



3

5

ian@cs.auckland.a

### Knowledge Engineering (KE)

- ✓ What is It?
- Where did it come from?
- What does it involve?
- Why is it important?
- ✓ How can it help me?
- Where do I find out more?



University of Auckland

#### What is KE?

- The theory and practice of mechanized problem solving in a manner imitating what is believed to be the human thinking process
- The practice involves the design and crafting of results of AI research into practical system applications, for either computer processing or similarly precise domain model manipulation.



# Where Did KE Come From? Artificial Intelligence research Constitution Former Former and Pulse Presed

- Specifically Expert System and Rule-Based System development
- Didn't we go through all this about 25 years ago?
  - That was before we discovered the need to manage Explicit and Tacit Knowledge

www.cs.auckland.ac.nz/~ian/

Most commercial KBS deal ONLY with explicit knowledge. The often valuable but more difficult to obtain tacit knowledge is usually ignored 2 ( C

University of Auckland

### What Does KE Involve?

- Collecting K from many sources (books, reports, systems & people)
- Developing problem descriptions & solutions
- Evaluating existing systems
- Conducting interviews
- Speaking the language of the problem domain
- Thinking logically, symbolically, abstractly, creatively...

www.cs.auckland.ac.nz/~ian/

6

ian@cs.auckland.ac



### What Does KE Involve?

- ✓ Understanding:
  - $\scriptstyle \swarrow$  How various variables and rules are interrelated
  - What data are input, and in what order
  - The hierarchy of rules to consider
  - How important and accurate the data items are (noise)
  - Which data might be missing in a given situation
  - Dealing with assumed or inferred data

N. 7 - 5

#### What Does KE Involve?

#### Understanding:

- How rule conflicts might be resolved
- What alternative strategies for problem solving might exist
- How to deal with uncertainty or confidence

8

10

12

ian@cs.auckland.ac.

The levels of confidence an expert has in different rules or recommendations or data as predictors of outcomes



- Rapid prototyping
- Z Developing incrementally
- Knowledge base development
- ✓ Inferencing processes
- Separating knowledge from reasoning

### 2 ( See

#### What Does KE Involve?

- Capturing and reusing structured knowledge
- Capturing and sharing lessons learned from practice
- Structuring and mapping knowledge needed to enhance performance
- Capturing and reusing unstructured knowledge

### 2 ( C

#### What Does KE Involve? A Development Approach

#### Planning

- Suitability of problem to heuristic solution
- Availability of expertise
- Management commitment, inter-organizational communication

www.cs.auckland.ac.nz/~ian/

#### Design

- Modular or class-based approach
- Z Domain knowledge modelling
- Interfaces

University of Auckland

Verification and validation

### The Color

© University of Auckland

11

ian@cs.auckland.ac

Examples of familiar tasks

**Knowledge Elicitation** 

- Examples of tough cases
- Unstructured interviews
- Semi -structured interviews
- Structured interviews
- Protocol Analysis
- Øbservational Protocols
- Behavioral Protocols
- Procedural Simulation

www.cs.auckland.ac.nz/~ian/

2



#### Where Do I Go to Find Out More?

14

- IEEE Transactions on Knowledge and Data Engineering
- IEEE Transactions on Systems, Man & Cybernetics
- IEEE Expert Intelligent Systems & Their Applications
- $\scriptstyle \varkappa$  Journal of Intelligent Information Systems
- American Association of AI (www.aaai.org)
- ∠ Lecture Handouts ∠



University of Auckland

#### Knowledge Engineering Building a small knowledge system

- A small system will probably:
  - ✓ be rule-based
  - contain less than 200 rules
  - ∠ be intended to engage in a task similar to diagnosis
  - use a backward-chaining strategy





- Examples of commercially-available expert system tools: Xi+, Crystal, M1. (all popular in the 1980s). Leonardo XpertRule (more recent)
- Case-based reasoning systems are also popular.

www.cs.auckland.ac.nz/~ian/

University of Auckland

17

ian@cs.auckland.au

#### Selecting the problem

- Should typically take about 30 minutes for a person to solve
- Should not involve physical examination: should be solvable by a phone conversation.
- Knowledge involved should be simple rules, and simple calculations, not large amounts of maths.
- Should be a choice of no more than a few dozen faults or diagnoses

www.cs.auckland.ac.nz/~ian/

18

ian@cs.auckland.ac



#### Designing the system on paper

- Draw flow diagrams of the consultation that takes place
- It may be possible to draw up a matrix, with conditions as the columns, and conclusions as the rows (this is one of the intermediate representations mentioned below);
- ✓ Write draft rules, if there is a matrix, each line will be a rule

19

#### Designing the system on paper

20

| Warning<br>light | temp | vibration | diagnosis            |
|------------------|------|-----------|----------------------|
| on               | 125  | high      | Low<br>coolant       |
| on               | 95   | high      | Low oil              |
| off              | 125  | normal    | Broken<br>thermostat |







## Testing, revising & expanding the system

- At this stage, more advanced features of the tool may be used - e.g. facility for the user to volunteer information without waiting for questions
- Textual explanations can added

University of Auckland

Real users should try out the system, and it should be modified on the basis of their experiences.

www.cs.auckland.ac.nz/~ian/

ian@cs.auckland.ac.



#### Maintaining & updating the system

- Every time a situation occurs which the system cannot cope with, it should be recorded, and the addition of a rule to the system should be considered
- An individual must be responsible for maintenance; their job is to change the knowledge base in response to changes in the external world

26 Building a large expert system Stages: Select the domain and the task on which the system is to advise Select the tool which will be used to build the system Develop a prototype Expand this into a complete system Evaluate the system ✓ Integrate the system into the organisation's work ✓ Maintain the system



#### Differences between building large & small KBS

- Built by a team rather than by an individual
- Z One or more knowledge engineers, one or more experts (to provide the knowledge), one or more managers.
- Z Tackle larger tasks typically a task which would take a human expert something over 3 hours to solve. Might contain 1000s of rules



27

25

#### Differences between building a large system and a small system

28

30

ian@cs.auckland.ac

- Have larger hardware requirements
- Have large initial development costs this means that the project should promise a large R.O.I.
- Have a longer development period may be several person-years, for both the knowledge engineers and the experts

niversity of Auckland

### Stage 1: Selecting the domain and the task.

- Choosing the right task is crucial to the success of the project (the system must be technically feasible).
- Expert systems are good at tasks in fairly narrow domains, where the knowledge can be documented or taught, but which don't require common sense or sensory discrimination.
- It must be possible to evaluate the outcome of the task.
- The costs and benefits need to be calculated. An expert system working in an inappropriate domain may cost more than it saves.
- The system will have to be acceptable to the end users An expert must be found who is prepared to contribute the required
- expertise.

ian@cs.auckland.ac

A development plan must be drawn up, specifying goals for the system to achieve. w.cs.auckland.ac.nz/~ian/

University of Auckland

#### Stage 2: Selecting the tool

- KBS shells capable of building large-scale systems with sophisticated features are available: e.g. ART\*Enterprise.
- ✓ Use an AI language (Prolog LISP CLIPS).
- One should choose a simpler tool that provides appropriate knowledge representation and inference strategies.

www.cs.auckland.ac.nz/~ian/

### Stage 3: Developing a prototype

- The expert and knowledge engineer will work together to build this. It is important that the expert should become committed to the task.
- The prototype should test:
  - assumptions about facts, relationships and inferences;
  - ∠ the adequacy of the tool used to build the system.



31

33

35

ian@cs.auckland.a

## Stage 3: Developing a prototype

At this stage, a detailed design for the complete expert system is also developed. 32

34

36

ian@cs.auckland.ac

- Performance criteria will be established e.g. "The system will be expected to come to the same conclusion as the expert 95% of the time"
- As analysis proceeds the knowledge elicited is built into the prototype system giving the expert the chance to observe the system working, and criticise the knowledge & reasoning it displays.
- $\scriptstyle \varkappa$  The system is improved by progressive refinement.



## Stage 3: Developing a prototype

- When the prototype is built, the knowledge engineer and the expert should be able to decide:
- whether the knowledge representation formalism is adequate
- ✓ whether the tool is adequate
- ✓ the overall design of the full-scale system
- ✓ the approximate size (e.g. no. of rules) in the fullscale system.
- $\scriptstyle \varkappa$  the performance criteria for the full-scale system.
- Any major design changes (e.g. choosing a different tool) should be made at this stage.

auckland ac nz/

### Stage 4: Developing the complete system

- Once the prototype system has been approved:
- The knowledge base may need to be rebuilt, with different objects and attributes.
- The process of progressive refinement, described above, continues.
- The 'depth' of knowledge in the knowledge base is increased by adding many more rules, and other knowledge structures.

### ± €

University of Auckland

## Stage 4: Developing the complete system

- The 'breadth' of knowledge in the knowledge base may be increased by adding other tasks that the user is accustomed to provide advice on
- The user interface is tailored to the contents of the knowledge base
- ✓ At this stage, the expert should become skilled at entering rules without the knowledge engineer's assistance, and monitoring the effects that these new rules will have
- The expert should be able to polish, elaborate and maintain the system - the first stage of technology transfer

www.cs.auckland.ac.nz/~ian

#### To To Conversity of Arrelated

University of Auckland

### Stage 5: Evaluating the complete system

- Solution of the system is complete:
  - It can be tested, using the performance criteria established earlier
  - Other experts can be invited to try the system, and assess its performance

www.cs.auckland.ac.nz/~ian





- It may be appropriate to rewrite the software in a conventional computer language
- Advantages: speed, and portability between machines
- Disadvantages: flexibility is lost: the system can't easily be modified or maintained



### Stage 7: Maintaining the system.

- Some expert should be made responsible for keeping the knowledge base current, adding/changing rules (and other knowledge structures) when necessary
- This stage is not optional



### Scaling up a small expert system, in order to build a large one

40

#### **Advantages**

- The work involved in building a prototype is avoided: the existing system is the prototype
- The small system has probably been more thoroughly tested than a prototype could be
- The viability of the project is clearer than if the knowledge engineer were starting from scratch
- It is easier to convince the end-users that the final system will be useful to them

### The Dependence

### Scaling up a small expert system, in order to build a large one

#### Disadvantages:

- There may be limits on the number of rules the tool used to build the small system can handle.
- Performance, especially speed of response, may be unacceptably downgraded as the knowledge base expands
- Some desirable form of knowledge representation (e.g. frames,
- model-based reasoning) may not be supported by the tool
- Some desirable feature of the user interface (e.g. graphical data display) may not be supported by the tool.
- The wrong objects and attributes may have been chosen in the first place, and simply scaling up the system won't cure this
- first place, and simply scaling up the system won't cure this As more rules are added, the chance that there will be some unrealised interaction between the rules increases

www.cs.auckland.ac.nz/~ian/

© University of Auckland

ian@cs.auckland.a

41