profile HMMs
	Estimating the parameters of a profile HMM
	Finding matches
	Alignment with a known profile HMM
	Alignment from unaligned sequences with HMMs

	Gene finding

	Reconstructing trees
	Defining distances between sequences
	Ultrametric distances
	Additive distances
	Neighbour joining
	Unrooted vs rooted trees
	Complexity of neighbour jointing and UPGMA

	Parsimony
	Weighted parsimony
	Parsimony informative sites

	Finding the maximum parsimony tree
	Exhaustive search
	Branch and bound
	Heuristic search

	Disadvantages of parsimony

	Statistical approaches to modelling evolution
	Likelihood of a given tree
	Markov processes
	Models of sequence mutation
	Jukes-Cantor model
	Kimura model
	F81 and HKY models
	GTR model
	Rate variation across sites

	Estimating the maximum likelihood tree
	Bayesian approach to phylogenetics
	Models for trees: Yule trees and the coalescent
	Yule trees
	The coalescent
	Properties of the coalescent

