Assignment 1 & CLIPS

jtao076@aucklanduni.ac.nz
Rm 321-723, Tamaki Campus
(Wed. 1:00pm-2:00pm)



mailto:jtao076@aucklanduni.ac.nz

Assignment 1

* Modeling knowledge by using decision tree

— Find a SIMPLE problem

(e.g. “I can’t connect to Internet” or “choosing a mobile
phone” )

* Implementing the modeled knowledge
(decision tree) in CLIPS

— It is OK to reuse or modify an example CLIP code, but
remember to cite the source code.

(e.g. “adapted from auto.clp” or “ modified from
example.clp”)



Assignment 1

* Decision tree
— decision node : a symptom needed to be diagnosed
(root node, parent/child node)

Doty only do

a suggestion outcome o siattig

fes

Yes o
— consequence node : f .@
tSta;ter , Mo

(leaf node)

|5 there

Yfes
petral?




Assignment 1

* Procedure building decision tree:

Decide the perspective from which the diagnosis should be
conducted.

What is the fundamental symptom (root node) causing the
problem from the decided perspective.

Define its constraints (e.g. yes/no) and analysis its all possible
children nodes

Add children nodes of the fundamental symptom into decision
tree.

* - probable symptoms (decision nodes)

» -conclusions (consequence nodes)

If any of children node is decision node, define its constraints
and add its children nodes into decision tree.

Repeat step 5 until all leaf nodes are consequence nodes.



Assignment 1

* Decision tree example

r‘r‘es [Ke]

Starter
otor turn =7

Sorry, only do Yas
non-starting

ls there
petral?

Fill tral tank
Mo I petro anA
Headlights
y ]

Weas o

YWes

Starter motor
i problerm Flat Battery

I= fuel
reaching

lugs?

s fuel reaching Froblem with

ros carburetor? o tirmitig
l \/ l Yes Byt ]

Carburetor EBlockage in fuel
Froblerm line

Faultin LT circuit Faultin HT circuit




CLIPS

e Obtain CLIPS
— Download CLIPS from
http://clipsrules.sourceforge.net/

— For Windows users,

e download “windows executables 624.zip”

* decompose the zip file, click “CLIPWin.exe”


http://clipsrules.sourceforge.net/
http://sourceforge.net/projects/clipsrules/files/CLIPS/6.24/windows_executables_624.zip/download

CLIPS

* Three basic components

— Fact-list: the data on which inferences are derived
— Knowledge base: all the rules

— Inference engine: control overall execution of
rules



CLIPS

* Facts

— add facts to fact-list with assert
(assert (Brian duck)), (assert (duck Brian)),

(assert (a) (b) (c)),

(assert (hunter-game duck Brian))

— see facts in fact-list with facts
(facts 1), (facts 0 1)
— retract facts from fact-list with retract

(retract 2), (retract *)



CLIPS

* Types of atoms
— Symbols: duck, duckl, d!#/
— String: "duck soup is good!!!”
— Integer: (assert (number 1))
— Float: (assert (distance 3.5e5))

(assert (The duck says "Quack."))
(assert (The-duck-says "Quack."))



CLIPS

Define rules (knowledge)

(defrule <rule-name> [<comment>]
<conditional-element>* ; Left-Hand Side (LHS)

=>
<action>*) ; Right-Hand Side (RHS)
e.g
(defrule duck "Here comes the quack” : Rule header
(animal -is duck) . Pattern
== ; THEN arrow

(assert (sound-is quack))) . Action



CLIPS

Variables

— general format: ?<variable-name>
* Explicit binding

(bind ?percent-chance (random 1 100))

* Implicit binding

(defrule make-quack
(duck-sound ?sound)
==

(assert (sound-is ?sound)))



CLIPS

CLIPS> (clear)
CLIPS> (defrule whodunit
(duckshoot 7hunter ?who)
=>
(printout t 7hunter " shot " ?who crlf))
CLIPS> (reset)
CLIPS> (assert (duckshoot Brian duck))
<Fact-1=>
CLIPS> (run)
Brian shot duck ; Duck dinner tonight!
CLIPS> (assert (duckshoot duck Brian))
<Fact-2>
CLIPS> (run)
duck shot Brian ; Brian dinner tonight!
CLIPS> (assert (duckshoot duck)) ; Missing third field
<Fact-3=
CLIPS> (run)
CLIPS> ; Rule doesn't fire, no output



