
1

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

CompSci.367
The Practice of Artificial Intelligence

Assoc. Prof. Ian Watson

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Symbolic reasoning

GOFAI* relies on the Physical Symbol System
Hypothesis:

Intelligent activity is achieved through the use of
symbol patterns to represent the problem
operations on those patterns to generate potential solutions
search to select a solution among the possibilities

An AI representation language must
handle qualitative knowledge
allow new knowledge to be inferred from facts & rules
allow representation of general principles
capture complex semantic meaning
allow for meta-level reasoning (reasoning about reasoning)
e.g., Predicate Calculus (also, the basis of Prolog)

* GOFAI = “Good Old Fashioned AI

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Predicate Calculus

Predicate calculus (PC) is a language for representing
knowledge, amenable to reasoning using inference rules
the syntax of a language defines the form of statements

the building blocks of statements in the PC are terms and
predicates
terms denote objects and properties

truth symbols true false

constant symbols dave redBlock happy

variable symbols X Person Answer1

function expressions mother(bob) plus(1,3)

predicates define relationships between objects
(arity defines the number of arguments)

mother/1 plus/2

2

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Predicate calculus: sentences

sentences are statements about the world
propositions (predicates applied to terms) are
sentences
if S, S1 and S2 are sentences, then so are

¬S (negation – NOT)
S1 ∧ S2 (conjunction – AND)
S1 ∨ S2 (disjunction – OR)
S1 ⇒ S2 (implication – IF-THEN)
∀X S (universal quantification – FOR ALL X…)
∃X S (existential quantification – THERE EXISTS

an X…)

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Predicate calculus: sentences

male(dave)
parent(dave, jack)
¬happy(chris)
parent(dave, jack) ∧ parent(dave, charlie)
happy(chris) ∨ ¬happy(chris)
healthy(kelly) ⇒ happy(kelly)
∀X (healthy(X) ⇒ happy(X))
∃X parent(dave, X)

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Predicate calculus: semantics
the semantics of a language defines the meaning of statements
an interpretation assigns meaning to terms/sentences

must focus on a particular domain (universe of objects)
terms are assigned values from the domain

constant an object in the domain
variable a subset of the domain
function symbol a function mapping args to an object in the domain

predicate symbols are assigned mappings from args to true/false
e.g. DOMAIN: students in this class
patrick, bryanP, john, bryanJ, scott : mapped to actual people
friend function : maps a students to his/her friend
friend(patrick) bryanP, friend(bryanP) patrick
undergrad/1: maps a student to true if an undergrad, else false
grad/1: maps a student to true if a grad student, else false
male/1: maps a student to true if male, else false
female/1: maps a student to true if female, else false

3

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Predicate calculus: semantics

interpretation assigns true/false value to sentences
proposition assigned true/false according to predicate mapping

¬S true if S is false, else false
S1 ∧ S2 true if both S1 and S2 are true, else false
S1 ∨ S2 true if either S1 or S2 are true, else false
S1 ⇒ S2 false if S1 is true and S2 is false, else true
∀X S true if S is true for all assignments to X
∃X S true if S is true for any assignment to X

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Predicate calculus: semantics

e.g. the following are all assigned true under
the previous interpretation

undergrad(patrick) grad(scott) male(john)
¬undergrad(john) ¬female(bryanP)
undergrad(patrick) ∧ undergrad(friend(patrick))
undergrad(bryanP) ∨ undergrad(bryanJ)
∀X male(X) ∃G grad(G)
∀X (undergrad(friend(X)) ⇒ undergrad(X))

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Predicate calculus: logical consequence

the semantics of the predicate calculus provides a basis for a
formal theory of logical inference
an interpretation that makes a sentence true satisfies it

a set of expressions {S1, …, Sn} logically implies S if
every interpretation that satisfies {S1, …, Sn} satisfies S
equivalently, we could say S is a logical consequence of {S1, …, Sn}
shorthand notation: {S1, …, Sn} ╞ S
e.g.,
{itRains⇒getWet, goSwim⇒getWet, itRains∨goSwim } ╞ getWet
{∀P(human(P)⇒mortal(P)), human(socrates)} ╞ mortal(socrates)

4

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Predicate calculus: inference

proving logical consequence via interpretations is difficult
requires reasoning over all interpretations

alternatively, a proof procedure can generate logical
consequences

a proof procedure is a combination of inference rules and an
algorithm for applying the rules to generate logical consequences

example inference rules:
Modus Ponens: if S1 and S1⇒S2 are true, then infer S2

And Elimination: if S1∧S2 is true, then infer S1 and infer S2

And Introduction: if S1 and S2 are true, then infer S1∧S2

Universal Instantiation: if ∀X p(X) is true, then infer p(a) for any a

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Inference example

initial knowledge:
{ ∀P(human(P) ⇒ mortal(P)),
human(socrates) }

extend using Universal Instantiation

{ ∀P(human(P) ⇒ mortal(P)),
human(socrates),
human(socrates) ⇒ mortal(socrates) }

extend using Modus Ponens

{ ∀P(human(P) ⇒ mortal(P)),
human(socrates),
human(socrates) ⇒ mortal(socrates),
mortal(socrates) }

⇓

⇓

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Inference example 2

initial knowledge:

{∀P(student(P) ⇒ tired(P)),
∀S(csmajor(S) ⇒ overworked(S)),
∀X(tired(X) ∧ overworked(X) ⇒ testy(X)),
student(patrick),
csmajor(patrick)}

5

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

AI programming languages

there are 2 major programming language used for AI
research

LISP (List Processing)
older (1957), more established in the U.S.
uses a functional style (but is still declarative)
CLIPS is based on LISP

Prolog (Programming in Logic)
newer (1971), more widely used in Europe & Asia
uses a totally declarative style, a.k.a. logic programming
attractive features: built-in notion of search
general data structures
powerful primitives for symbol manipulation

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

AI programming languages

Prolog evolved out of the automated
deduction community – 2 drivers:

(1) focus on a subset of predicate calculus
programs are collections of logical statements & relations

(2) implement a simple but efficient proof
procedure

Prolog interpreter applies inference rules to perform
deduction

logic programming: computation = logical
deduction from program statements

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Prolog

Prolog programs are statements from the
Horn clause subset of predicate calculus
facts (i.e., propositions)

all variables are assumed to be universally quantified, so
∀ is implicit
terminate each fact with a period

male(dave).

parent(dave, jack).

mortal(X).

6

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Prolog

rules (i.e., implications of the form: P1 ∧ … ∧ Pn ⇒ C)
again, ∀ is implicit & terminate rule with a period
slightly different notation in Prolog (to suit standard keyboards)

(1) conclusion is on the left (the Horn clause form)
(2) :- replaces ⇐
(3) comma replaces ∧
e.g., C :- P1, …, Pn.

happy(chris) :- healthy(chris).

If Chris is healthy, Chris is happy
mortal(X) :- human(X).

father(F, C) :- parent(F, C), male(F).

grandfather(F, G) :- father(F, C), parent(C, G).

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Prolog's basic model of
computation

the programmer states relations between objects as
facts & rules

parent(dave, charlie). parent(dave, jack).

parent(laura, charlie). parent(laura, jack).

male(dave). male(charlie). male(jack).
female(laura).

father(dave, charlie) :- parent(dave, charlie),
male(dave).

mother(M, C) :- parent(M, C), female(M).

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Prolog's basic model of
computation

the job of the Prolog interpreter is to receive queries and
determine whether they are logical consequences of the facts &
rules

in simple case, merely ?- parent(dave, charlie).
looks up facts Yes

more generally, may need ?- father(dave, charlie).
to perform inferences Yes
using the rules ?- father(charlie, dave).

No

may even require picking the ?- mother(laura, charlie).
right instances of rules Yes

7

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Prolog's basic model of
computation

A Prolog program is just a
database of facts & rules that
define relations between
objects
% begins a comment in Prolog
name files with .pro or .pl
extensions
good practice to group all
definitions of the same relation
together
(some Prolog interpreters
complain otherwise)
since a period marks the end of
a rule, can split across lines for
readability

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% family.pro
%%%
%%% Encodes family relations.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

parent(dave, charlie).
parent(dave, jack).
parent(laura, charlie).
parent(laura, jack).

male(dave).
male(charlie).
male(jack).

female(laura).

father(F, C) :-
parent(F, C), male(F).

mother(M, C) :-
parent(M, C), female(M).

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Prolog environment

SWI-Prolog is a free Prolog
interpreter/environment

online HTML reference
manual:
http://www.swi-prolog.org/

program files are simply text
files, use your favorite text
editor
once a file is created, its
knowledge (facts & rules) can
be loaded by consulting that
file
once the facts & rules have
been consulted, can enter
queries and the interpreter
determines logical
consequence

Welcome to SWI-Prolog (Version 4.0.11)
Copyright (c) 1990-2000 University of Amsterdam.
Copy policy: GPL-2 (see www.gnu.org)

For help, use ?- help(Topic). or ?- apropos(Word).

?- consult('a:/family.pro')).
% a:/family.pro compiled 0.00 sec, 1,516 bytes

Yes

?- parent(laura, charlie).

Yes

?- mother(laura, charlie).

Yes

?- mother(dave, charlie).

No

