Utilizing ACID atomicity/durability: queues

Queues:

* Transaction chopping

Local queues

Transactional gueue patterns

Locking mechanisms for queues

Distributed queues

SE/CS 351 Gerald Weber's Slide Set 8

Queues In databases

* A generic application of the ACID properties atomicity (and
also durability.

* One technology that helps with many different problems:

o Making transactions work in spite of aborts

o

Load buffering

o

Chopping complicated transactions

o

Secure messaging
* The better Service Oriented Architecture (SOA)

(o]

Business process management

(o]

Stable user interaction with a transactional system.

SE/CS 351 Gerald Weber's Slide Set 8

Transaction chopping

* Is the technique of splitting one transaction into several
ones. Consequences:

o no ACID properties across the transaction boundary.

« Motivation: transactions should be only as long as
necessary.

SE/CS 351 Gerald Weber's Slide Set 8

Chopping a business transaction

Chopping one writing transaction into two writing

transactions is nontrivial.

Business transaction (adapted from OASIS terms) : A
consistent state change in the system. We want to
realize it through a series of ACID transactions —

In general it requires communication between the
iIndividual ACID transactions with message queues.

After some (but not all) ACID transactions have
terminated, we have a provisional effect.

Compensating ACID transactions are necessary if the

business transaction cannot complete.

SE/CS 351 Gerald Weber's Slide Set 8

Example of a business transaction

e |n a transfer business transaction:
I.) withdraw $x from account y

Ii.) put $x on account z
 Assume, a client program issues two transactions:
o Transaction TAL: step |,
o Transaction TAZ2: step Ii,
« But what happens, if client program crashes after TA1?
« Solution:
o TAl leaves a note in a message queue and

o Transactional gueue access patterns

SE/CS 351 Gerald Weber's Slide Set 8

Example message queue

 In the transfer example:
o Message gueue is a table with scheme:
o TransferOngoing(id, fromAccount, toAccount, amount)
o TAl leaves a row (id, y, z, X) in this queue
o TA2 dequeues a row and does the appropriate action.

 Important: We will not and can not require strict first-in first-
out (FIFO) processing of messages in a message queue.

* Processsing of messages in a best effort manner:
o |If possible, process older messages first.

o Possible obstacles: aborts, concurrent access to

message queue
SE/CS 351 Gerald Weber's Slide Set 8

Local message queues

conceptual precursor to persistent message queues in
distributed systems.

A local message queue may be a table.
o The rows are conceived as messages.
Message producers: place messages in queue.

Message consumers: they dequeue the messages, that
means: remove messages from the queue.

Dequeuing can be seen as an action on the level of the
business logic: the message is not pending any more. The
Implementation could use at least two strategies: either
deleting the message or marking it as processed (the
consumer processes have to use the option chosen)

SE/CS 351 Gerald Weber's Slide Set 8

Architecture with queue

 The messages in the queues
must be processed by
database clients, the dequeue
workers.

* These clients dequeue the
message, process the
message.

* They might optionally enqueue
subsequent messages for
further processing.

TN

Database

~_

r
B

N

workerA

I

S

workerB

SE/CS 351 Gerald Weber's Slide Set 8

Messages as commands

Typical usage of message queues:
Consumers (degueue workers) are activated by messages:

o A message demands action. If the action is taken, the
message Is dequeued.

Messages are paired with appropriate actions, equivalent
to pairing of method header and method body.

In the simplest case one action is a subprogram that issues
one ACID transaction to dequeue and process a message.
We want to call this subprogram a dequeue worker.

The dequeue worker gets activated by a different program,
today often called container.

SE/CS 351 Gerald Weber's Slide Set 8

Transactional dequeue

« A common pattern of dequeueing access to a queue:
transactional dequeue pattern:

 Performed by a dequeue worker, database client.

» A transactional dequeue for a local queue is a single local
transaction that does two operations:

o dequeue message from queue table
o execute appropriate action

o Atomicity: Message is dequeued if and only if appropriate
action succeeds.

* Transactional dequeue enables sophisticated transaction
chopping, subsequent ACID transactions can communicate
through the message gueue in a safe manner.

SE/CS 351 Gerald Weber's Slide Set 8 10

Transaction chaining in business transactions

e Transactions in a business transaction dequeue and

enqueue messages. 9=

« A transactional dequeue in the midst of a business
transaction may work on two message queues:

o dequeue message from incoming queue 1
o execute appropriate action

° enqueue message in outgoing queue 2

o Atomicity: Message is dequeued if and only if
appropriate action succeeds: This includes enqueuing
of new messages.

« Typically there is one queue at the very start of the

business transaction.

SE/CS 351 Gerald Weber's Slide Set 8 11

conditional response and declining

* In the example, TA1 might be withdrawal after check.
 The action is a conditional action, and has one outcome
that is superficially equivalent to a rollback:
o If insufficient funds are available, then the withdrawal is
declined.
e Such an outcome is however a successful processing of
the message:
o The declining Is the appropriate action.

o However, in this application example the whole transfer
must be declined. Again, this is the correct response.

SE/CS 351 Gerald Weber's Slide Set 8

12

Concurrent access to gueues
e Jim Gray 95:

e Queues are an interesting database concept with
Interesting concurrency control.

e Persistent queue systems need DBMS functionality.

* Queues are a powerful, interesting technology that
motivate innovations in lock management.

* Desired operation: read past: go to the next unlocked item.

* Problem: It is tricky to look for the next unlocked object. If
one looks at an object that is locked, usually the transaction
gets blocked.

SE/CS 351 Gerald Weber's Slide Set 8 13

Simulating Read Past

 Queue Management and keeping track of unprocessed
messages iIs done in a separate component, the
dispatcher.

« Dispatcher uses isolation level “READ UNCOMMITTED”

» Dispatcher calls dequeue workers that do the transactional
dequeue.

o They receive the id of the message that they should
work on as a parameter.

o They only work on that message.

* This avoids the read-past problems.

SE/CS 351 Gerald Weber's Slide Set 8

14

transactions, how it all began: flight reservation

» American Airlines and IBM
started SABRE development

1960 — it is still a leading flight @ Clients @
reservation system

. _ Presentation
* CICS: Classical computerized Server
online transaction processing Messam

system

* 50,000 connected travel
: Transaction Monitor
agencies

e Multi-tier architecture @ %
Databases
» Today: Value of sold products:

US$80 Billion

{ Dequeue Worker

SE/CS 351 Gerald Weber's Slide Set 8 15

the old design prevaills

If used for fully developed TP
heavy applications, modern @ Bmwser@
enterprise platforms are used in Y

the same way. Jsp| Web
E£JB | Application

framework

PHP

Same design, different

Implementation. e.g. Enterprise
Service Bus/Broker

Todays enterprise application
frameworks focus on
component structure.

Message driven EJB w

Transactional EJB container

But driving force may be change
of underlying hardware platform.

Databases

SE/CS 351 Gerald Weber's Slide Set 8 16

Distributed messaging scenario

Two databases, DB1 and DB2.
Applications want to send messages from DB1 to DB2.
Messages need to be processed on DB2.
> 3
One queue on each DB: —>
o on DB1: outboxl(messagelD, status, message)
o on DB2: Inbox2(messagelD, status, message)

On outbox, only one worker W should work. It does not
process the message, just moves it to inbox2.

The inbox2 on DB2 has workers that process the message.

W is a message consumer for outbox, and a message
producer for inbox2.

SE/CS 351 Gerald Weber's Slide Set 8 17

Distributed messaging, secure delivery

* W has two independent database connections, one to DB1
and one to DB2. W does two ACID transactions.

« Only for outbox1 on DB1 it is a message consumer.

* \W does a transactional dequeue of a message in DB1.:
1. enqueues (writes) message in inbox2 on DB2.

2. commits this write on DB2.

3. commits the dequeue on DB1.

* If everything works, then the message is now in inbox2.
« What if W crashes after 2 and before 3 ?

 Dequeue on outbox is not committed.

W will redo it, don’t we end up with multiple copies in DB2?
SE/CS 351 Gerald Weber's Slide Set 8 18

ldempotent operation of the worker
* An operation g is idempotent, if applying g twice has the
same effect as applying g once.

 The enqueue of the message to inbox2 (step 1 and 2)
should be an idempotent engqueue attempt:

o |f a message with the same message id is already In
Inbox2, skip the enqueue.

* This procedure is possible, because the operation of

providing a piece of information is inherently idempotent.

e E.g. incrementing a counter would not be idempotent.

SE/CS 351 Gerald Weber's Slide Set 8

19

ldempotence is crucial point of this protocol

* Because of the idempotence of the enqueue, it is possible to
do reach distributed ACID properties with two ACID
transactions:

* The two databases do not need to know that they are part of
a distributed, transactional communication.

 General distributed ACID transactions are MUCH more
complicated and heavyweight.

o Require a special voting protocol (Two-phase commit,
not to be confused with 2Phase locking)

o Require special infrastructure, are risky.

 Distributed messaging are much more lightweight

SE/CS 351 Gerald Weber's Slide Set 8 20

Connection to Service Oriented Architecture

o Service Oriented Architecture(SOA): A system architecture
where the system is built from components communicating
over service interfaces (web services are just one example).

* This makes the components reusable, since the service
Interfaces can be connected in new topographies.

« Service interfaces often have a messaging flavor.
e Important requirement for service interfaces: idempotence.

 If a message is sent twice, it should have the same effect as
If it Is sent only once.

« Often equivalent to using an id: Two messages with the
same id should be identical, are treated as single message.

SE/CS 351 Gerald Weber's Slide Set 8 21

Message queues as load buffer

Message queues are placed at the boundary of a high-
performance computing zone.

Outside world (User) places requests to the transaction
service into the message queue:

o Once queued, the message will be processed.
o Reliablility for the user.

Purpose of the application server. continuously processes
pending requests (= messages) in the queue.

In high load times, the application server is 100% utilized.

Several application servers can work on the same queue.

SE/CS 351 Gerald Weber's Slide Set 8

