
Tutorial 6

By:Aashmeet Kalra

AGENDA

• Candidate Elimination Algorithm
• Example Demo of Candidate Elimination

Algorithm
• Decision Trees
• Example Demo of Decision Trees

Concept and Concept Learning

• A Concept is a a subset of objects or events
defined over a larger set
[Example: The concept of a bird is the subset of
all objects (i.e., the set of all things or all animals)
that belong to the category of bird.]

• Alternatively, a concept is a boolean-valued
function defined over this larger set
[Example: a function defined over all animals
whose value is true for birds and false for every
other animal].

Concept and Concept Learning

• Given a set of examples labeled as members
or non-members of a concept, concept-
learning consists of automatically inferring the
general definition of this concept.

• In other words, concept-learning consists of
approximating a boolean-valued function from
training examples of its input and output.

Terminology and Notation
• The set of items over which the concept is defined is called the set

of instances (denoted by X)
• The concept to be learned is called the Target Concept (denoted by

c: X--> {0,1})
• The set of Training Examples is a set of instances, x, along with

their target concept value c(x).
• Members of the concept (instances for which c(x)=1) are called

positive examples.
• Nonmembers of the concept (instances for which c(x)=0) are called

negative examples.
• H represents the set of all possible hypotheses. H is determined by

the human designer’s choice of a hypothesis representation.
• The goal of concept-learning is to find a hypothesis h:X --> {0,1}

such that h(x)=c(x) for all x in X

Concept Learning viewed as Search

• Concept Learning can be viewed as the task of
searching through a large space of hypotheses
implicitly defined by the hypothesis
representation.

• Selecting a Hypothesis Representation is an
important step since it restricts (or biases) the
space that can be searched. [For example, the
hypothesis “If the air temperature is cold or the
humidity high then it is a good day for water sports”
cannot be expressed in our chosen representation.]

Review of Concepts in Class

General to specific ordering of Hypotheses
• Definition: Let hj and hk be boolean-valued functions

defined over X. Then hj is more-general-than-or-equal-to
hk iff For all x in X, [(hk(x) = 1) --> (hj(x)=1)]

• Example:
– h1 = <Sunny,?,?,Strong,?,?>
– h2 = <Sunny,?,?,?,?,?>

Every instance that are classified as positive by h1 will also
be classified as positive by h2 in our example data set.
Therefore h2 is more general than h1.

• We also use the ideas of “strictly”-more-general-than,
and more-specific-than

Find-S, a Maximally Specific Hypothesis Learning Algorithm
• Initialize h to the most specific hypothesis in H
• For each positive training instance x

– For each attribute constraint ai in h
If the constraint ai is satisfied by x
then do nothing
else replace ai in h by the next more general

constraint that is satisfied by x
• Output hypothesis h
Although Find-S finds a hypothesis consistent with the

training data, it does not indicate whether that is the only
one available

Version Spaces and the Candidate-
Elimination Algorithm

• Definition: A hypothesis h is consistent with a
set of training examples D iff h(x) = c(x) for each
example <x,c(x)> in D.

• Definition: The version space, denoted VS_H,D,
with respect to hypothesis space H and training
examples D, is the subset of hypotheses from H
consistent with the training examples in D.

• NB: While a Version Space can be exhaustively
enumerated, a more compact representation is
preferred.

A Compact Representation for Version
Spaces

• Instead of enumerating all the hypotheses consistent
with a training set, we can represent its most specific
and most general boundaries. The hypotheses
included in-between these two boundaries can be
generated as needed.

• Definition: The general boundary G, with respect to
hypothesis space H and training data D, is the set of
maximally general members of H consistent with D.

• Definition: The specific boundary S, with respect to
hypothesis space H and training data D, is the set of
minimally general (i.e., maximally specific) members of
H consistent with D.

Candidate Elimination Algorithm

• The candidate-Elimination algorithm
computes the version space containing all
(and only those) hypotheses from H that are
consistent with an observed sequence of
training examples.

Example 1

• Learning the concept of "Japanese Economy
Car“

Features:
Country of Origin
Manufacturer
Color
Decade
Type

Origin Manufactur
er

Color Decade Type Example
Type

Japan Honda Blue 1980 Economy Positive

Japan Toyota Green 1970 Sports Negative

Japan Toyota Blue 1990 Economy Positive

USA Chrysler Red 1980 Economy Negative

Japan Honda White 1980 Economy Positive

Japan Toyota Green 1980 Economy Positive

Japan Honda Red 1990 Economy Negative

Positive Example 1
(Japan, Honda, Blue, 1980, Economy)

• Initialize G to a singleton set that includes
everything.

G = { (?, ?, ?, ?, ?) }

• Initialize S to a singleton set that includes the
first positive example.

S = { (Japan, Honda, Blue, 1980, Economy) }

Negative Example 2
(Japan, Toyota, Green, 1970, Sports)

• Specialize G to exclude the negative example.

• G =
{ (?, Honda, ?, ?, ?),

(?, ?, Blue, ?, ?),
(?, ?, ?, 1980, ?),
(?, ?, ?, ?, Economy) } S = { (Japan, Honda,
Blue, 1980, Economy) }

Positive Example 3(Japan, Toyota,
Blue, 1990, Economy)

• Prune G to exclude descriptions inconsistent
with the positive example.

G =
{ (?, ?, Blue, ?, ?),

(?, ?, ?, ?, Economy) }

• Generalize S to include the positive example.
S = { (Japan, ?, Blue, ?, Economy) }

Negative Example (USA, Chrysler, Red,
1980, Economy)

• Specialize G to exclude the negative example
(but stay consistent with S)

G =
{ (?, ?, Blue, ?, ?),

(Japan, ?, ?, ?, Economy) }

S = { (Japan, ?, Blue, ?, Economy) }

Positive Example(Japan, Honda, White,
1980, Economy)

• Prune G to exclude descriptions inconsistent
with positive example.

G = { (Japan, ?, ?, ?, Economy) }

• Generalize S to include positive example.

S = { (Japan, ?, ?, ?, Economy) }

Positive Example: (Japan, Toyota,
Green, 1980, Economy)

• New example is consistent with version-space,
so no change is made.

G = { (Japan, ?, ?, ?, Economy) }
S = { (Japan, ?, ?, ?, Economy) }

Negative Example: (Japan, Honda,
Red, 1990, Economy)

• Example is inconsistent with the version-space.

G cannot be specialized.
S cannot be generalized.

• The version space collapses.
• Conclusion: No conjunctive hypothesis is

consistent with the data set.

Remarks on Version Spaces and
Candidate Elimination

• The version space learned by the Candidate-
Elimination Algorithm will converge toward the
hypothesis that correctly describes the target concept
provided: (1) There are no errors in the training
examples; (2) There is some hypothesis in H that
correctly describes the target concept.

• Convergence can be speeded up by presenting the data
in a strategic order. The best examples are those that
satisfy exactly half of the hypotheses in the current
version space.

• Version-Spaces can be used to assign certainty scores
to the classification of new examples

Decision Trees

• Consider this Decision-making process:
WHAT TO DO THIS WEEKEND?

• If my parents are visiting
– We’ll go to the cinema

• If not
– Then, if it’s sunny I’ll play tennis
– But if it’s windy and I’m rich, I’ll go shopping
– If it’s windy and I’m poor, I’ll go to the cinema
– If it’s rainy, I’ll stay in

From Decision Trees to Logic

• Decision trees can be written as
– Horn clauses in first order logic

• Read from the root to every tip
– If this and this and this … and this, then do this

• In our example:
– If no_parents and sunny_day, then play_tennis
– no_parents sunny_day play_tennis

• Decision tree can be seen as rules for performing
a categorisation
– E.g., “what kind of weekend will this be?”

• Remember that we’re learning from examples
– Not turning thought processes into decision trees

• We need examples put into categories
• We also need attributes for the examples

– Attributes describe examples (background knowledge)
– Each attribute takes only a finite set of values

Entropy
• From Tom Mitchell’s book:

– “In order to define information gain precisely, we begin by defining a
measure commonly used in information theory, called entropy that
characterizes the (im)purity of an arbitrary collection of examples”

• Want a notion of impurity in data
• Imagine a set of boxes and balls in them
• If all balls are in one box

– This is nicely ordered – so scores low for entropy
• Calculate entropy by summing over all boxes

– Boxes with very few in scores low
– Boxes with almost all examples in scores low

Entropy:Formulae

• Given a set of examples, S
• For examples in a binary categorisation

– Where p+ is the proportion of positives
– And p- is the proportion of negatives

 For examples in categorisations c1 to cn

– Where pn is the proportion of examples in cn

Information Gain

• Given set of examples S and an attribute A
– A can take values v1 … vm

– Let Sv = {examples which take value v for attribute
A}

• Calculate Gain(S,A)
– Estimates the reduction in entropy we get if we

know the value of attribute A for the examples in
S

ID3 Algorithm

• Given a set of examples, S
– Described by a set of attributes Ai

– Categorised into categories cj

1. Choose the root node to be attribute A
– Such that A scores highest for information gain

• Relative to S, i.e., gain(S,A) is the highest over all attributes

2. For each value v that A can take
– Draw a branch and label each with corresponding v

• Then see the options in the next slide!

ID3 (Continued)
• For each branch you’ve just drawn (for value v)

– If Sv only contains examples in category c
• Then put that category as a leaf node in the tree

– If Sv is empty
• Then find the default category (which contains the most examples from S)

– Put this default category as a leaf node in the tree

– Otherwise
• Remove A from attributes which can be put into nodes
• Replace S with Sv

• Find new attribute A scoring best for Gain(S, A)
• Start again at part 2

• Make sure you replace S with Sv

Example

Information Gain

• S = {W1,W2,…,W10}
• Firstly, we need to calculate:

– Entropy(S) = … = 1.571

• Next, we need to calculate information gain
– For all the attributes we currently have available

• (which is all of them at the moment)
– Gain(S, weather) = … = 0.7
– Gain(S, parents) = … = 0.61
– Gain(S, money) = … = 0.2816

• Hence, the weather is the first attribute to split on
– Because this gives us the biggest information gain

Top of the Tree
• So, this is the top of our tree:

• Now, we look at each branch in turn
– In particular, we look at the examples with the attribute prescribed by

the branch
• Ssunny = {W1,W2,W10}

– Categorisations are cinema, tennis and tennis for W1,W2 and W10
– What does the algorithm say?

• Set is neither empty, nor a single category
• So we have to replace S by Ssunny and start again

Working with Ssunny

• Need to choose a new attribute to split on
– Cannot be weather, of course – we’ve already had that

• So, calculate information gain again:
– Gain(Ssunny, parents) = … = 0.918
– Gain(Ssunny, money) = … = 0

• Hence we choose to split on parents

Getting to the leaf nodes
• If it’s sunny and the parents have turned up

– Then, looking at the table in previous slide
• There’s only one answer: go to cinema

• If it’s sunny and the parents haven’t turned up
– Then, again, there’s only one answer: play tennis

• Hence our decision tree looks like this:

Avoid Overfitting

• Decision trees can be learned to perfectly fit the
data given
– This is probably overfitting

• The answer is a memorisation, rather than generalisation

• Avoidance method 1:
– Stop growing the tree before it reaches perfection

• Avoidance method 2:
– Grow to perfection, then prune it back afterwards

• Most useful of two methods in practice

Appropriate Problems for
Decision Tree learning

• From Tom Mitchell’s book:
– Background concepts describe examples in terms of

attribute-value pairs, values are always finite in
number

– Concept to be learned (target function)
• Has discrete values

– Disjunctive descriptions might be required in the
answer

• Decision tree algorithms are fairly robust to
errors
– In the actual classifications
– In the attribute-value pairs
– In missing information

