
1

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Knowledge Representation

CompSci 367
Assoc. Prof. Ian Watson

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

2

Knowledge Representation

Types of Knowledge
Rules
Frames
Objects
Semantic Nets
Conceptual Graphs
Scripts
Cases

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

3

The AI Wars
Isn’t logic programming better than any
inherently less formal approach?
Are rule-based systems better/worse than
frame-based systems?
Are frame systems better than more general
semantic networks?
Are frames useful if there is no associated
description logic?
Who wants a K representation that may not
allow for decidable inferencing?

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

4

Allen Newell’s AAAI
Presidential Address (1980)

We should stop bickering about
representation
What really matters is the knowledge
that a system has, not how that
knowledge is represented
Knowledge is what an observer
attributes to an agent to allow the
observer to call that agent intelligent

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

5

The important distinction
Knowledge representations are symbols such
that, when some process is applied, an
observer attributes intelligence to the
emergent behavior
Knowledge representations acquire meaning
only when there is some process that is
applied to them
representations are symbols that must be
interpreted

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

6

The important distinction
Knowledge is a label for intelligent
behaviour
Knowledge is inferred by observing an
agent’s behaviours
knowledge ultimately is something that
is experienced and attributed
Not something that exists in isolation

2

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

7

An analogy:
The notes are not the music

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

8

Knowledge has some structure

The goals that an agent has
The set of actions of which an agent is
capable
How the agent selects actions to help it
achieve its goals

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

9

The “Knowledge Level”
(Alan Newell, 1982 The AI Journal)

Computer systems can be viewed at discrete,
hierarchical levels, where each level consists
of

A medium that is processed
Components that provide primitive processing
Laws of composition
Laws of behaviour
Each level can be defined either
Autonomously or
In terms of the components of the level below it

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

10

A hierarchy of computer-system levels

Knowledge Level
Intelligent behaviour

Symbol level
Knowledge representations

Hardware level
Machine-level instructions

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

11

The Symbol Level
Systems: Computer programs
Medium: Symbols, expressions
Components: Memory stores,
operations
Behaviour laws: Sequential
interpretation

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

12

The Knowledge Level
Systems: Agents
Medium: Knowledge
Components: Goals, actions, bodies of
knowledge
Behaviour laws: The principle of
rationality

If an agent has the knowledge to obtain a
goal it will do so

3

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

13

Newell’s thoughts on the
knowledge level

Knowledge and rationality are intimately tied
together
Splitting what was once a single level into
two allows each one to be addressed
separately
Knowledge is not representable by a structure
at the symbol level - it requires both
structures and processes
Knowledge is an abstraction that can never
be had in hand

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

14

Knowledge-level analysis
Ability to understand intelligent
behaviour in terms of

Goals
Actions
Bodies of knowledge

Makes the underlying knowledge
representation irrelevant

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

15

Rules

IF “A” THEN “B”
called IF-THEN Rules
or Antecedent/Consequent Rules
or Production Rules

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

16

Rules

Expert Systems built using rules are
called:
Rule-Based Systems
Knowledge-Based Systems
or Production Systems

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

17

Rules

Rules are good at representing Heuristics
IF “raining” THEN “wear a raincoat”
IF “animal is warm blooded” and “has pouch”
THEN “animal is marsupial”
Rules can be understood
by “real” people
not just programmers

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

18

Rules

IF “raining” THEN “wear a raincoat”

ANTECEDENT CONSEQUENT

Rule FIRESRule FIRES

4

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

19

Rules

Rules can chain together
IF “A” THEN “B”
IF “B” THEN “C”
IF “C” THEN “X”

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

20

2 Views of Rules

Language-based view
IF (soil is not porous)
OR (site is close to waterway)
THEN (site is wet)

soil is not porous

site close to
waterway

site is wetor

Graph-based view

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

21

Rules

Rule chaining can be illustrated

AA

BB

CC

XX
© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

22

Rules

AA

BB

CC

XX

DD

EE

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

23

Rules

IF “A” THEN “B”
IF “A” THEN “D”
IF “B” THEN “C”
IF “B” THEN “E”
IF “C” THEN “X”

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

24

The Search Space

the search space is a way of thinking
about how rules chain together
IF “A” THEN “B”
IF “B” THEN “C”
IF “B” THEN “E”
which of the IF “B” rules should fire
first?

5

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

25

Inferencing Methods

Inferencing methods determine how
search is controlled
DEPTH FIRST
BREADTH FIRST
BEST FIRST

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

26

Depth First Search

Search determines the order
in which rules should
fire if there is
a choice

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

27

Depth First Search

0

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

28

Depth First Search

0

1

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

29

Depth First Search

0

1

2

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

30

Depth First Search

0

1

2

3

6

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

31

Depth First Search

0

1

2

3 4
© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

32

Depth First Search

0

1

2

3 4

5

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

33

Depth First Search

0

1

2

3 4

5

6

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

34

Depth First Search

0

1

2

3 4

5

6 7

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

35

Depth First Search

ADVANTAGES
logical ordering of questions, program
seems to follow a single line of
reasoning
computationally efficient
DISADVANTAGES
inefficient if large number of alternative
solutions - long winded

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

36

Breadth First Search

0

1

7

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

37

Breadth First Search

0

1 2

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

38

Breadth First Search

0

1 2

3

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

39

Breadth First Search

0

1 2

3 4

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

40

Breadth First Search

0

1 2

3 4 5

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

41

Breadth First Search

0

1 2

3 4 5

6
© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

42

Breadth First Search

ADVANTAGES
efficient if many alternatives & search
space is not deep
DISADVANTAGES
illogical ordering of questions, program
is considering many hypotheses at once
computationally inefficient

8

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

43

Best First Search

0

1

2

mixed mode reasoning

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

44

Best First Search

0

1

2

3

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

45

Best First Search

0

1

2

3

4

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

46

Best First Search

0

1

2

3

4

5

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

47

Best First Search

ADVANTAGES
flexible
mimics human reasoning - uses domain
knowledge to guide search
DISADVANTAGES
complex to control - needs meta-rules
inefficient

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

48

Meta-Rules

knowledge about knowledge
needs knowledge of “context”
IF context = “Z” THEN DEPTH FIRST
IF context = “Y” THEN BREADTH FIRST
provides control over how rules are
used
meta-rules, meta-meta-rules, meta-
meta-...

9

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

49

Search Direction

search can be applied in two directions
FORWARD
BACKWARD

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

50

Forward Chaining

infers NEW facts from known facts
IF “A” THEN “B” THEN “C” THEN “X”

DATA DRIVEN INFERENCING

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

51

Forward Chaining

A

B

C

X

IF IF ““AA”” is TRUEis TRUE
““XX”” is TRUEis TRUE

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

52

Backward ChainingBackward Chaining

determines what needs to be true to support
a hypothesis
IF “A” THEN “B” THEN “C” THEN “X”

GOAL DRIVEN INFERENCING

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

53

Backward ChainingBackward Chaining

A

B

C

X

For For ““XX”” to be TRUEto be TRUE
““AA”” must be TRUEmust be TRUE

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

54

Backward Chaining

commonly used in diagnosis
what needs to be true to support my
diagnosis?

10

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

55

Forward Chaining

often used to see what effect incoming
information may have in process control
systems

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

56

Frames

Psychology suggests knowledge chunking
knowledge is not always
inferred
we use stereotypes and
expectations to understand
and reason
FRAMES (schemas, scripts)

richer data structures

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

57

Frames

organise the properties/features of a thing or
event into a prototype
FRAMES contain

slots and fillers
FRAME: House

walls:
roof:
door:
windows:

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

58

Frames

describe default or typical knowledge
FRAME: House

walls: brick
roof: tile
doors: wooden
windows: wooden [6]

slots can contain data
& processes

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

59

Frames

can be instantiated to specific individuals
FRAME: House: My_House

walls: brick*
roof: shingles
doors: wooden*
windows: aluminum

* = inherited

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

60

Frames

help us deal with uncertainty
we assume an individual conforms to its
defaults unless told otherwise
frames are often combined with rules
frames store data
rules or demons perform inferences
Leonardo, ART, KEE

11

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

61

Hierarchies

Frames can be organised into
hierarchies

Private Government

OFFICE RETAIL

COMMERCIAL INDUSTRIAL Resedential

BUILDINGS

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

62

Hierarchies

Hierarchies are organised into
classes
subclasses
instances
the hierarchies have inheritance
Frames became OBJECTS
Frame based systems became OO

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

63

OOPS

objects show these properties
abstraction
inheritance
encapsulation
polymorphism

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

64

OOPS

OOPS is used in
C++, Java etc…
Used in AI tools: SmallTalk, Kappa,
ART*Enterprise, Nexpert Object,
these are more dynamic than Java

Objects (e.g. classes, methods) can be modified
during runtime
Also provide a higher-level programming
environments

more suitable for AI programming

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

65

Expressiveness
Object or Frames

support sharing of common properties
& overriding of properties - e.g. “birds fly,
penguins don’t”
supports declarative and procedural knowledge
well structured knowledge bases
no guarantees of truth
requires discipline of the programmer

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

66

Semantic Nets

Graphs made up of vertices and edges
vertices describe entities/concepts
labeled edges describe relationships
between concepts

BUILDING

HOUSE

isa

12

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

67

Semantic Nets
can define complex models

HOUSE BUILDING

SUPERSTRUCTURE

SUBSTRUCTURE

ROOF

COVERING

TILES

SLATES

AREA

isa

isa

isa
part of

part of

part of

hasahasa

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

68

Semantic Nets

easily represented in AI languages
e.g., PROLOG
isa(house,building).
isa(slates,covering).
isa(tiles,covering).
partof(substructure,building).
partof(superstructure,building).
partof(roof,superstructure).
hasa(covering,roof).
hasa(area,roof).

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

69

Conceptual Graphs
Formalised semantic network knowledge
representation
rooted in Sowa’s association theory of meaning
A Conceptual Graph is a finite bipartite directed graph
each vertex is either a concept or a relation between
two concepts
each concept may represent another conceptual
graph

dog browncolour

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

70

Conceptual Graphs
A monkey scratches its ear with a paw

monkey scratchagent object ear

instrument

pawpart of

part of

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

71

Conceptual Graphs
each concept has a type
general concept – a concept with a wildcard instance (there
exists a dog)

specific concept – a concept with a concrete instance

there is a hierarchy of types & subtypes:

concept w is specialisation of concept v if
type(v)>type(w)

dog:Spot browncolour

dog:*X browncolour

animal

dog cat

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

72

Conceptual Graphs
canonic conceptual graph is sensible representation
of knowledge that can, but does not have to, be true
canonic formation rules formalise rules of inference
between two graphs while preserving canonicity

copy – identical cloning of a graph

restriction – substituting a concept in a graph with its
specialisation

join – joining two graphs via shared concept

simplification – deleting identical relations

13

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

73

Restriction of Concepts
person eatagent object piepiepiepiepiepiepie

girl eatagent object piepiepiepiepiepiepie

person:Sue eatagent object piepiepiepiepiepiepie

girl:Sue eatagent object piepiepiepiepiepiepie

person

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

74

Joining Concepts
person eatagent object piepiepiepiepiepiepiegirl:Sue

person eatagent manner piepiepiepiepiepiefastgirl:Sue

girl:Sue eat

agent object piepiepiepiepiepiepie

agent
manner fast

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

75

Simplification of Concepts

person eat

agent object piepiepiepiepiepiepie

agent
manner fast

person eatagent

object piepiepiepiepiepiepie

manner fast

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

76

Conceptual Graphs
FOPL transformation to CG

for each node → predicate
general concept → variable, specific concept → atom

type:instance → type(instance)
relation → n-ary predicate relation(in1, in2, …, inn) with
arguments connecting neighbouring concepts
CG is existentionally quantified conjunction of these
predicates

∃ X (dog(Spot) ∧ colour(Spot,X) ∧ brown(X))

Prolog:
dog(spot).
colour(spot,brown).

dog:Spot browncolour

