T
University
of Auekland

Knowledge Representation

CompSci 367
Assoc. Prof. lan Watson

© Universiﬂ of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

The Al Wars

Isn't logic programming better than any

inherently less formal approach?

= Are rule-based systems better/worse than
frame-based systems?

= Are frame systems better than more general
semantic networks?

= Are frames useful if there is no associated
description logic?

= Who wants a K representation that may not

allow for decidable inferencing?

© University of Auckland www.cs.auckland.ac.nz/—ian/ lan@cs.auckland.ac.nz

The important distinction

= Knowledge representations are symbols such
that, when some process is applied, an
observer attributes intelligence to the
emergent behavior

= Knowledge representations acquire meaning
only when there is some process that is
applied to them

= representations are symbols that must be

interpreted
© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

Knowledge Representation

Types of Knowledge
= Rules

= Frames

= Objects

= Semantic Nets

= Conceptual Graphs

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Allen Newell's AAAI
Presidential Address (1980)

= We should stop bickering about
representation

= What really matters is the knowledge
that a system has, not how that
knowledge is represented

= Knowledge is what an observer

attributes to an agent to allow the
observer to call that agent intelligent

© University of Auckland www.cs.auckland.ac.nz/—ian/, ian@cs.auckland.ac.nz

The important distinction

= Knowledge is a label for intelligent
behaviour

= Knowledge is inferred by observing an
agent’s behaviours

= knowledge ultimately is something that
is experienced and attributed

= Not something that exists in isolation

© University of Auckland www.cs.auckland.ac.nz/~ian/ jan@cs.auckland.ac.nz



An analogy:

= The notes are not the music

© Universiﬂ of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

9
EZR

i The “Knowledge Level”

(Alan Newell, 1982 The Al Journal)

= Computer systems can be viewed at discrete,
hierarchical levels, where each level consists
of
= A medium that is processed
= Components that provide primitive processing
= Laws of composition
= Laws of behaviour
= Each level can be defined either
= Autonomously or
= In terms of the components of the level below it

© University of Auckland www.cs.auckland.ac.nz/—ian/

lan@cs.auckland.ac.nz

11

The Symbol Level

= Systems: Computer programs
= Medium: Symbols, expressions

= Components: Memory stores,
operations

= Behaviour laws: Sequential
interpretation

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

Knowledge has some structure

= The goals that an agent has

= The set of actions of which an agent is
capable

= How the agent selects actions to help it
achieve its goals

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

10

A hierarchy of computer-system levels

= Knowledge Level
= Intelligent behaviour

= Symbol level

= Knowledge representations
= Hardware level

= Machine-level instructions

© University of Auckland www.cs.auckland.ac.nz/—ian/, ian@cs.auckland.ac.nz

12

The Knowledge Level

= Systems: Agents
= Medium: Knowledge

= Components: Goals, actions, bodies of
knowledge

= Behaviour laws: The principle of
rationality

= If an agent has the knowledge to obtain a
goal it will do so

© University of Auckland www.cs.auckland.ac.nz/~ian/ jan@cs.auckland.ac.nz



13

Newell’s thoughts on the
knowledge level

= Knowledge and rationality are intimately tied
together

= Splitting what was once a single level into
two allows each one to be addressed
separately

= Knowledge is not representable by a structure
at the symbol level - it requires both
structures and processes

= Knowledge is an abstraction that can never
be had in hand

© Universiﬂ of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

14

Knowledge-level analysis

= Ability to understand intelligent
behaviour in terms of
= Goals
= Actions
= Bodies of knowledge

= Makes the underlying knowledge
representation irrelevant

15

Rules

= [F “A” THEN “B”

called IF-THEN Rules

or Antecedent/Consequent Rules
= or Production Rules

© University of Auckland www.cs.auckland.ac.nz/—ian/ lan@cs.auckland.ac.nz

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

16

Rules

= Expert Systems built using rules are
called:

= Rule-Based Systems
= Knowledge-Based Systems
= or Production Systems

17

Rules

= Rules are good at representing Heuristics
= IF “raining” THEN “wear a raincoat”

= |IF “animal is warm blooded” and “has pouch”
THEN “animal is marsupial”

= Rules can be understood
by “real” people

= not just programmers

© University of Auckland www.cs.auckland.ac.nz/—ian/

ian@cs.auckland.ac.nz

© University of Auckland www.cs.auckland.ac.nz/—ian/, ian@cs.auckland.ac.nz

18

Rules

= IF “raining” THEN “wear a raincoat”

/ \

ANTECEDENT CONSEQUENT

Rule FIRES

© University of Auckland www.cs.auckland.ac.nz/~ian/ jan@cs.auckland.ac.nz



19

Rules

= Rules can chain together
= IF “A” THEN “B”
= |IF “B” THEN “C”
IF “C” THEN “X”

© Universiﬂ of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

21

Rules

= Rule chaining can be illustrated
A

N

B

I

C

S

X

© University of Auckland www.cs.auckland.ac.nz/—ian/ lan@cs.auckland.ac.nz

23

Rules

IF “A” THEN “B”
= IF “A” THEN “D”
IF “B” THEN “C”
IF “B” THEN “E”
= IF “C” THEN “X”

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

20

2 Views of Rules

= Language-based view

= IF (soil is not porous)
OR (site is close to waterway)
THEN (site is wet)

\Graph-based view
=

site close to
waterway

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

22

X

© University of Auckland www.cs.auckland.ac.nz/—ian/, ian@cs.auckland.ac.nz

24

The Search Space

the search space is a way of thinking
about how rules chain together

IF “A” THEN “B”
= |[F “B” THEN “C”
= |[F “B” THEN “E”

which of the IF “B” rules should fire
first?

© University of Auckland www.cs.auckland.ac.nz/~ian/ jan@cs.auckland.ac.nz




25 26
Inferencing Methods @ Depth First Search
= Inferencing methods determine how = Search determines the order ‘
search is controlled P W_f]]'f: rules should /A
Ire 1 ere Is
= DEPTH FIRST i 9 <9
= BREADTH FIRST /

2o
AN

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

27 28

M Depth First Search @ Depth First Search

© University of Auckland www.cs.auckland.ac.nz/—ian/ lan@cs.auckland.ac.nz

29 30

M Depth First Search @ Depth First Search

/N /A
o @ P @

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz © University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz




31 32

M Depth First Search @ Depth First Search

\ /N

© University of Auckland uckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

34
h
Depth First Search
1l
© University of Auckland www.cs.auckland.ac.nz/—ian/ lan@cs.auckland.ac.nz © University of Auckland kl nd.ac.nz/—ian/. ian| cs.auckland.ac.nz

35 36

M Depth First Search @ Breadth First Search

= ADVANTAGES 0 J

= logical ordering of questions, program
seems to follow a single line of

¢
‘/

reasoning

= computationally efficient / / \

= DISADVANTAGES ‘ ‘

= inefficient if large number of alternative / / \
solutions - long winded ‘ ‘ ‘ ‘

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz © University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz




37 38

@ Breadth First Search @ Breadth First Search

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

© University of Auckland www.cs.auckland.ac.nz/—ian/ lan@cs.auckland.ac.nz

41 42
@ Breadth First Search @ Breadth First Search
O/J\ = ADVANTAGES
= efficient if many alternatives & search
1 ‘ 2‘ space is not deep
/N « DISADVANTAGES
3 4‘ 5‘ = illogical ordering of questions, program
is considering many hypotheses at once
/ \ = computationally inefficient
¢ @ @ @
© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz © University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz




43

Best First Search

mixed mode reasoning 0 J

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

45

Best First Search

© University of Auckland www.cs.auckland.ac.nz/—ian/

lan@cs.auckland.ac.nz

a7

Best First Search

= ADVANTAGES
= flexible

= mimics human reasoning - uses domain
knowledge to guide search

= DISADVANTAGES
= complex to control - needs meta-rules

= inefficient
© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

44

Best First Search

Best First Search

e
/N

aa

/
XK

www.cs.auckland.ac.nz/—ian/, ian@cs.auckland.ac.nz

w

‘/

© University of Auckland

Meta-Rules

= knowledge about knowledge

= needs knowledge of “context”

= IF context = “Z” THEN DEPTH FIRST

= IF context = “Y” THEN BREADTH FIRST

= provides control over how rules are
used

= meta-rules, meta-meta-rules, meta-
meta-...

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz




49 50
Search Direction Forward Chaining
= search can be applied in two directions = infers NEW facts from known facts
= FORWARD @ > s IF “A” THEN “B” THEN “C” THEN “X”
= BACKWARD \‘?
Y
= DATA DRIVEN INFERENCING
© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz ©Un|vers|§quuckland ‘www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz
. A J ¢ determines what needs to be true to support
IF “A” iIs TRUE /N a hypothesis
“X" is TRUE BJ * ‘iﬁ IF llA’1 THEN i(B’7 THEN iiC11 THEN IEX’1
}ﬁ - ‘\ » GOAL DRIVEN INFERENCING
53 54
For “X” to be TRUE AJ = commonly used in diagnosis
“A" must be TRUE / \ = what needs to be true to support my
J ‘ diagnosis?

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz [S]

University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz




55

Forward Chaining

= often used to see what effect incoming
information may have in process control
systems

© University of Auckland www.cs.auckland.ac.nz/~ian/

ian@cs.auckland.ac.nz

57

Frames

= organise the properties/features of a thing or
event into a prototype
= FRAMES contain
= slots and fillers
= FRAME: House
= walls:
= roof:
= door:
= windows:

© University of Auckland www.cs.auckland.ac.nz/—ian/ lan@cs.auckland.ac.nz

59

Frames

= can be instantiated to specific individuals
= FRAME: House: My_House

= walls: brick*

= roof: shingles

= doors: wooden*

= windows: aluminum

* = inherited

© University of Auckland

www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

56

Frames

= Psychology suggests knowledge chunking

= knowledge is not always
inferred

= We use stereotypes and
expectations to understand
and reason

s FRAMES (schemas, scripts)
= richer data structures

University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

58

Frames

= describe default or typical knowledge
= FRAME: House U
= walls: brick
= roof: tile
= doors: wooden
= windows: wooden [6]

= slots can contain data
& processes

© University of Auckland ian@cs.auckland.ac.nz

www.cs.auckland.ac.nz/—ian/,

60

Frames

= help us deal with uncertainty

= we assume an individual conforms to its
defaults unless told otherwise

= frames are often combined with rules
= frames store data

= rules or demons perform inferences
= Leonardo, ART, KEE

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

10



61

Hierarchies

= Frames can be organised into

hierarchies

lCOMM[ERCIALI | INDUSITRIAL || Resecliential

| OFFICE || RETAIL |

l Private IlGovernmentI

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

63

OOPS

= Objects show these properties
= abstraction
= inheritance
= encapsulation
= polymorphism

© University of Auckland www.cs.auckland.ac.nz/—ian/

lan@cs.auckland.ac.nz

65

Expressiveness

= Object or Frames

= support sharing of common properties

= & overriding of properties - e.g. “birds fly,
penguins don’t”
supports declarative and procedural knowledge
well structured knowledge bases
= Nno guarantees of truth
requires discipline of the programmer

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

62

Hierarchies

Hierarchies are organised into

= classes

subclasses

instances

= the hierarchies have inheritance

= Frames became OBJECTS

= Frame based systems became OO

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

64

OOPS

= OOPS is used in

= C++, Java etc...

= Used in Al tools: SmallTalk, Kappa,
ART*Enterprise, Nexpert Object,

= these are more dynamic than Java

= Objects (e.g. classes, methods) can be modified
during runtime

= Also provide a higher-level programming
environments

= more suitable for Al programming

© University of Auckland www.cs.auckland.ac.nz/—ian/, ian@cs.auckland.ac.nz

66

Semantic Nets

= Graphs made up of vertices and edges
= vertices describe entities/concepts
= labeled edges describe relationships

between concepts
isa

www.cs.auckland.ac.nz/—ian/

© University of Auckland jan@cs.auckland.ac.nz

11



67

Semantic Nets

= can define complex models
HOUSE — BUILDING
isa ~part of
part of SUBSTRUCTURE
SUPERSTRUCTURE
1 part of
) ROOF
TILES~S2 hasa/ hasa
__~ COVERING AREA
SLATES “isa
© Universiﬂ of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

69

Conceptual Graphs

= Formalised semantic network knowledge
representation

= rooted in Sowa’s association theory of meaning
= A Conceptual Graph is a finite bipartite directed graph

= each vertex is either a concept or a relation between
two concepts

= each concept may represent another conceptual
graph

[ @D |

© University of Auckland www.cs.auckland.ac.nz/—ian/ lan@cs.auckland.ac.nz

71

Conceptual Graphs

= each concept has a type
general concept — a concept with a wildcard instance (there
exists a dog)

Caoi>
specific concept — a concept with a concrete instance

= there is a hierarchy of types & subtypes: m
= concept w is specialisation of concept v if

type(v)>type(w) [[dog | [ ca |

© University of Auckland www.cs.auckland.ac.nz/—ian/ ian@cs.auckland.ac.nz

68

Semantic Nets

= easily represented in Al languages
= e.g., PROLOG

isa(house,building).
isa(slates,covering).
isa(tiles,covering).
partof(substructure,building).
partof(superstructure,building).
partof(roof,superstructure).
hasa(covering,roof).
hasa(area,roof).

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

70

Conceptual Graphs

A monkey scratches its ear with a paw

part of

© University of Auckland

www.cs.auckland.ac.nz/—ian/,

ian@cs.auckland.ac.nz

72

Conceptual Graphs

M canonic conceptual graph is sensible representation
of knowledge that can, but does not have to, be true
M canonic formation rules formalise rules of inference
between two graphs while preserving canonicity
= COpY - identical cloning of a graph

= restriction — substituting a concept in a graph with its
specialisation

« join — joining two graphs via shared concept
= simplification — deleting identical relations

© University of Auckland www.cs.auckland.ac.nz/~ian/ jan@cs.auckland.ac.nz

12



73 74
Restriction of Concepts Joining Concepts
G @D 5 | G @>—{ e |
G @D e | - G o}
. e
girl:Sue
G @D ]
© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz © University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz
75 76
Conceptual Graphs
= FOPL transformation to CG
= for each node — predicate
= general concept — variable, specific concept — atom
type:instance — type(instance)
= relation — n-ary predicate relation(inl, in2, ..., inn) with
arguments connecting neighbouring concepts
= CG is existentionally quantified conjunction of these
predicates
Cato
3 X (dog(Spot) A colour(Spot,X) A brown(X))
Prolog:
dog(spot).
colour(spot,brown).
© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz © University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz




