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Knowledge Representation

Types of Knowledge
Rules
Frames
Objects
Semantic Nets
Conceptual Graphs
Scripts
Cases
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The AI Wars
Isn’t logic programming better than any 
inherently less formal approach?
Are rule-based systems better/worse than 
frame-based systems?
Are frame systems better than more general 
semantic networks?
Are frames useful if there is no associated 
description logic?
Who wants a K representation that may not 
allow for decidable inferencing?
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Allen Newell’s AAAI
Presidential Address (1980)

We should stop bickering about 
representation
What really matters is the knowledge 
that a system has, not how that 
knowledge is represented
Knowledge is what an observer 
attributes to an agent to allow the 
observer to call that agent intelligent
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The important distinction
Knowledge representations are symbols such 
that, when some process is applied, an 
observer attributes intelligence to the 
emergent behavior
Knowledge representations acquire meaning 
only when there is some process that is 
applied to them
representations are symbols that must be 
interpreted
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The important distinction
Knowledge is a label for intelligent 
behaviour
Knowledge is inferred by observing an 
agent’s behaviours
knowledge ultimately is something that 
is experienced and attributed
Not something that exists in isolation
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An analogy:
The notes are not the music

© University of Auckland                         www.cs.auckland.ac.nz/~ian/                      ian@cs.auckland.ac.nz

8

Knowledge has some structure

The goals that an agent has
The set of actions of which an agent is 
capable
How the agent selects actions to help it 
achieve its goals
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The “Knowledge Level”
(Alan Newell, 1982 The AI Journal)

Computer systems can be viewed at discrete, 
hierarchical levels, where each level consists 
of 

A medium that is processed
Components that provide primitive processing
Laws of composition
Laws of behaviour 
Each level can be defined either
Autonomously or
In terms of the components of the level below it
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A hierarchy of computer-system levels

Knowledge Level   
Intelligent behaviour

Symbol level        
Knowledge representations

Hardware level 
Machine-level instructions

© University of Auckland                         www.cs.auckland.ac.nz/~ian/                      ian@cs.auckland.ac.nz

11

The Symbol Level
Systems: Computer programs
Medium: Symbols, expressions
Components: Memory stores, 
operations
Behaviour laws: Sequential 
interpretation
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The Knowledge Level
Systems: Agents
Medium: Knowledge
Components: Goals, actions, bodies of 
knowledge
Behaviour laws: The principle of 
rationality

If an agent has the knowledge to obtain a 
goal it will do so 
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Newell’s thoughts on the
knowledge level

Knowledge and rationality are intimately tied 
together
Splitting what was once a single level into 
two allows each one to be addressed 
separately 
Knowledge is not representable by a structure 
at the symbol level - it requires both 
structures and processes
Knowledge is an abstraction that can never 
be had in hand
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Knowledge-level analysis
Ability to understand intelligent 
behaviour in terms of

Goals
Actions
Bodies of knowledge

Makes the underlying knowledge 
representation irrelevant
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Rules

IF “A” THEN “B”
called IF-THEN Rules
or Antecedent/Consequent Rules
or Production Rules
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Rules

Expert Systems built using rules are 
called:
Rule-Based Systems
Knowledge-Based Systems
or Production Systems
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Rules

Rules are good at representing Heuristics
IF “raining” THEN “wear a raincoat”
IF “animal is warm blooded” and “has pouch”
THEN “animal is marsupial”
Rules can be understood
by “real” people
not just programmers
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Rules

IF “raining” THEN “wear a raincoat”

ANTECEDENT CONSEQUENT

Rule FIRESRule FIRES
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Rules

Rules can chain together
IF “A” THEN “B”
IF “B” THEN “C”
IF “C” THEN “X”
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2 Views of Rules

Language-based view
IF (soil is not porous)
OR (site is close to waterway)
THEN (site is wet)

soil is not porous

site close to
waterway

site is wetor

Graph-based view
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Rules

Rule chaining can be illustrated

AA

BB

CC

XX
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Rules

AA

BB

CC

XX

DD

EE
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Rules

IF “A” THEN “B”
IF “A” THEN “D”
IF “B” THEN “C”
IF “B” THEN “E”
IF “C” THEN “X”
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The Search Space

the search space is a way of thinking 
about how rules chain together
IF “A” THEN “B”
IF “B” THEN “C”
IF “B” THEN “E”
which of the IF “B” rules should fire 
first?
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Inferencing Methods

Inferencing methods determine how 
search is controlled
DEPTH FIRST
BREADTH FIRST
BEST FIRST
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Depth First Search

Search determines the order
in which  rules should
fire if there is
a choice
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Depth First Search

0
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Depth First Search

0

1
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Depth First Search

0

1

2
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Depth First Search

0

1

2

3
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Depth First Search

0

1

2
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Depth First Search
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Depth First Search
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Depth First Search
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Depth First Search

ADVANTAGES
logical ordering of questions, program 
seems to follow a single line of 
reasoning
computationally efficient
DISADVANTAGES
inefficient if large number of alternative 
solutions - long winded
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Breadth First Search

0

1
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Breadth First Search

0

1 2
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Breadth First Search

0
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Breadth First Search
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Breadth First Search

0

1 2

3 4 5
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Breadth First Search

0

1 2

3 4 5
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Breadth First Search

ADVANTAGES
efficient if many alternatives & search 
space is not deep
DISADVANTAGES
illogical ordering of questions, program 
is considering many hypotheses at once
computationally inefficient
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Best First Search

0

1

2

mixed mode reasoning
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Best First Search
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Best First Search
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Best First Search
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Best First Search

ADVANTAGES
flexible
mimics human reasoning - uses domain 
knowledge to guide search
DISADVANTAGES
complex to control - needs meta-rules
inefficient
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Meta-Rules

knowledge about knowledge
needs knowledge of “context”
IF context = “Z” THEN DEPTH FIRST
IF context = “Y” THEN BREADTH FIRST
provides control over how rules are 
used
meta-rules, meta-meta-rules, meta-
meta-...
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Search Direction

search can be applied in two directions
FORWARD
BACKWARD
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Forward Chaining

infers NEW facts from known facts
IF “A” THEN “B” THEN “C” THEN “X”

DATA DRIVEN INFERENCING
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Forward Chaining

A

B

C

X

IF IF ““AA”” is TRUEis TRUE
““XX”” is TRUEis TRUE
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Backward ChainingBackward Chaining

determines what needs to be true to support 
a hypothesis
IF “A” THEN “B” THEN “C” THEN “X”

GOAL DRIVEN INFERENCING
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Backward ChainingBackward Chaining

A

B

C

X

For For ““XX”” to be TRUEto be TRUE
““AA”” must be TRUEmust be TRUE
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Backward Chaining

commonly used in diagnosis
what needs to be true to support my 
diagnosis?



10

© University of Auckland                         www.cs.auckland.ac.nz/~ian/                      ian@cs.auckland.ac.nz

55

Forward Chaining

often used to see what effect incoming 
information may have in process control 
systems
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Frames

Psychology suggests knowledge chunking
knowledge is not always
inferred
we use stereotypes and
expectations to understand
and reason
FRAMES (schemas, scripts)

richer data structures
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Frames

organise the properties/features of a thing or 
event into a prototype
FRAMES contain

slots and fillers
FRAME: House

walls:
roof:
door:
windows:
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Frames

describe default or typical knowledge
FRAME: House

walls: brick
roof: tile
doors: wooden
windows: wooden [6]

slots can contain data
& processes
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Frames

can be instantiated to specific individuals
FRAME: House: My_House

walls: brick*
roof: shingles
doors: wooden*
windows: aluminum

* = inherited
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Frames

help us deal with uncertainty
we assume an individual conforms to its 
defaults unless told otherwise
frames are often combined with rules
frames store data
rules or demons perform inferences
Leonardo, ART, KEE
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Hierarchies

Frames can be organised into 
hierarchies

Private Government

OFFICE RETAIL

COMMERCIAL INDUSTRIAL Resedential

BUILDINGS
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Hierarchies

Hierarchies are organised into
classes
subclasses
instances
the hierarchies have inheritance
Frames became OBJECTS
Frame based systems became OO

© University of Auckland                         www.cs.auckland.ac.nz/~ian/                      ian@cs.auckland.ac.nz

63

OOPS

objects show these properties
abstraction
inheritance
encapsulation
polymorphism
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OOPS

OOPS is used in
C++, Java etc…
Used in AI tools: SmallTalk, Kappa, 
ART*Enterprise, Nexpert Object, 
these are more dynamic than Java

Objects (e.g. classes, methods) can be modified 
during runtime
Also provide a higher-level programming 
environments

more suitable for AI programming
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Expressiveness
Object or Frames

support sharing of common properties
& overriding of properties - e.g. “birds fly, 
penguins don’t”
supports declarative and procedural knowledge
well structured knowledge bases
no guarantees of truth
requires discipline of the programmer
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Semantic Nets

Graphs made up of vertices and edges
vertices describe entities/concepts
labeled edges describe relationships 
between concepts

BUILDING

HOUSE

isa
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Semantic Nets
can define complex models

HOUSE BUILDING

SUPERSTRUCTURE

SUBSTRUCTURE

ROOF

COVERING

TILES

SLATES

AREA

isa

isa

isa
part of

part of

part of

hasahasa
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Semantic Nets

easily represented in AI languages
e.g., PROLOG
isa(house,building).
isa(slates,covering).
isa(tiles,covering).
partof(substructure,building).
partof(superstructure,building).
partof(roof,superstructure).
hasa(covering,roof).
hasa(area,roof).
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Conceptual Graphs
Formalised semantic network knowledge 
representation
rooted in Sowa’s association theory of meaning
A Conceptual Graph is a finite bipartite directed graph
each vertex is either a concept or a relation between 
two concepts
each concept may represent another conceptual 
graph

dog browncolour
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Conceptual Graphs
A monkey scratches its ear with a paw

monkey scratchagent object ear

instrument

pawpart of

part of
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Conceptual Graphs
each concept has a type
general concept – a concept with a wildcard instance (there 
exists a dog)

specific concept – a concept with a concrete instance

there is a hierarchy of types & subtypes:

concept w is specialisation of concept v if
type(v)>type(w)

dog:Spot browncolour

dog:*X browncolour

animal

dog cat
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Conceptual Graphs
canonic conceptual graph is sensible representation 
of knowledge that can, but does not have to, be true
canonic formation rules formalise rules of inference 
between two graphs while preserving canonicity 

copy – identical cloning of a graph

restriction – substituting a concept in a graph with its  
specialisation

join – joining two graphs via shared concept

simplification – deleting identical relations
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Restriction of Concepts
person eatagent object piepiepiepiepiepiepie

girl eatagent object piepiepiepiepiepiepie

person:Sue eatagent object piepiepiepiepiepiepie

girl:Sue eatagent object piepiepiepiepiepiepie

person
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Joining Concepts
person eatagent object piepiepiepiepiepiepiegirl:Sue

person eatagent manner piepiepiepiepiepiefastgirl:Sue

girl:Sue eat

agent object piepiepiepiepiepiepie

agent
manner fast
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Simplification of Concepts

person eat

agent object piepiepiepiepiepiepie

agent
manner fast

person eatagent

object piepiepiepiepiepiepie

manner fast
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Conceptual Graphs
FOPL transformation to CG

for each node → predicate
general concept → variable, specific concept  → atom

type:instance → type(instance) 
relation → n-ary predicate relation(in1, in2, …, inn) with 
arguments connecting neighbouring concepts
CG is existentionally quantified conjunction of these 
predicates

∃ X (dog(Spot) ∧ colour(Spot,X) ∧ brown(X))

Prolog:
dog(spot).
colour(spot,brown).

dog:Spot browncolour


