CompSci.367
The Practice of Artificial Intelligence

Assoc. Prof. lan Watson

© Unlversl!z of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Symbolic reasoning

= GOFAI™* relies on the Physical Symbol System
Hypothesis:
= Intelligent activity is achieved through the use of
symbol patterns to represent the problem
operations on those patterns to generate potential solutions
search to select a solution among the possibilities
= An Al representation language must
handle qualitative knowledge
allow new knowledge to be inferred from facts & rules
allow representation of general principles
= capture complex semantic meaning
allow for meta-level reasoning (reasoning about reasoning)
= e.g., Predicate Calculus (also, the basis of Prolog)

* GOFAI =" Good Old Fashioned Al
© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Predicate Calculus

= Predicate calculus (PC) is a language for representing
knowledge, amenable to reasoning using inference rules
= the syntax of a language defines the form of statements
= the building blocks of statements in the PC are terms and

predicates
= terms denote objects and properties
= truth symbols true false
= constant symbols dave redBlock happy
= variable symbols X Person Answerl
= function expressions mother (bob) plus(1,3)

= predicates define relationships between objects
(arity defines the number of arguments)
= mother/1 plus/2

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz




Predicate calculus: sentences

= sentences are statements about the world
= propositions (predicates applied to terms) are
sentences
= if S, S1 and S2 are sentences, then so are
= S (negation — NOT)
= S1AS2 (conjunction — AND)
= S1vS2 (disjunction — OR)
= S1=>S2 (implication — IF-THEN)
= VXS (universal quantification — FOR ALL X...)
= 3X'S (existential quantification — THERE EXISTS
an X...)
© Unlversl!z of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Predicate calculus: sentences

male(dave)

parent(dave, jack)

=happy(chris)

= parent(dave, jack) A parent(dave, charlie)
happy(chris) v =happy(chris)
healthy(kelly) = happy(kelly)

VX (healthy(X) = happy(X))

3X parent(dave, X)

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Predicate calculus: semantics

= the semantics of a language defines the meaning of statements
= an interpretation assigns meaning to terms/sentences
= must focus on a particular domain (universe of objects)
= terms are assigned values from the domain
= constant > an object in the domain
= variable > a subset of the domain
= function symbol - a function mapping args to an object in the domain
= predicate symbols are assigned mappings from args to true/false
= e.g. DOMAIN: students in this class
patrick, bryanP, john, bryanJ, scott : mapped to actual people
friend function : maps a students to his/her friend
friend(patrick) - bryanP, friend(bryanP) - patrick
undergrad/1: maps a student to true if an undergrad, else false
grad/1: maps a student to true if a grad student, else false
male/1: maps a student to true if male, else false
female/1: maps a student to true if female, else false

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz




Predicate calculus: semantics

= interpretation assigns true/false value to sentences
= proposition assigned true/false according to predicate mapping
= =S true if S is false, else false
= SI1AS2 true if both S1 and S2 are true, else false
= S1vS2 true if either S1 or S2 are true, else false
= S1=S2 false if S1 is true and S2 is false, else true
= VXS true if S is true for all assignments to X
= 3XS true if S is true for any assignment to X
© Unlversl!z of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Predicate calculus: semantics

= e.g. the following are all assigned true under
the previous interpretation
= undergrad(patrick) grad(scott) male(john)
= —undergrad(john) —female(bryanP)
= undergrad(patrick) A undergrad(friend(patrick))
undergrad(bryanP) v undergrad(bryanJ)
VX male(X) 3G grad(G)
VX (undergrad(friend(X)) = undergrad(X))

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Predicate calculus: logical consequence

= the semantics of the predicate calculus provides a basis for a

formal theory of logical inference
= an interpretation that makes a sentence true satisfies it

= aset of expressions {S1, ..., Sn} logically implies S if

every interpretation that satisfies {S1, ..., Sn} satisfies S
equivalently, we could say S is a logical consequence of {S1, ..., Sn}
shorthand notation: {S1, ..., Sn} kS
- eg.,
{itRains=getWet, goSwim=getWet, itRainsvgoSwim } |= getWet
{vP(human(P)=mortal(P)), human(socrates)} Fmortal(socrates)

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz




Predicate calculus: inference

= proving logical consequence via interpretations is difficult

= requires reasoning over all interpretations
= alternatively, a proof procedure can generate logical

consequences

= a proof procedure is a combination of inference rules and an
algorithm for applying the rules to generate logical consequences
example inference rules:
Modus Ponens: if S1 and S1=S2 are true, then infer S2
And Elimination.  if SLAS2 is true, then infer S1 and infer S2
And Introduction: if S1 and S2 are true, then infer S1IAS2
Universal Instantiation: if VX p(X) is true, then infer p(a) for any a

© Unlversl!z of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Inference example

= initial knowledge:
{ vP(human(P) = mortal(P)),
human(socrates) }

U extend using Universal Instantiation

{ vP(human(P) = mortal(P)),
human(socrates),
human(socrates) = mortal(socrates) }

U extend using Modus Ponens

{ vP(human(P) = mortal(P)),
human(socrates),

human(socrates) = mortal(socrates),
mortal(socrates) }

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Inference example 2

= initial knowledge:

{VP(student(P) = tired(P)),
VS(csmajor(S) = overworked(S)),
vX(tired(X) A overworked(X) = testy(X)),
student(patrick),
csmajor(patrick)}

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz




Al programming languages

= there are 2 major programming language used for Al
research

= LISP (List Processing)
= older (1957), more established in the U.S.
= uses a functional style (but is still declarative)
= CLIPS is based on LISP

= Prolog (Programming in Logic)
= newer (1971), more widely used in Europe & Asia
= uses a totally declarative style, a.k.a. logic programming
= attractive features: built-in notion of search
= general data structures
= powerful primitives for symbol manipulation

© Unlversl!z of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Al programming languages

= Prolog evolved out of the automated
deduction community — 2 drivers:
= (1) focus on a subset of predicate calculus
= programs are collections of logical statements & relations
= (2) implement a simple but efficient proof
procedure

= Prolog interpreter applies inference rules to perform
deduction

= logic programming: computation = logical
deduction from program statements

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Prolog

The
University

of Auckland

= Prolog programs are statements from the
Horn clause subset of predicate calculus

= facts (i.e., propositions)
= all variables are assumed to be universally quantified, so
V is implicit
= terminate each fact with a period
male (dave) .
parent (dave, jack).
mortal (X) .

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz




Prolog

= rules (i.e., implications of the form: PLA .. APn=C)
= again, V is implicit & terminate rule with a period
= slightly different notation in Prolog (to suit standard keyboards)
= (1) conclusion is on the left (the Horn clause form)
= (2) :- replaces <
= (3) comma replaces A
. eg., C:=P1, .., Pn

happy (chris) :- healthy(chris).

If Chris is healthy, Chris is happy

mortal (X) :- human (X) .

father (F, C) :- parent(F, C), male(F).
grandfather (F, G) :- father(F, C), parent(C, G).

© Unlversl!z of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Prolog's basic model of

Al computation

= the programmer states relations between objects as
facts & rules

= parent (dave, charlie). parent (dave, jack).
= parent (laura, charlie). parent (laura, jack).
= male (dave) . male (charlie) . male (jack) .

female (laura) .

= father(dave, charlie) :- parent(dave, charlie),
male (dave) .
= mother (M, C) :- parent (M, C), female(M).
© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

Prolog's basic model of
computation

= the job of the Prolog interpreter is to receive queries and
determine whether they are logical consequences of the facts &

rules

in simple case, merely ?- parent (dave, charlie).
looks up facts Yes

more generally, may need ?- father(dave, charlie).
to perform inferences Yes

using the rules ?- father (charlie, dave).

No

may even require picking the ?- mother (laura, charlie).
right instances of rules Yes

© University of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz




Prolog's basic model of
Sl computation

= A Prolog program is just a
database of facts & rules that
define relations between

%%% Encodes family relations. Ob]eCtS

= % begins a comment in Prolog

= name files with .pro or .pl
extensions

= good practice to group all

Yo% %%6%9%0%6%%6%6%%%%%6%6%%%%%0% %% %% %% %%
%%% Family.pro
%%%

parent(dave, charlie).
parent(dave, jack
parent(laura, charlie).
parent(laura, jack).

male(dave). . .
male(charlie). definitions of the same relation
mateack.- together

female(laura).

(some Prolog interpreters
complain otherwise)

= since a period marks the end of
a rule, can split across lines for

father(F, C) :-
parent(F, C), male(F).

mother(M, C) :-
parent(M, C), female(M).

readability
© Unlversl!z of Auckland www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

oAl Prolog environment

Copyright (c) 1990-2000 University of Amsterdam.
Copy policy: GPL-2 (see www.gnu.org)

For help, use ?- help(Topic). or ?- apropos(Word).

2- consult(*a:/family.pro®)).
% a:/family.pro compiled 0.00 sec, 1,516 bytes

Yes
?- parent(laura, charlie).
Yes
?- mother(laura, charlie).
Yes
?- mother(dave, charlie).

No

© University of Auckland

www.cs.auckland.ac.nz/~ian/

Welcome to SWI-Prolog (Version 4.0.11) = SWI-Prolog is a free Prolog

interpreter/environment

= online HTML reference

manual:

= http://www.swi-prolog.org/
program files are simply text
files, use your favorite text
editor
once a file is created, its
knowledge (facts & rules) can
P;} loaded by consulting that
ile
once the facts & rules have
been consulted, can enter
gueries and the interpreter
letermines logical
consequence

ian@cs.auckland.ac.nz




