CompSci 367, tutorial 10

Neural networks

Alexander Donaldson



NN outline

We will just talk about feedforward neural
networks (probably the most common and
useful)

Take an input, map to an output

— i.e. compute a mathematical function of the input
Used for classification (output is in [0,1]") and
regression (output is in R")

Uses a network of computational units (aka
neurons) to build up a function



History: The 4 evolutions of NNs



1: Perceptron (late 50s)

output layer

input layer



Perceptron hypothesis function

Formula for our network:
A(x,w, b)=H(wil xi1 +wi2 xi2 +5)

H(z)= {il, 2>=00, z<0

Want h(x) to be close to the target function
v(x) — y(x) is the function we are trying to
approximate

Bias b sometimes called w,



Hypothesis space

* Hypothesis space is the parameter space — has
dimension equal to total number of weights

and biases
e Space of real numbers

* E.g. one location in this space is:
w = [1.5, -0.5], b =[1.0]



Multiple output units

hl(X; w, b)
>

hz(x} w, b)

° Wy3 _': hs(x; Wr>b)
+b,

input layer output layer




Perceptron hypothesis function

e General formula:

* Can also use theta to specify the set of all
parameters (weights and biases):

hij (x26)



Problem

* Can’t model XOR, a very simple function

* Solution: add a hidden layer between the
input and output layer — multi-layer
perceptron

@
Q output layer
X,

input layer hidden layer




Another problem

* No fast way to choose weights to make h(x)
close to y(x)

* People lost interest in perceptrons for many
years



#2: Sigmoid units and gradient descent
(70s/80s)

* Change the activation function from step
function to logistic function (commonly
referred to as sigmoid) —> gradient descent!

1

09t

08}

0.7

06F

05F

0.4F

03F

02F

01F

0 L I 1 ] 1 1 1
-10 -8 B -4 -2 0 2 4 B 8 10



Gradient descent using
backpropagation

Would like to do gradient descent, i.e. change
parameters to minimise some loss function

The smaller the loss function, the closer h(x) is to
y(x)

Need to know how changing parameters affect
h(x)

Since we now have a smooth activation function
— the gradient gives us meaningful information -
we can backpropagate this gradient through the
network, and find out the gradient of the loss
function with respect to each parameter



Gradient descent formulae

* Loss function for regression is least squares:

 For classification we use a different loss
function, but it is the same idea



Gradient descent

e Remember in gradient descent we change
each parameter depending on the magnitude
and direction of the loss functions gradient
with respect to that parameter

e e.g.if dl/dwll is negative and large, it
means that the loss will decrease a lot if we
increase wdl , so we increase wdl alot

* We find &d//adwl1l using backpropagation



Limits of modelling power

* To model an arbitrary function, need
exponentially many units in the hidden layer

* |dea: add more layers — but now gradient
descent gets stuck/is too slow (don’t know
which one)

e Another loss of interest in NNs



In the second NN winter...

* Some researchers carry the flame through
dark times

* Yann LeCun invents convolutional neural
networks, which take into account spatial

invariance of images (and invariances in other
media types)



3: Deep learning 1.0 (2006)

* Hinton and Salakhutdinov publish a paper
showing that you can train deep neural
networks (many hidden layers) by
unsupervised pre-training using autoencoders

* (They used a generative autoencoder, but
feedfoward autoencoders do the same

thing...)



Feedforward autoencoder
* y(x) = x. Just trying to output the input.

e But less hidden units than input units, so
hidden units are learning features of input




Stacked autoencoders

e Use hidden units of previous autoencoder as
input to next autoencoder



Fine-tuning

* Finally, use weights from autoencoders to
initialise a feedfoward network, then do
supervised training using the labelled data



Advantages of pre-training

 Can use unlabelled data, which is often more
abundant than labelled data

* Deep feedforward network can be initialised
In @ good starting position in parameter space
— allows you to train deep networks



4: Deep learning 2.0 (~2010)

* Problem with sigmoid is that the gradients get
very small at either end, so gradient descent
becomes slow — vanishing gradients problem

* Enter rectified linear:




Rectified linear activation function

* No vanishing gradients on right hand side

* Allows deep networks to be trained with
gradient descent without using pre-training



Dropout

* Randomly remove units when training

e Acts as a regulariser — gives better
performance on validation and test

* Why does it work? Maybe something to do
with units not relying on other units, so
learning more robust features




Practical aspects of training a deep
neural network



Processor

Within each layer, lots of calculations can be

done independently (one for each unit in the
next layer)

Lends itself to parallelisation...
Use GPUs!

Coming soon, NPUs! Watch this space.



Validation set to avoid overfitting

Split data into training, validation and test
Train network on training set

Monitor error on validation set. If it starts
increasing, then stop training, because we are
overfitting to the training set

However, need to let it run for a bit because
validation error can go upwards in the short-
term but trend downwards in the long-term



Choosing hyperparameters

 Hyperparameters include initial learning rate,
momentum, weight decay...

e Can also use validation set to choose these
hyperparameters

* Try different values and look at which gives
best performance on validation set after
training, while also using the validation set for

early stopping



Multiple runs

Parameters are randomly initialised

This means that the parameters can end up in
a different location in parameter space

If you are doing comparison between
networks, it is good practice to do multiple

runs to capture the variance in the final test
error

(However in practice, large networks take so
long to train that they only get trained once)



Data augmentation

 More training data = more accurate classifier

* We know we can do certain transformations
to examples and retain the same class e.g. a
handwritten digit can be skewed slightly and
still be the same digit

* So can artificially generate more training
examples. This is called data augmentation.



The unreasonable effectiveness of
deep learning



The power of deep learning

Broke records by a long way on many image
and speech datasets (still hold records)

Hand-engineered features which took decades
to develop have been made redundant

All this from simply increasing the depth of
the network

Has led to some people labelling deep
learning “unreasonably” effective



Re-using representation

 Why so effective? Because complex features
tend to share component features

* So multiple features can use the same feature
from the previous layer

 Some theoretical results indicate that some
functions that require an exponential number
of units in a single-hidden-layer network only
require a polynomial number of units in a two-
hidden-layer network



Over-hype



Mainstream interest

* Deep learning has received high-profile
mainstream press coverage

e Often hailed as a promising step towards
strong Al

* Lots of attention from big tech companies -
Google, Facebook and Baidu have all hired top
experts from academia



Hype cycle

Gartner puts deep
VISIBILITY learning here

’

A

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger TIME




Reality

Over-hype is dangerous — has killed Al
research in the past many times

Is deep learning a silver bullet? No. Not for Al,
not even for classification.

We have a long, long way to go before we can
achieve strong Al

But deep learning has proved itself to be a
highly effective method, so it is probably a
step in the right direction



Post-graduate study



Honours

* Get an extra edge over the competition
 Multiple 700 level papers in Al
 Talk to Pat, Pat or Mike if interested



Neural networks

* Lots of open problems
* I’'m happy to talk!

* Talk to Pat Riddle if you want to do research in
this area



