Tutorial 2

Introduction to CLIPS

Introduction to CLIPS

e CLIPS (C Language Integrated Production
System): A programming language designed by
NASA/Johnson Space Center.

* Advantage: high portability, low cost, and easy
integration with external systems.

* It was written using the C programming
language.

Introduction to CLIPS

Three basic components of CLIPS:

= Fact list: contains the data on which inferences
are derived.

= Knowledge base: contains all the rules.

= |Inference engine: controls overall execution.

8/1/12

Introduction to CLIPS

* 3 types of programming paradigms supported
by CLIPS:

= rule-based
= object-oriented
= Procedural

Here we will mainly focus on CLIPS as a rule-
based programming language for expert system.

Introduction to CLIPS

* CLIPS rule-based programming language has
powerful inference and representation
capabilities.

* CLIPS supports only forward chaining rules.

* CLIPS is case sensitive.
e.g.
— case-sensitive
— Case-sensitive
— CASE-SENSITIVE

Data Types

CLIPS provides eight primitive data types for representing
information:

Float (e.g. 15.09, +12.0, -32.3e-7)

Integer (e.g. 237,15, +12,-32)

Symbol (e.g. foo, Hello, B76-HI, bad_value)

String (e.g. "foo" "a and b" "1 number" "a\"quote”)
External address (e.g. <Pointer-XX> XX- external address)
Fact address (e.g. <Fact-1>)

Instance name (e.g. [pump-1] [foo])

Instance address (e.g. <Instance-2>)

Note:

Numeric information can be represented using floats and integers.
Symbolic information can be represented using symbols and strings.

8/1/12

Facts

There are three types of facts:

* Ordered facts

* Non-ordered facts

* Initial facts

Ordered facts :

Ordered Facts

consist of a symbol followed by a

sequence of zero or more fields separated by spaces
and delimited by parentheses. And function assert
adds facts to CLIPS's fact-list.
e.g. (father- of jack bill)
states that bill is the father of jack

CLIPS> (clear)

CLIPS> [(assert (fatherof jack Bill))
<Fact-0

CLIPS> (facts)

£-0 (fatherof jack bill)
For a total of 1 fact.
cries>

Defining a set of Facts

Use the deffacts construction to define a set of facts.
Defining a set of facts is not the same as asserting
that they are TRUE. In order to do this you use the

reset function.
e.g.

(deffacts exampleFacts

(lawyer Claudia)
(works-for-advocacy-firm Claudia)
(lawyer Frank)

(friends Claudia Frank))

CLIPS> [(deffacts exampleFacts

(lawyer Claudia)
(works-for-advocacy-firm Claudia)
(lawyer Frank)

(friends Claudia Frank))

CLIPS> (reset)

CLIPS> (facts)

£-0 (initial-fact)

£-1 (lawyer Claudia)

£-2 (works-for-advocacy-firm Claudia)
£-3 (lawyer Frank)

£-4 (£riends Claudia Frank)
For a total of 5 facts.
CLIPS>

8/1/12

Initial Facts

* The deffacts construct allows a set of a priori or

initial knowledge to be specified as a collection of
facts.

When the CLIPS environment is reset (using the reset
command) every fact specified within a deffacts
construct in the CLIPS knowledge base is added to

the factlist which includes the initial fact (e.g. fact-0
initial fact).

Non-ordered Facts

Non-ordered (or deftemplate) facts: provide the user with the
ability to abstract the structure of a fact by assigning names to each

field in the fact. The deftemplate construct is used to create a
template which can then be used to access fields by name.

CLIPS) (clear)
€8 165> (aesremiane pereen

(slot age)
(slot eye-color)
(slot hair-color))

(deftemplate person
(multislot name) /

(assert (person

(name John'S. Liu) jmultislot ~~ <F265~%>
cLIES> (facts)
(age 23) £-0 (person (name John S. Liu) (age 23) (eye-color brown) (hair-color black))
(eye-color brown) For a total of 1 fact.
(hair-color black))) cLes> |

Remove Facts

* Use command retract to remove one fact
e.g. (retract 0); “0” is fact index in fact-list
* Use command undeffacts to remove a set of facts

e.g. (undeffacts exampleFacts)

crzses (orean cuEss (sctects examoleracts

advocacy-firm Claudia)

audia Frank)

(initiel-fact)
For a total of 1 fact.
05> |

8/1/12

Functions

A function in CLIPS is a piece of executable code
identified by a specific name which returns a useful
value or performs a useful side effect (such as
displaying information).

e.g. math functions : (+ 3 (* 8 9) 4), (pi), (sqrt9)

procedural functions : (bind ?x (+ 8 9)), If..Then..Else
CLIPS> (bind ?x (+ 8 9))
CLIPS> (pi)
3.14159265358979
CLIPS> (+ 3 (* 8 9) 4)

79
CLIPS>

Constructs

* Defining a construct is intended to alter the CLIPS
environment by adding to the CLIPS knowledge base.
However, a function call leaves the CLIPS environment
unchanged. (with exceptions of reset or clear).

Unlike function calls, constructs never have a return value.

All constructs in CLIPS are surrounded by parentheses.

e.g. deffacts
deftemplate
defrule

Defrule Construct

In rule-based expert system, rules defined using the defrule construct.

If no conditional elements (CE) are on the LHS, the initial- fact is
automatically used. If no actions are on the RHS, the rule can be activated
and fired but nothing will happen.

Syntax

(defrule <rule-name> [<comment>]
<conditional-element>* ; Left-Hand Side (LHS)

=

<action>*) ; Right-Hand Side (RHS)

(defrule example-rule "This is an example of a simple rule"
refrigerator light on)
(refrigerator door open)

(assert (refrigerator food spoiled)))

8/1/12

Comments

* As with any programming language, it is highly beneficial
to comment CLIPS code. All constructs (with the
exception of defglobal) allow a comment directly
following the construct name.

* Comments can be placed in parentheses (“”). Everything
within parentheses will be ignored by CLIPS.

* Comments also can be placed within CLIPS code by using
a semicolon (;). Everything from the semicolon until the
next return character will be ignored by CLIPS.

Exercise

How to implement this decision tree in CLIPS

no

Check
Check petrol headlight

Solution

(defrule carDiagnosis
=>

(printout t "does car start? (1-yes, 0-no)" crlf)

(bind ?x (read)) @
(if (= 7x 1) yes no

then (assert (carTurnOn yes))
else (assert (carTurnOn no))))

8/1/12

8/1/12

Solution

(defrule starterOn
(carTurnOn yes)
=

(printout t " solution: no need to repair." crlf))

No need to
repair

Check
defrule starterOff
(Check petrol headlight

(carTurnOn no)
=>

(printout t " does starter work? (1-yes, 0-no)" crlf)
(bind ?x (read))
(if(=7x1)
then (printout t " solution : check petrol. " crif)
else (printout t " solution : check headlight. " crlf)))

