/ Computer
Science

CompSci 367 S2 C
- ASSIGNMENT Three -

The work done on this assignment must be your own work. Think carefully about

any problems you come across, and try to solve them yourself before you ask

anyone else for help. Under no circumstances should you work together with

another student on any code used in this assignment. Any code you reuse from

any source MUST be referenced. You should use SWI Prolog, it is freely available to
be downloaded for all platforms. Your system will be marked using this version of
Prolog.

Assessment
Due: Monday 215t October 2013 11.59 pm
Worth: 12% of total 367 marks

Aim of the assignment

The main aim of this assignment is to give you some experience modeling a
planning domain. The particular planning domain is that of RushHour®.
RushHour® is a commercial game and the url for its instructions:
http://www.puzzles.com/products/rushhour/rhfrommarkriedel /jam.html#instr).
There is an online version you can play to get a feeling for the rules at:
http://home.kpn.nl/fredvonk/rushhour.htm The specific problem will be
determined by the specific initial state. The goal is the same for all RushHour®
problems, namely, to enable the red car to exit the grid.

Modeling “RushHour®”

Modeling a domain involves deciding how to model states of the world (in this
case, the RushHour® board) and how to model actions that alter these worlds.
The class lectures on “Domain Modeling” should give you the required
background for modeling a domain. There is an additional document associated
with this assignment entitled “Design Notes”, you should read this and go back
over the lecture notes before starting this assignment.

What is Required?
You will need to do the following things for this assignment:

* Pick the domain predicates that you will use to represent the world states
and the domain actions. You will need to decide the type of each
predicate. A domain predicate can only be of the following four types:
metalLevel, derived, static, or fluent. These predicates should be “typed”
and documented in the ontology.pl file in the rushHour directory.
Fluent predicates do not need to be explicitly “typed” (predicates are
fluent by default) but should be documented.

* You will need to have derived predicates and will have to define their
meaning.

* You will need to have static predicates.

* You will need to have metaLevel predicates and will need to define their
meaning in Prolog. One metaLevel predicate you should think of creating
is an “is” metaLevel predicate for doing arithmetic. It would look like the
following: is(Variable, ArithmeticExpression), for example “is(X, 4 + 2 *7)”,
which would evaluate the arithmetic expression and bind its value to the
variable X. The existence of an “is” predicate may ease the effort of
modelling the RushHour® domain.

* Design all the domain actions that alter the states. Note that all vehicles
can ONLY move one position per action! These actions are stored and
described in the ops.pl file in the rushHour directory.

* Since all RushHour® puzzles have the same goal, you need to come up
with the goal expression for that goal. Assume the exit square is always
the same as shown in the RushHour image shown below (i.e., the 3 row
from the top and the 7t column from the left-hand side) and that it is
sufficient to get the nose of the car to the 34 row, 6% column to consider
the problem solved. Note: this requires the red car to always be on the 3rd
row for the problem to be solvable.

* Write a Prolog predicate that translates “iconic” representations of
RushHour® states into problem descriptions using your domain
representation. This predicate will have the following signature:
iconZsymbolic(IconicRep, problem(SymboliclnitialState, SymbolicGoal)),
this predicate will be stored and documented in the icon2symbolic.pl file
in the rushHour directory.

* The planner expects all state descriptions to be ordered sets (ordset).
This means the initial state description produced by your translator
needs to be made into an ordset list using the predicate list_to_ord_set/2
from the SWI-Prolog ordset library.

Given a valid iconic description of a RushHour® initial state, e.g., prob01.pl,
your code translates it into the corresponding problem represented in your
ontology (predicates). The problem can be stored in a file in the rushHour
problems.d directory and it can be solved using the solve/4 predicate in the
solve.pl file in the top directory. Assuming you save your problem description in
the file probMine01.pl, then you would enter the following to ask Prolog to
solve the problem: solve(rushHour, zero, probMine01, Solution), where zero.pl
would be the name of the file containing the zero heuristic.

Iconic RushHour State Representations

Conceptually, a RushHour state is a 6 x 6 matrix, where the value of each element
represents the contents (i.e., the car) of its corresponding square. However,
RushHour states are actually represented “iconically” as 36 item lists. The first 6
items correspond to the top row of the RushHour conceptual matrix, the 2nd 6
items correspond the next row down, etc. Each item in the list is a number. If
there is no vehicle in the corresponding square then the corresponding number
is zero. If the vehicle in the corresponding square is the red car to be driven out
of the grid then the corresponding number is one. All other vehicles can be

numbered arbitrarily (as long as no two distinct vehicles have the same number
and are integers greater than one).

So, for the RushHour state shown below, it could be represented as the following
list: [2,2,0,0,0,3,4,0,0,5,0,3,4,1,1,5,0,3, 4,0,0,5,0,0,6,0,0,0,7,7,6,0,8,8,8,0].

% N

inner

Your translator will need to take the list shown above and translate it into the
appropriate problem description using your ontology. It should be a problem
description that this assignment’s planner can take and solve.

Iconic representations will be encoded as: iconic(<LIST>), where <LIST> is a list
as described above. The above iconic representation of this problem can be

found at domains.d/rushHour/problems.d/prob001.pl in the assignment
archive.

Directory Structure

The diagram below shows the existing directory structure. You will be adding
the appropriate files below the rushHour domain directory.

top directory

T

idaStar.pl domains.d solve.pl etc.

v
sokoban

/ / \ rushHour

heuristics.d ops.pl ontology.pl || problems.d / \

zero.pl manhattanDistance.pl heuristics.d problems.d

prob01.pl

zero.pl

Resources

For everything you are being asked to write for the RushHour domain, there are
corresponding examples in the sokoban domain in the assignment archive. I
would recommend that you look at them.

Marking Guide — 12 Marks in Total
Things you will be marked on:

Defining and using a reasonable derived domain predicate [1 mark]
Using a reasonable static domain predicate [1 mark]

Implementing and using a reasonable metaLevel domain predicate [1
mark]

Define reasonable domain actions [2 marks]

Create an appropriate goal expression for RushHour® [1 mark]

Write prolog code to translate my iconic representation of a state into a
problem description using your domain ontology [2 marks]

A translation of prob01.pl (the iconic form of the RushHour problem
shown above) into the appropriate problem representation (stored in the
file probMine01.pl) using your ontology [1 mark]

Whether you have created a working representation for RushHour®. In
other words, the assignment’s planner solves the problem stored in
probMine01.pl [2 marks]

Clear in-line documentation of all the above [1 mark]

Submission of Assignment

Archive your rushHour directory as rushHourArchive.zip and submit via the
Computer Science Assignment Dropbox
(https://adb.auckland.ac.nz/Home/) before the deadline.

