Tutorial 6

By: Aashmeet Kalra
AGENDA

• Candidate Elimination Algorithm
• Example Demo of Candidate Elimination Algorithm
• Decision Trees
• Example Demo of Decision Trees
A Concept is a subset of objects or events defined over a larger set. [Example: The concept of a bird is the subset of all objects (i.e., the set of all things or all animals) that belong to the category of bird.]

Alternatively, a concept is a boolean-valued function defined over this larger set. [Example: a function defined over all animals whose value is true for birds and false for every other animal].
Concept and Concept Learning

• Given a set of examples labeled as members or non-members of a concept, concept-learning consists of automatically inferring the general definition of this concept.

• In other words, concept-learning consists of approximating a boolean-valued function from training examples of its input and output.
Terminology and Notation

- The set of items over which the concept is defined is called the set of **instances** (denoted by \(X\))
- The concept to be learned is called the **Target Concept** (denoted by \(c: X \rightarrow \{0,1\}\))
- The set of **Training Examples** is a set of instances, \(x\), along with their target concept value \(c(x)\).
- Members of the concept (instances for which \(c(x) = 1\)) are called **positive examples**.
- Nonmembers of the concept (instances for which \(c(x) = 0\)) are called **negative examples**.
- \(H\) represents the set of **all possible hypotheses**. \(H\) is determined by the human designer’s choice of a hypothesis representation.
- The goal of concept-learning is to find a hypothesis \(h: X \rightarrow \{0,1\}\) such that \(h(x) = c(x)\) for all \(x\) in \(X\).
Concept Learning viewed as Search

• Concept Learning can be viewed as the task of searching through a large space of hypotheses implicitly defined by the hypothesis representation.

• Selecting a Hypothesis Representation is an important step since it restricts (or biases) the space that can be searched. [For example, the hypothesis “If the air temperature is cold or the humidity high then it is a good day for water sports” cannot be expressed in our chosen representation.]
General to specific ordering of Hypotheses

- **Definition:** Let \(h_j \) and \(h_k \) be boolean-valued functions defined over \(X \). Then \(h_j \) is **more-general-than-or-equal-to** \(h_k \) iff for all \(x \) in \(X \), \([(h_k(x) = 1) \rightarrow (h_j(x)=1)]\)

- **Example:**
 - \(h_1 = < \text{Sunny}, ?, ?, \text{Strong}, ?, ?> \)
 - \(h_2 = < \text{Sunny}, ?, ?, ?, ?, ?> \)

Every instance that are classified as positive by \(h_1 \) will also be classified as positive by \(h_2 \) in our example data set. Therefore \(h_2 \) is more general than \(h_1 \).

- We also use the ideas of **strictly**-more-general-than, and **more-specific-than**
Find-S, a Maximally Specific Hypothesis Learning Algorithm

• Initialize h to the most specific hypothesis in H
• For each positive training instance x
 – For each attribute constraint a_i in h

 If the constraint a_i is satisfied by x
 then do nothing
 else replace a_i in h by the next more general constraint that is satisfied by x
• Output hypothesis h

Although Find-S finds a hypothesis consistent with the training data, it does not indicate whether that is the only one available
Version Spaces and the Candidate-Elimination Algorithm

- **Definition:** A hypothesis h is consistent with a set of training examples D iff $h(x) = c(x)$ for each example $<x,c(x)>$ in D.

- **Definition:** The version space, denoted $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with the training examples in D.

- **NB:** While a Version Space can be exhaustively enumerated, a more compact representation is preferred.
A Compact Representation for Version Spaces

• Instead of enumerating all the hypotheses consistent with a training set, we can represent its most specific and most general boundaries. The hypotheses included in-between these two boundaries can be generated as needed.

• **Definition:** The general boundary G, with respect to hypothesis space H and training data D, is the set of maximally general members of H consistent with D.

• **Definition:** The specific boundary S, with respect to hypothesis space H and training data D, is the set of minimally general (i.e., maximally specific) members of H consistent with D.
Candidate Elimination Algorithm

• The candidate-Elimination algorithm computes the version space containing all (and only those) hypotheses from \(H \) that are consistent with an observed sequence of training examples.
Example 1

- Learning the concept of "Japanese Economy Car"

Features:
Country of Origin
Manufacturer
Color
Decade
Type
<table>
<thead>
<tr>
<th>Origin</th>
<th>Manufacturer</th>
<th>Color</th>
<th>Decade</th>
<th>Type</th>
<th>Example Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>Honda</td>
<td>Blue</td>
<td>1980</td>
<td>Economy</td>
<td>Positive</td>
</tr>
<tr>
<td>Japan</td>
<td>Toyota</td>
<td>Green</td>
<td>1970</td>
<td>Sports</td>
<td>Negative</td>
</tr>
<tr>
<td>Japan</td>
<td>Toyota</td>
<td>Blue</td>
<td>1990</td>
<td>Economy</td>
<td>Positive</td>
</tr>
<tr>
<td>USA</td>
<td>Chrysler</td>
<td>Red</td>
<td>1980</td>
<td>Economy</td>
<td>Negative</td>
</tr>
<tr>
<td>Japan</td>
<td>Honda</td>
<td>White</td>
<td>1980</td>
<td>Economy</td>
<td>Positive</td>
</tr>
<tr>
<td>Japan</td>
<td>Toyota</td>
<td>Green</td>
<td>1980</td>
<td>Economy</td>
<td>Positive</td>
</tr>
<tr>
<td>Japan</td>
<td>Honda</td>
<td>Red</td>
<td>1990</td>
<td>Economy</td>
<td>Negative</td>
</tr>
</tbody>
</table>
Positive Example 1
(Japan, Honda, Blue, 1980, Economy)

- Initialize G to a singleton set that includes everything.
 \[G = \{ (?, ?, ?, ?, ?, ?) \} \]

- Initialize S to a singleton set that includes the first positive example.
 \[S = \{ (Japan, Honda, Blue, 1980, Economy) \} \]
Negative Example 2
(Japan, Toyota, Green, 1970, Sports)

• Specialize G to exclude the negative example.

• \(G = \{ (_, \text{Honda}, _, _, _, _), (_, _, \text{Blue}, _, _), (_, _, _, 1980, _), (_, _, _, 1980, _, _, \text{Economy}) \} \) \(S = \{ (\text{Japan}, \text{Honda}, \text{Blue}, 1980, \text{Economy}) \} \)
Positive Example 3 (Japan, Toyota, Blue, 1990, Economy)

- Prune G to exclude descriptions inconsistent with the positive example.

$$G = \{ (_, _, _, _, _), (_, _, _, _, _, \text{Economy}) \}$$

- Generalize S to include the positive example.

$$S = \{ (\text{Japan}, _, \text{Blue}, _, _, \text{Economy}) \}$$
Negative Example (USA, Chrysler, Red, 1980, Economy)

• Specialize G to exclude the negative example (but stay consistent with S)

$$G = \{ (?, ?, Blue, ?, ?), (Japan, ?, ?, ?, Economy) \}$$

$$S = \{ (Japan, ?, Blue, ?, Economy) \}$$
Positive Example (Japan, Honda, White, 1980, Economy)

• Prune G to exclude descriptions inconsistent with positive example.
 \[G = \{ (Japan, ?, ?, ?, ?, Economy) \} \]

• Generalize S to include positive example.
 \[S = \{ (Japan, ?, ?, ?, ?, Economy) \} \]
Positive Example: (Japan, Toyota, Green, 1980, Economy)

- New example is consistent with version-space, so no change is made.

\[G = \{ (Japan, ?, ?, ?, Economy) \} \]
\[S = \{ (Japan, ?, ?, ?, Economy) \} \]
Negative Example: (Japan, Honda, Red, 1990, Economy)

- Example is inconsistent with the version-space.

G cannot be specialized.
S cannot be generalized.

- The version space **collapses**.
- **Conclusion**: No conjunctive hypothesis is consistent with the data set.
Remarks on Version Spaces and Candidate Elimination

- The version space learned by the Candidate-Elimination Algorithm will converge toward the hypothesis that correctly describes the target concept provided: (1) There are no errors in the training examples; (2) There is some hypothesis in H that correctly describes the target concept.

- Convergence can be speeded up by presenting the data in a strategic order. The best examples are those that satisfy exactly half of the hypotheses in the current version space.

- Version-Spaces can be used to assign certainty scores to the classification of new examples.
Decision Trees

• Consider this Decision-making process:
 WHAT TO DO THIS WEEKEND?
• If my parents are visiting
 – We’ll go to the cinema
• If not
 – Then, if it’s sunny I’ll play tennis
 – But if it’s windy and I’m rich, I’ll go shopping
 – If it’s windy and I’m poor, I’ll go to the cinema
 – If it’s rainy, I’ll stay in
From Decision Trees to Logic

• Decision trees can be written as
 – Horn clauses in first order logic
• Read from the root to every tip
 – If this and this and this ... and this, then do this
• In our example:
 – If no_parents and sunny_day, then play_tennis
 – no_parents \land sunny_day \rightarrow play_tennis
• Decision tree can be seen as rules for performing a categorisation
 – E.g., “what kind of weekend will this be?”
• Remember that we’re learning from examples
 – Not turning thought processes into decision trees
• We need examples put into categories
• We also need attributes for the examples
 – Attributes describe examples (background knowledge)
 – Each attribute takes only a finite set of values
Entropy

• From Tom Mitchell’s book:
 – “In order to define information gain precisely, we begin by defining a measure commonly used in information theory, called entropy that characterizes the (im)purity of an arbitrary collection of examples”

• Want a notion of impurity in data
• Imagine a set of boxes and balls in them
• If all balls are in one box
 – This is nicely ordered – so scores low for entropy
• Calculate entropy by summing over all boxes
 – Boxes with very few in scores low
 – Boxes with almost all examples in scores low
Entropy: Formulae

• Given a set of examples, S
• For examples in a binary categorisation
 – Where \(p_+ \) is the proportion of positives
 – And \(p_- \) is the proportion of negatives
 \[
 Entropy(S) = -p_+ \log_2(p_+) - p_- \log_2(p_-) \]
• For examples in categorisations \(c_1 \) to \(c_n \)
 – Where \(p_n \) is the proportion of examples in \(c_n \)
 \[
 Entropy(S) = \sum_{i=1}^{n} -p_i \log_2(p_i) \]
Information Gain

• Given set of examples S and an attribute A
 – A can take values $v_1 \ldots v_m$
 – Let $S_v = \{\text{examples which take value } v \text{ for attribute } A\}$
• Calculate Gain(S,A)
 – Estimates the reduction in entropy we get if we know the value of attribute A for the examples in S

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$
ID3 Algorithm

• Given a set of examples, S
 – Described by a set of attributes A_i
 – Categorised into categories c_j

1. Choose the root node to be attribute A
 – Such that A scores highest for information gain
 • Relative to S, i.e., $\text{gain}(S,A)$ is the highest over all attributes

2. For each value v that A can take
 – Draw a branch and label each with corresponding v
 • Then see the options in the next slide!
ID3 (Continued)

- For each branch you’ve just drawn (for value v)
 - If S_v only contains examples in category c
 - Then put that category as a leaf node in the tree
 - If S_v is empty
 - Then find the default category (which contains the most examples from S)
 - Put this default category as a leaf node in the tree
 - Otherwise
 - Remove A from attributes which can be put into nodes
 - Replace S with S_v
 - Find new attribute A scoring best for Gain(S, A)
 - Start again at part 2
- Make sure you replace S with S_v
Example

<table>
<thead>
<tr>
<th>Weekend</th>
<th>Weather</th>
<th>Parents</th>
<th>Money</th>
<th>Decision (Category)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>Sunny</td>
<td>Yes</td>
<td>Rich</td>
<td>Cinema</td>
</tr>
<tr>
<td>W2</td>
<td>Sunny</td>
<td>No</td>
<td>Rich</td>
<td>Tennis</td>
</tr>
<tr>
<td>W3</td>
<td>Windy</td>
<td>Yes</td>
<td>Rich</td>
<td>Cinema</td>
</tr>
<tr>
<td>W4</td>
<td>Rainy</td>
<td>Yes</td>
<td>Poor</td>
<td>Cinema</td>
</tr>
<tr>
<td>W5</td>
<td>Rainy</td>
<td>No</td>
<td>Rich</td>
<td>Stay in</td>
</tr>
<tr>
<td>W6</td>
<td>Rainy</td>
<td>Yes</td>
<td>Poor</td>
<td>Cinema</td>
</tr>
<tr>
<td>W7</td>
<td>Windy</td>
<td>No</td>
<td>Poor</td>
<td>Cinema</td>
</tr>
<tr>
<td>W8</td>
<td>Windy</td>
<td>No</td>
<td>Rich</td>
<td>Shopping</td>
</tr>
<tr>
<td>W9</td>
<td>Windy</td>
<td>Yes</td>
<td>Rich</td>
<td>Cinema</td>
</tr>
<tr>
<td>W10</td>
<td>Sunny</td>
<td>No</td>
<td>Rich</td>
<td>Tennis</td>
</tr>
</tbody>
</table>
Information Gain

• \(S = \{W1,W2,...,W10\} \)
• Firstly, we need to calculate:
 – Entropy\((S) = ... = 1.571 \)
• Next, we need to calculate information gain
 – For all the attributes we currently have available
 • (which is all of them at the moment)
 – Gain\((S, \text{weather}) = ... = 0.7 \)
 – Gain\((S, \text{parents}) = ... = 0.61 \)
 – Gain\((S, \text{money}) = ... = 0.2816 \)
• Hence, the weather is the first attribute to split on
 – Because this gives us the biggest information gain
Top of the Tree

• So, this is the top of our tree:

• Now, we look at each branch in turn
 – In particular, we look at the examples with the attribute prescribed by the branch
• $S_{\text{sunny}} = \{W1, W2, W10\}$
 – Categorisations are cinema, tennis and tennis for W1, W2 and W10
 – What does the algorithm say?
 • Set is neither empty, nor a single category
 • So we have to replace S by S_{sunny} and start again
Working with S_{sunny}

• Need to choose a new attribute to split on
 – Cannot be weather, of course – we’ve already had that

• So, calculate information gain again:
 – $\text{Gain}(S_{sunny}, \text{parents}) = \ldots = 0.918$
 – $\text{Gain}(S_{sunny}, \text{money}) = \ldots = 0$

• Hence we choose to split on parents
Getting to the leaf nodes

- If it’s sunny and the parents have turned up
 - Then, looking at the table in previous slide
 - There’s only one answer: go to cinema
- If it’s sunny and the parents haven’t turned up
 - Then, again, there’s only one answer: play tennis
- Hence our decision tree looks like this:
Avoid Overfitting

• Decision trees can be learned to perfectly fit the data given
 – This is probably overfitting
 • The answer is a memorisation, rather than generalisation

• Avoidance method 1:
 – Stop growing the tree before it reaches perfection

• Avoidance method 2:
 – Grow to perfection, then prune it back afterwards
 • Most useful of two methods in practice
Appropriate Problems for Decision Tree learning

• From Tom Mitchell’s book:
 – Background concepts describe examples in terms of attribute-value pairs, values are always finite in number
 – Concept to be learned (target function)
 • Has discrete values
 – Disjunctive descriptions might be required in the answer

• Decision tree algorithms are fairly robust to errors
 – In the actual classifications
 – In the attribute-value pairs
 – In missing information