
Modelling form-based interfaces with bipartite

state machines

D. Draheima,*, G. Weberb

aInstitute of Computer Science, Freie Universität Berlin, Takustr. 9, 14195 Berlin, Germany
bDepartment of Computer Science, The University of Auckland, Private Bag 92019, Auckland 1020, New Zealand

Received 6 July 2004; revised 6 September 2004; accepted 12 January 2005
Abstract

This article presents the concept of form storyboarding, a new modelling method for eliciting,

specifying and communicating functional requirements of applications with form-based interfaces.

We identify two-staged interaction as the abstract concept behind form-based interfaces. The method

encompasses a visual language for the documents to be created and a set of proposals for the

activities involved in that. The method fits to different and ubiquitous types of submit/response style

interfaces, i.e. mainframe terminals as well as web-based interfaces. The method yields an abstract

interface model based on bipartite state machines. The model is executable and can be used for

automatic prototype generation. Form storyboarding is first and foremost a feature-driven approach.

The whole form storyboard can be obtained by collecting single system features. Crucial for this

approach is the fact that diagrams can be combined in an easy operation, by building the union of

both diagrams and identifying nodes and edges with the same name.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Requirements elicitation; System specification; Enterprise applications

1. Introduction

The HCI community has naturally believed that over time the crude looking form-based

interfaces will be replaced by advanced GUI-based interfaces. This belief has not reduced

the practical importance and ubiquity of such form-based interfaces. However, it now
Interacting with Computers 17 (2005) 207–228
www.elsevier.com/locate/intcom
0953-5438/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.intcom.2005.01.002

* Corresponding author. Tel.: C4930 838 75144; fax: C4930 838 75109.

E-mail addresses: draheim@acm.org (D. Draheim), g.weber@cs.auckland.ac.nz (G. Weber).

http://www.elsevier.com/locate/intcom


D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228208
seems that many new interface metaphors have been unable to provide real added value to

cases, where form-based interfaces are used. The typical usage of a textual input field, e.g.

the collection of a new user name, apparently cannot be improved in most cases. Hence the

form-based interface seems likely to remain with us in the future.

In this article, we introduce form storyboarding (Draheim and Weber, 2003a), a method

that is an amalgamation of requirements elicitation, specification, and high-level UI

prototyping. Form storyboarding is applicable to systems with form-based interfaces and

addresses requirements for business functionality. It is a domain-specific modelling

technique that is tailored to the development of enterprise systems. Enterprise systems are

a distinct and highly complex class of systems. They are characterized (i) by their

pervasive importance, making them mission critical for enterprises, (ii) by their extreme

multi-user capability, (iii) by their tolerance of heavy loads, and (iv) by their tight

integration with the business processes, which makes every enterprise system installation

unique. In short, they are a fascinating yet demanding discipline in software engineering.

On the one hand, classical mainframe architectures like CICS are still in use and are

constantly being improved. New vendor-neutral and platform-independent enterprise

computing platforms like J2EE have emerged. These technologies are successful because

they guarantee maintainable and scalable software system architectures. On the other

hand, form-based interfaces have advantages for the self-explanatory character of a

system. The difference between temporary input and submission, or ‘sending’, fits with

business semantics: the two classes of interactions correspond both to the work-intensive

preparation of a contract by page interaction and the punctual and atomic interactions of

the ‘serious’ kind, such as agreeing to a contract by submission of a form.

Moreover, it is good practice to model functional requirements in a platform independent

manner. The structure of the requirements specification should fit to the class of application.

This is supported, e.g. by the concepts of the IEEE norm for requirements (IEEE, 1993),

which allows various alternatives for the structure of a requirements specification.

Form storyboarding yields an artifact, the form storyboard, which is a complete

description of the system interface. Form storyboarding encourages the requirements

engineer to create the basic structure for the functional requirements specification

according to the elements of the form storyboard.

In Section 2 of the article, we identify two-staged interaction as the abstract concept

behind form-based, submit/response style interfaces. Section 3 proposes modelling

submit/response style interfaces with bipartite state transition diagrams. Section 4

introduces the notion of screen diagrams. The screen diagram is intended to introduce the

modeller to the notion of submit/response style dialogues in a hands-on fashion. It is

especially suited as a starting point for discussing the intended task of the system with the

domain expert. The conceptual insights of the screen diagrams will be fully expressed in

the form storyboard discussed in Section 5. Section 6 is about dealing with large, ‘real-

size’ web applications. Section 7 provides an outline of the formchart, which is a diagram

that is accompanied by a data model and formal dialogue constraints (Draheim and Weber,

2004b). Screen diagrams and form storyboards can be understood as views on an intended

final formchart. The forward engineering tool Angie is described in Section 8. Systems

generated from the specification language Angie can be considered as simulations of the

models proposed in this article. A discussion of related work follows in Section 9,



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228 209
especially with respect to the domains of user interface modelling and web application

modelling. The article finishes with an outline of further directions in Section 10.
2. Two-staged interaction

Many applications, such as today’s enterprise applications, use a particular form-based

interface type, which we will call submit/response style. Form-based interfaces collect

user input in the style of input forms. Input forms can be understood as a metaphor, namely

as a direct translation of paper forms into human-computer interfaces. Input forms are

composite structures of input elements. ‘Submit/response style interfaces’ is our term for

form-based interfaces with a special screen update policy. On a submit/response style

interface all screen updates have to be triggered by a dedicated user action. The user

actively submits data or a query, instead of watching a constantly updated view.

This type of interface is not tied to any specific technology. On the contrary, the same

characteristics can be found in many technologies—see Fig. 1, e.g. HTML-based clients,

mainframe terminals, even certain parts of GUI-based dialogues; the secondary dialogues

in document applications, like the print dialogue, follow this paradigm. An important class

of systems of this type is systems with ultra-thin clients. Ultra-thin clients are used for

creating an interface tier that does not contain business logic in itself. Ultra-thin clients

cache the user interaction on one page in the client layer. Systems with ultra-thin clients
Fig. 1. Examples of ultra-thin client based submit/response style systems.



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228210
are typically multi-user systems. Ultra-thin clients fit neatly into transactional system

architectures.

Submit/response style interfaces show one page for each point in time, which offers the

user a collection of interaction options. Interaction options are input fields of forms and

submit buttons, which trigger a page change. The difference between input fields and

submit buttons leads to a strict two-staged interaction paradigm. User interaction is

separated into interactions appearing on one page and those that result in a page change.

Interaction on one page, called page interaction, consists of filling out input elements,

changing the focus between input elements, resetting the form and other interactions.

These user interactions are only temporal and do not change the system state. This allows

to abstract from page interactions when modelling the complete interface.

On the other hand, page changes do affect the system. Page changes occur when the

user either submits a form or clicks a link. Submitting a form is the more general concept; a

link can be seen as a form consisting solely in the submit button. If the user triggers a page

change, the result of his or her interactions with the respective form is processed by the

system, but his or her interaction with other forms on the page is lost.

In submit/response style interfaces, the submission of a form is an operation that has quite

precisely the semantics indicated by the paper form metaphor. In computer science terms,

the submission can be modelled as a method call (Draheim and Weber, 2002), namely the

submission of an actual parameter list with a method name. The actual parameter list is

given by the contents of the input elements, while the method name is best represented by the

form title. The form itself can therefore be seen as an editable method call. As a result of a

page change, a new page will be presented to the user. This page will contain information

and new interaction options for the user, namely new forms. Many concepts in concrete

technologies can be subsumed under these concepts. For example in HTML, links can be

seen as submit buttons in textual style. If a page contains a list of submit buttons, then the

choice of one of these buttons for submission must be seen as an additional input value: a list

of submit buttons is equivalent to one submit button combined with a choice list.

Form-like interface layout can be found not only for ultra-thin clients but also in other

systems, such as desktop databases typically found in office suites. However, such systems

follow a fundamentally different paradigm from submit/response style interfaces. In

desktop databases, a form-like input mask is an editable view of persistent data. Once a

field is edited, the corresponding field in the persistent data is changed immediately. In

general, therefore, there is no need for a submit procedure, instead there is a concept of

buttons, where a button is a parameter-free command. These kinds of dialogues perform

screen updates in a push style, meaning that the system pushes the new content onto the

screen continuously. An early presentation of such a paradigm can be found in (Hayes,

1985). In these kinds of user interfaces, forms could also be called views.
3. Modelling HCI with bipartite state transition diagrams

The recognition of the two-staged interaction paradigm leads to the following key

insight about requirements specification for submit/response style interfaces: there is no

need to specify the fine-grained interface behaviour on one page. Page interactions are



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228 211
well understood and can be offered by a general browser, which is able to interpret a

declarative page description and provide a sufficiently powerful standard page interaction

paradigm. This explains the success story of concrete technologies like the HTML form

concept together with the web browser as a standard ultra-thin client. Hence specifying

submit/response style interfaces can be reduced to specifying page changes.

We propose form storyboards, a bipartite extended class of state transition diagrams,

tailored to the modelling of submit/response style interfaces. A state transition diagram is a

directed labelled graph. The nodes are states of the system and the edges are transitions

between the system states. Between two states there can be several edges, distinguished by

different labels.

Due to the fact that page interaction is well understood, the main task in modelling the

dynamic behaviour of a user interface is the modelling of page changes. From this

perspective, the user interface remains in the same state as long as the same page is

presented to the user. The state changes whenever the user triggers a page change. This full

abstraction from page interactions is the key advance of the proposed method beyond other

state transition diagram approaches, which are discussed in Section 4.

In principle, the system can show an infinite set of pages. In order to model the interface

as a finite state diagram, one has to identify a finite set of page sets, each representing one

page. Take for example a catalogue of an online bookstore. The number of categories is

likely to change over time. The favourite model would have only one state in the state

transition diagram which represents all categories. The diagram does not model

information as to which precise category is shown. The diagram may be allowed to

mention that the states chosen for the diagram will often match more or less the finite set of

different page implementations.
4. Screen diagrams

Naive screenshot diagrams can be found frequently in practice, showing pages and

connections between them. Screenshot diagrams, also called UI prototypes, can have

various meanings concerning the connections between pages. In our approach we see

pages as states and connections between pages as possible state transitions. We now

introduce our notion of page transition diagrams, which we call screen diagrams. This

diagram type is intended to introduce the modeller to the notion of submit/response style

dialogues in a hands-on fashion. It is especially suited as a starting point for the discussion

with the domain expert about the intended task of the system. The conceptual insights of

the screen diagram will be fully expressed later in the form storyboard.

Fig. 2 shows an example screen diagram for an online seminar registration system. The

front page shows the students registered so far and contains links to the different

interaction options. New students can register themselves. From the homepage, students

already registered can change or delete their registration. Each link leads to a new page

specific for the chosen option. A screen diagram describes a system as consisting of a finite

set of pages, each page offering a finite number of interaction options. A finite description

of the interaction options is conceptually preferable to an unspecified potentially infinite



Fig. 2. Overview of the screens of an online registration system.

D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228212

-(errata: 'change' and 'delete' labels must be swapped.)
description as it is shown by the dashed lines in Fig. 2. All delete options of the list

together form a single conceptual delete option.

In screen diagrams, a node shows a single screen and represents a set of states of the

system at the same time. The screen diagram is therefore, explicitly identified as a state

transition diagram. At this point, we see the impact of the two-staged interaction

paradigm: only the page changes are modelled as state transitions in the screen diagram.

The page interaction obviously is implicit in each single page prototype. We want to

conceive our screen diagram as being executable by a high-level browser. Such a browser

is not a technological browser, but an abstract machine executing our specification. The

state transition diagram is a coarse-grained state transition since it depicts only page

change as state change. This is a major difference in contrast to common user interface

modelling with state transitions (Wasserman, 1985; Vilain et al., 2000a,b), where the fine-

grained page interaction is modelled.



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228 213
But the most crucial observation we have to make, which immediately opens the

conceptual path to form storyboards, is the observation that system response may be

conditional: a single page change triggered by the user can result in different response

pages, depending on the system state. A typical case is that either the regular response

page or an error page is shown. Hence screen diagrams as an interface prototype notation

also offer conditional transitions. An example is the submission of a registration form in

the diagram. The transition has a branching point depicted by a square from which

different branches lead to different response pages. These branches are annotated with the

conditions under which they occur. How such a system can be still seen as a state transition

diagram will be explained in the context of form storyboards (Section 5).
5. Form storyboards

Form storyboards take the understanding of submit/response style applications a step

further; in form storyboards the system is seen as a bipartite state transition diagram. The

basic structure of form storyboards can be seen in Fig. 3. In this view, the system is

alternating between two kinds of states. The first kind of state corresponds to the pages of

the system as before. These are called client pages and are depicted by ellipses. The system

remains in such a client page state until the user triggers a page change. In that moment,

the record with his or her previous input is sent to the system. As one can see in Fig. 3, the

type of this record is specified within the rectangles depicting the second kind of state.

They represent the systems action in response to a page change and are therefore called

server actions. The system leaves these states automatically and moves to a new client

page.

Form storyboards are designed for communication between domain experts and IT

experts. The modelling of the system as a form storyboard brings a number of benefits for

modelling, e.g. it fosters the modelling of conditional page transitions. The branching

points in the conditional transitions of the screen diagrams are identified with server

actions in the form storyboard. The branching transitions are split into transitions going

from the client page to the server action and transitions going from the server action to the

client pages. The first type of transition is called page/server transition, and the second

kind of transition is called server/page transition. Each unconditional transition in the

screen diagram which leads from one page to another has to be transformed into two

transitions with an intermediate server action.

5.1. Typed calls to the system

The bipartite structure of form storyboards clarifies the difference between pages and

forms, which can be seen as the motivation for the term ‘form storyboard’. Let us

consider the page of the example application with title ‘Change your Data’, which is

named changePage in the form storyboard. This page is dominated by the form for

changing the prefilled personal data. However, the page and the form are different

concepts, as can be seen by the fact that the page also offers another option (deleting

the record).



Fig. 3. Form storyboard for the registration system.

D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228214
Each client page offers a finite number of interaction options in the conceptual view we

have already introduced for screen diagrams. Each interaction option corresponds to a

page change.

Page change is seen as the submission of a data record together with a command to the

system. Hence page change can be seen as a method call by the user. This method call is

editable. Its actual parameters are edited by the kind of interaction, we have called page

interaction, either by textual input (also called direct input) or by selecting from a list.

Web technology often uses links to choose a certain parameter. Consider again the main

page of our registration system. A member can delete him- or herself by clicking the delete

square beside his or her entry. This could be realized by a link. The difference between

links and forms however resides on the implementation level of the system. In our method,

since it is platform independent, we unify links and forms under the single concept of page

change. For example, a group of links is simply selection. The analysis level is not

concerned with the technical realization, not even with the layout, i.e. the selection could

be realized as a list of links as well as a list of radio buttons or a pull down list. In other

words, a list of links is equivalent to a radio button group with a submit button.



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228 215
As we said earlier, in form-oriented analysis page change is seen as an editable method

call. The server action represents the state of method execution. In form, storyboards each

server action can have more than one ingoing edge, representing calls from different client

pages to the same method. All ingoing edges to the same server action must provide the

same parameters. In form storyboards, the parameters of a server action are specified

within the square representing the server action. The parameters provided by a form and

submitted to a server action are considered as a single record data type which is called the

superparameter of the server action.

Page/server transitions represent the submission options that are offered by the page i.e.

the forms offered by the page. In order to support form storyboards as a tool for efficient

communication with the domain expert, they can be annotated with information about the

interaction type used for submitting the form parameters, as shown in Fig. 3. The type of

interaction is represented by icons preceding the parameters. These icons explain how the

parameter is provided. The rhomb indicates a selection or a link list. The empty square

indicates a text input field. The solid square indicates a text input field with default value.

The circle indicates a hidden parameter.

The form storyboard hence provides a more abstract view of the system interface than

the screen diagram, but can still be seen as an intuitive high-level prototype of the system.

In the form storyboard each client page together with its accessible server actions give a

representation of the page with its interaction options, as it is shown by the dashed lines in

Fig. 3. Therefore, each such sub graph is called a page image. Page images can share

server actions, as can be seen in the example of the deleteLink server action. This server

action is contained in the page image of the main page as well as in the page image of the

change dialogue.

A server/page transition indicates that the server action may produce a response page of

the addressed type as a result of its action. Therefore, the server/page transitions must be

annotated by the condition under which this transition is chosen. These conditions must be

either mutually exclusive or ordered. One outgoing transition of a server action may carry

no condition; this then represents the default case. In the example the transition from the

newForm server action to the home page is the default case and therefore carries no

condition. The other server/page transition carries the condition that the password is not

retyped correctly.

Form storyboards are labelled directed multigraphs. Two states can be connected by

more than one edge in the same direction. In the case of page/server edges, this represents

several distinct submission options. An example may be an online shop that has on each

page two types of offers: featured articles with in-depth information and an article list with

only a short information. The purchase option addresses the same server page, but the

modeller wants to distinguish these two classes of purchases.

5.2. Patterns for submit/response style systems

Before, we introduce the composition mechanism for form storyboards, we here make

some reflections about the overall structure of the system. Our system offers three different

interaction strands in the form storyboard, namely for insertion, deletion and change of

enrolments. Each of these dialogue strands is shown in a column-like fashion in the form



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228216
storyboard. Furthermore, each of these interaction strands consists of three dialogue states,

which with the home page, are connected to an interaction circle. These three interaction

strands follow a typical pattern for submit/response style systems, which we call the link-

page-form pattern. This interaction pattern begins with a server action that represents the

start of the interaction. In the case of the server action changeLink, the user selects the data

record under consideration by choosing his or her own enrolment. The link leads to the page

on which the actual interaction is performed. This client page is typically characterized by

the fact that it is dominated by a single form. The server action representing this form,

therefore is the third dialogue state involved. This pattern is so commonplace, as one can see

in our example system, that a special naming convention for the dialogue states is helpful.

As the example shows, the naming convention is to take the name of the functionality and to

append the role name within the pattern, e.g. changeLink, changePage, changeForm.

This pattern applies for actions which involve two page changes. Simpler interactions

can of course use only a single server action for completion, e.g. if a system has a delete

function which needs only a single click without confirmation dialogue.

5.3. Communicating form storyboards

Form storyboards are designed for communication and joint development between

domain experts and IT professionals. Therefore, they present a self-contained system view

comparable to screen diagrams. At the same time they achieve a much higher level of

abstraction than screen diagrams. Nevertheless they may be easily communicated with the

domain expert.

The client submit/response style metaphor is fundamentally different from other well-

known UI metaphors, like the desktop metaphor. The submit/response style metaphor

implies a precise semantics of user interaction as outlined before: page interaction is

volatile, while page change is data transmission and changes the system state. On the other

hand, desktop, a.k.a. direct manipulation, metaphors give only a vague analogy and no

precise semantics, e.g.: does drag and drop mean ‘copy’ or ‘move’? Domain experts

understand completely the concept of paper forms. Since paper forms can be translated

precisely into system functionality, domain experts can give precise semantics for ultra-

thin clients. Therefore, form storyboarding encourages domain experts and requirements

engineers to discuss system features along the submit/response style metaphor, and the

properties are depicted as form storyboard sub-diagrams by the requirements engineer.

The requirements engineer does not have to translate the semantic concepts of the domain

expert into the semantics of form storyboarding. Instead, he or she only has to mediate the

notational questions. Therefore, form storyboarding has no mismatch between the domain

experts’ view and the specification documents.
6. Model composition

Models quickly become large. A way to partition a model is needed to manage its

complexity and to communicate with colleagues. We will propose a simple yet powerful

composition mechanism called form storyboard union for this purpose. Form storyboard



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228 217
union allows the composition of the complete system form storyboard from partial

descriptions of the system called sub-storyboards. A sub-storyboard is an explicitly-named

form storyboard that describes a part of the system. The graph underlying a form

storyboard is a directed labelled multigraph, and the composition mechanism for form

storyboards is basically graph union. If two form storyboards are combined into a new

resulting form storyboard, the node and edge sets are united. Nodes of same name are

identified, as are edges between the same nodes of the same name. The composition of

sub-storyboards is shown in Fig. 4. Composing form storyboards by union fosters the

viewpoint that one is interested in the complete model only. The information given by

decomposition and naming of sub-storyboards is merely information for the purpose of

managing and communicating the storyboard.

Form storyboard union is a sufficiently powerful mechanism for composition, despite

its simple semantics. All documents are form storyboards that are understood as sub-

diagrams of the complete diagram. A sub-storyboard contains a small subset of the form
Fig. 4. Feature composition.



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228218
storyboard relating to a special system aspect, system feature, or requirement. The domain

expert or requirements engineer can denote every subset of the system interface as a single

feature in a separate diagram. Even unconnected parts of the form storyboard can be

placed in the same diagram if they are received as expressing the same feature.

Storyboard decomposition can be used to introduce a whole-to-part relationship

between sub-storyboards. Such a hierarchical decomposition should adhere to certain

natural soundness criteria; that is, there should be no model element in one of the sub-

storyboards that is not present in the whole storyboard. Decomposition can also be used to

represent a refinement step or the result of a generalization or specialization.

The modelling of menu-like options is another important case of model decomposition.

Menu-like options are interaction options, which are offered on many, perhaps even all,

pages. A new notation element for this purpose is the state set that is depicted by a double-

lined state icon. It is annotated by a list of state names and serves as shorthand notation for

these states. An edge between two state sets of, say, m client pages and n server actions

represents the complete graph Km,n between the elements of the state sets. In Fig. 4 we use

the state set notation to give a terse description of the fact that a link to the home page is

contained on all pages except the home page itself.

Form storyboarding is not tightly coupled to a specific process for requirements

elicitation. Instead it offers proposals for activities which in themselves increase the

quality of the requirements specification. It is a feature-driven approach, not a use-case-

driven approach. The complete form storyboard is gained by collecting all features of the

system. Use cases, defined as typical usages of the system, may be used as heuristics for

finding features, but are not required. In form storyboards, the basic flow and the

alternative flows of a use case correspond to paths in the diagram. The complete diagram

can be considered as the compact notation of the set of all use cases. In the form

storyboarding approach every use case is a sub-storyboard. The activities relate to the

validation of found features, and to the local systematic search for features. Form

storyboarding starts with the development of a number of feature artifacts. The features to

be depicted can be gained in various ways, e.g. during brainstorming or by reverse

engineering of legacy systems. Each feature can be discussed in its form storyboard

notation. Once informal search for new features is completed, the systematic search for

features is started. Each single activity is a local search on a single node in the form

storyboard. The participants of the requirements process check for a single node, whether

the outgoing edges represent exactly the desired interaction options or not, and check the

server response to these options. If the completeness of the description is assured, the node

may be marked as complete. Global completeness can be assured eventually by traversing

the form storyboard.
7. Formcharts and dialogue constraints

The diagrams presented in this article are integrated with form-oriented analysis, a

holistic approach for engineering form-based, submit/response-style systems.

The approach encompasses screen diagrams, form storyboards and formcharts (Draheim

and Weber, 2003b). The form storyboard already expresses the key elements of



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228 219
the submit/response paradigm. The formchart then has to make the analysis model

amenable to formal constraint writing and coupling to the data model.

Screen diagrams offer a natural conceptual basis for modelling submit/response-style

software systems. Form storyboards are designed with respect to informal communication

between domain experts and system analysts. Formcharts are used for rigorous software

system specification. We explain formcharts in this article because formcharts implicitly

define the semantics of form storyboards and screen diagrams. Once the semantics of

formcharts are rigorously defined, form storyboards and screen diagrams can be

considered as informal views on an intended formchart. While form storyboards address

communication between domain experts and IT experts, formcharts can foster the

communication between interface designers and software developers, i.e. they can be used

to mitigate the HCI-SE design problem (Benyon and Macaulay, 2002).

The formchart is accompanied by other diagrams, first the information model of the

data and second the user message model. Furthermore, a textual document containing

formal constraints has to be seen as attachment to the formchart. Again server actions are

depicted as rectangles and client pages are depicted as ellipses. In the formchart only the

names of the states and transitions appear. Hence the formchart does not contain

the signatures of the server actions as they are depicted in the form storyboard. Instead, the

signatures are contained in the second new artifact type, the user message model. The user

message model contains types and is therefore, a class diagram in the terms of modern

modelling languages like the UML. However, the user message model types are a special

kind of data type, namely algebraic data types. Instances of these types are immutable

values. The types can have structure, but only a hierarchical structure, namely

composition. They represent sent messages, comparable to written and sent documents.

Remaining in that metaphor, once you have sent a letter the content is unchangeable. In the

user message model there must be a message type for each formchart state. The message

represents the signature of the state of same name. Each time this state is entered, a new

message of this type has to be provided. We have already encountered signatures of server

actions in the form storyboard, but in the formchart we also specify signatures for the

client pages. These client page signatures represent the information shown on the page.

The page content is immutable. A page shows the same content until the user triggers a

page change and therefore gets a new page, although possibly from the same type. Page

interaction, i.e. user input in forms, is not considered a change of the page content, but

preparation of a new message. The fact that now the user message model contains the

information shown on pages as well as the information sent back to the system as part of a

page change is important with respect to the specification of so-called dialogue constraints.

Indeed one of the main advantages of formcharts is that they allow more elaborate

constraint writing than the form storyboard. For example, an appropriate extension of OCL

can be used for the purpose of constraint writing. Transitions from client pages to server

actions, page/server transitions for short, host constraints for expressing enabling

conditions and client output constraints. An enabling condition specifies the circumstances

under which this transition is enabled, possibly depending on the current use case (more

precisely, the current dialogue history). Data submitted from a client page is constrained

by a client output constraint. Server actions host server input constraints. They are server

action preconditions in an incompletely specified system. Transitions from server actions



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228220
to client pages host flow conditions and server output constraints. The flow conditions

specify which of several outgoing transitions is actually chosen. The server output

constraint determines which information is presented on the client page that follows in the

sequel.

In (Weber, 2002) rigorous semantics have been given to formcharts by means of a

combined metamodelling and framework approach. The concept of state history diagrams

has been introduced for this purpose. State history diagrams are a semantic unification of

class diagrams and state transition diagrams; in fact they are a restriction of class

diagrams. They can be used in many circumstances in analysis as well as design. They are

especially favourable in cases, where we model a system by a finite state machine in order

to capture a specific aspect, while the system as a whole is modelled by a class diagram as

well. Such models are very widespread. Submit/response style interaction is a very

important instance. Other examples include the state of processes in operating systems or

the life cycle of components in application servers.
8. The forward engineering tool Angie

Angie (Draheim and Weber, 2004a) is a language and tool for the type-safe

specification of web presentation layers and the subsequent generation of an executable

interface prototype. A textual description of this system as a form storyboard can be

directly expressed in Angie, and then automatically mapped onto a system structure in

compliance with currently discussed web design patterns like the Model 2 architecture.

The Angie tool forms a bridge between the specification and implementation levels.

Web interaction based on HTML-forms is untyped. In many common Web presentation

frameworks this leaves the programmer with a considerable number of tasks like type

conversion, which are, moreover, error prone. Angie frees the programmer from these

tasks by introducing a clean abstraction layer and offering a generator tool based on this

abstraction layer. A description of a web interface in the Angie language is independent

from particular target languages or even particular frameworks for this architecture. Angie

focuses on the principles of the HTML interaction model itself, not the platform for

generating dynamic HTML.

In the language called Angie, each Servlet or JSP is seen as a method with the form

parameters as parameter list. Such a method is called a dialogue method. Each result page

offers the user the choice between different calls to dialogue methods as the next step in the

dialogue. Dialogue methods can be called by links or forms. Forms can be seen as editable

method calls offered to the user. The syntax of these declarations is derived from the Java

method syntax. The Angie compiler performs static type checking on this specification and

the code generator generates JSP templates, containing protected regions. Each dialogue

method has a fixed parameter set. The type checking requires that the signatures of method

definition and invocation match, i.e. that the parameter lists match and that the single

parameters have the same type. In the body of Angie’s method construct, the programmer

has to specify all links and forms which will be offered by the result page of this method.

Since links and forms enable calls to dialogue methods, link and form declarations

resemble method calls. They start with the keywords ‘link’ or ‘form’, they obtain a label,



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228 221
which enables references to them, and finally they receive a method call syntax, e.g.

For links, the actual parameters are names of variables. Angie generates a

protected region in which variables with these names are accessible (the declaration is

placed in front of the protected region). The custom code should assign values to

these variables. In the code subsequent to the protected region, these variables are used

to construct an appropriate HTML-link code. In form declarations each actual

parameter is a pair of the widget type that will be generated and a variable name. The

values of these variables are used to provide the default values within the widgets.

These link or form declarations serve as specifications of the possible next actions the

user can take.

Angie offers two method modifiers, ‘action’ and ‘page’, which qualify the respective

method as corresponding to a server action or client page. A page method must call only

action methods, and only via link or form declarations. An action method must call only

page methods, and only via redirect declarations. The Angie tool checks whether the

specification complies with the given rules and whether all methods have a modifier.

The Angie tool checks whether all calls to methods have correct parameter sets. This

is important especially for forms. Here the tool checks whether the widgets chosen in

each actual parameter matches the type of the corresponding formal parameter. It

checks syntactically whether every action calls only page targets via redirect

declarations and whether every page calls only action targets via link or form

declarations. This check is performed on the syntax level, i.e. the rules are encoded in

the syntax used by the tool.

For correct input, the Angie generator produces the output code. For each method, it

produces one Java Server Page with the same name. Within that JSP it produces code

that performs runtime type checking of whether the method has been called with

correct parameters, and converts the parameters to local variables with the same name

as the formal parameters in the Angie file. Subsequently, it creates a protected region,

which can be used as method body for the Java code. For every link or form

declaration in the Angie method body it creates HTML code, giving a form or link,

which offers a correct call to the corresponding method. Within that HTML code, the

Angie tool again creates protected regions for each HTML parameter, defining where to

insert Java code, which produces actual parameters. Similarly, it creates redirect

directives for the redirect declarations in the method body. The Angie tool produces

comments, structuring the generated code.

We now give a part of the Angie code for the running example, the seminar registration

system. The code specifies the home page and the change sub-dialogue. The sub-dialogues

for deleting and for new entries are similar; we see the calls to their methods on the

homepage, for example. The example shows also the usage of the menu construct. This

construct may contain link and form declarations, which will be included on every

indicated page. It is used to realize the back link in the example.



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228222
Angie can be seen as the counterpart of JSPick (Draheim et al., 2003), which is a design

recovery tool (Chikofsky and Cross, 1990) for Java Server Pages based web presentation

layers. JSPick generates high-level system descriptions in an Angie dialect.
9. Related work

User interface modelling has become a recognized area of research with the advent of

graphical user interfaces. A major milestone in the research on user interface modelling is

the Seeheim Model (Pfaff and Günther, 1985), which defines a reference architecture for

User Interface Management Systems (UIMS). State transition diagrams have been used for

a long time in user interface specification (Parnas, 1969), partly with the objective of user

interface generation (da Silva, 2000). Our approach is distinguished from the elaborate

approaches (Green, 1987; Jacob, 1983; Wasserman, 1979, 1985; Horrocks, 1999) through:
,
 the identification of the two-staged interaction paradigm: page interaction and page

change;
,
 the identification of the bipartite structure and the fundamental differences between

server states and page states.
The two-staged interaction paradigm allows abstraction from fine-grained page

interactions, which are well understood and can be offered by a standard tool, the browser.

Hence for submit/response style interfaces, the named other state transition diagram



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228 223
approaches are identified as being too fine-grained. Furthermore the system view and

dialogue style of these approaches is out of date.

User interface modelling is dominated by the discussion of model-based user interface

development environments (MB-UIDE) (da Silva, 2000). However, again these

approaches, when applied to form-based interfaces, work on the level of page interactions,

which is inadequately fine-grained. Within the UML community the discussion about

dealing with the user interface is still under way (Cunha and Nunes, 2000). In (da Silva and

Paton, 2000) a visual language is proposed for presenting user interfaces. The new artifacts

are basically visualizations of page components. The method is tightly coupled with the

use-case-driven approach.

DENIM and SILK (Landay and Myers, 1995; Newman et al., 2003) are informal

interactive tools that support the early stages of user interface design. They enable the

execution of electronic sketches of user interface prototypes. Rettig describes the working

practice of simulating user interaction with real users and a paper prototype of a system

(Rettig, 1994).

OOHDM (Vilain et al., 2000a,b) is a diagrammatic tool for representing web

interaction. The diagrams are called user interaction diagrams (UID). They resemble page

transition diagrams without server actions. Specific annotations are placed on the

transitions concerning required selections by the user. OOHDM is centred around an

object-oriented modelling metaphor: the system interface is considered as a collection of

objects that are views on classes of a conceptual model.

A stereotype framework specifically for web applications is presented by Conallen

(Conallen, 1999). This approach allows to model the design level concepts appearing

during web site development with a typical web application framework. For this purpose

the Conallen approach uses a set of stereotypes. This approach targets rather design than

analysis.

The conceptual modelling of hypertext is a separate domain, which has been

intensively studied since the beginning of interest in hypertext (Nielsen, 1990). A

reference model for hypertext based on formal specification with Z is (Halasz and

Schwartz, 1994). A complete methodology for hypermedia design called RMM is

presented in (Isakowitz et al., 1995). The conceptual modelling of navigation was also

addressed in the ViewNet approach (Ziegler, 1997). These approaches all model content in

logical collections of information elements. As such the approaches are related to the

modelling of information architectures as they are represented by content management

systems. None of the named hypertext modelling approaches use bipartite transition

descriptions. The system response in these approaches is unconditional. Therefore, these

approaches also have no direct connection to constraint writing.

Statecharts are an extension of state transition diagrams for modelling reactive systems

(Harel, 1987). The StateWebCharts approach (Winckler et al., 2001; Winckler and

Palanque, 2003) extends statecharts in order to model web applications. Consequentially,

the StateWebCharts approach distinguishes between user events and system events. States

are sets of graphic or executable objects. A request form is an instance for a graphic object

as well as a static web page. This approach distinguishes between static, transient,

dynamic, and external states. A submit/response interaction can be modelled by a user

event triggering a transient state and a system event resulting in a dynamic state.



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228224
The aspects of client-side and server-side execution are fully supported by form

storyboards, because they are basic concepts of the approach. In the state machines of

form-oriented analysis, states are parameterised, i.e. they are typed. Server action types

describe input capabilities, while client page types are high-level descriptions of reports

offered to the user. In StateWebCharts, data flow can be described by annotations to the

transitions. Hierarchy and orthogonality of statecharts are exploited by the StateWebChart

approach for modularisation and the modelling of non-modal dialogue and their mutual

interdependencies.

In the early contribution of Zhaneg and Pong (Zheng and Pong, 1992) statecharts are

already employed to give semantics to frame-based, scrolling-based hypertexts. The

approach HMBS (Hypermedia Based on Statecharts) discusses patterns for modelling

advanced concepts such as hierarchical views, access control, versioning and navigational

contexts (Oliveira et al., 2001). However, neither approach goes beyond the modelling of

mere static hypertext, i.e. they are not designed for modelling system state dependent

dialogues.

An early Petri-net based approach to hypertext modelling is presented in (Stotts and

Furuta, 1989). TADEUS (Elwert and Schlungbaum, 1995, 1996; Müller et al., 2001) is

also a Petri-net based approach. However, like form storyboarding, this user interface

modelling technique is technology independent. Moreover, TADEUS is supported by an

MB-UIDE tool that is suited for prototyping coarse-grained dialogues. The automatic

generation is driven by an object model and a dialogue model, which is a Petri-net. Petri-

nets are a state transition formalism based on bipartite graphs. Form storyboards resemble

Petri-nets due to the fact that server actions resemble Petri-net transitions. Petri-nets as a

finite state machine model are classically conceived as being never in a state

corresponding to a transition. The main difference between Petri-nets and bipartite state

diagrams is therefore, that the state of a Petri-net is not necessarily a single bubble, but

possibly a compound state, depending on the type of Petri-net, e.g. a function from bubbles

to numbers for place/transition nets. It is possible to give formcharts a Petri-net semantics,

e.g. by defining client pages as places and introducing a Petri-net transition for every path

of length two to another client page. However, such a Petri-net semantics involves only

trivial transitions, i.e. transitions with one ingoing and one outgoing edge.

WebML is a visual language for conceptual modelling of complex web sites (Ceri et al.,

2000a,b), in which all concepts are defined visually as well as in XML. WebML offers icons

for page elements for composing web sites, e.g. catalogue pages and single item views. The

model of the web sites involves a number of orthogonal divisions, or models (structural,

composition, navigation, presentation and personalization). The structural model is in

principle a semantic data model described in XML. The composition model is a description

of page content based on the data model. The navigation model describes hyperlinks

between the pages, with a distinction between so-called contextual links, which are induced

by the structure of the data model, and non-contextual links, which are freely defined. The

WebML approach can therefore be seen as an advanced and customisable successor of

model-driven interface generators. The basic idea of such systems is to generate all

contextual links from the model. Advanced systems like WebML offer on the other hand the

possibility of choosing between the contextual links as well as of using freely definable

links. Links in WebML are directed edges, which lead typically from page to page and form



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228 225
therefore, a non-bipartite navigation model. WebML also offers a mechanism for accessing

so-called generic external operations by model elements called operation units (Ceri et al.,

2000b). Operation units have conditional output similar to server actions in form-oriented

analysis. However operation units perform asynchronous computations. They are activated

by a designated link after which they can perform operations of arbitrary length. They can

then leave content in other WebML-modelled units.

In comparison with other tools, Angie can be seen to be on the declarative side, while

other tools typically fall on the more operational side. We can see this if we compare

Angie with web presentation frameworks; Angie does not prescribe architecture or design,

even if it works very well with concrete technologies. This is our very aim in making an

abstraction; we want to add value for the concrete technology, yet we do not want to be

tied to a concrete technology. In that sense a high level language like Angie directly

supports an architecture like SUNs Model 2 JSP architecture. Our proposal neither

encourages nor discourages concrete architectures or designs. Instead, it starts as a best

practice for documenting JSP-based systems and ends up as a development discipline for

such systems. This is in contrast to, for example, the Struts framework (Davis 2001),

which leads to very particular Model 2 architectures only. Struts suggest dynamic type

checking. Angie on the other hand consequently performs static type checking and ensures

that the resulting system is statically well-typed.

In comparing tools like Angie one has to be aware of the precise task this tool is

designed for. For example, it has nothing to do with Web authoring tools, which are more

related to content management systems, another important technology class. Such tools

typically also achieve a higher level of abstraction, but this targets questions of

information modularity, as expressed in description languages like WebML. It is

interesting to compare Angie with interactive tools, e.g. Wizards (Borck, 2003) and

graphical IDEs. From the software engineering standpoint the important advantage of

Angie is that you have a specification in the form of the Angie source code, while in the

case of Wizards you have only the resulting system. The functionality of Angie is different

from tools like those described by Nguyen and Srinivasan (1996), which provide an

interconnection between different language paradigms like HTML and SQL. Angie takes

one signature specification and generates code in the different paradigms, Java and HTML,

according to this signature specification.

A current school in requirements engineering is the use-case driven approach. HCI

specifications as defined in the several versions of this approach (Jacobson, 1992; Jacobson

et al., 1999) specifically target the modelling of GUI-based dialogues. The approach does

not yield a clear layering of user interfaces into page interactions and page changes.

A state machine based approach has been recently proposed for modelling workflow

aspects of web applications (Mohan et al., 2002). In this approach, the state of the

application represents the interaction options of a set of users, not a single user. The

approach aims at modelling multi-party dialogues like auctions, and covers the mutual

dependency of the interaction options available to the single parties. The proposal is not

based on a bipartite state machine as is the case with form storyboards. It could be thought

of as combining form storyboarding for modelling single user dialogues with the method

in Mohan et al. (2002) for modelling multi-party aspects of the system under

consideration.



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228226
A recent shift in software processes is the move towards so-called agile methodologies

(Cockburn, 2001). The focus is here on reducing the process overhead in favour of a

strongly iterative development. This approach is also intended to deliver flexibility with

respect to changing requirements. Our method of form storyboarding can be used easily

with agile methodologies due to the similarity between form storyboards and the code

architecture. With the form storyboard union paradigm, form storyboarding can easily

cope with changing requirements.
10. Further directions

Enterprise systems are a type of system, where so-called business rules are automated.

The term ‘business rule’ refers to a high-level data manipulation rule, which is executable

manually or mechanically. Business rules or parts thereof which are not mechanically

executable require human intervention, especially human judgement. This may occur in

the case of primary data input or it may occur at even more obvious decision points.

The notion of submit/response style systems is a framework in which we can model

business rules, and it can be seen as a novel concept for a virtual business machine, i.e. a

machine which is directly able to execute business logic, regardless of whether it includes

human interaction or not. We can now forge the important notion with which to refer to

business logic requirements in their form as executable programs of this virtual machine.

We call the program of this virtual machine the business logic of the application.

These considerations lead to another key concept in our considerations, namely

executable specification. If our business logic can be conceived as the program of a virtual

business machine, then our specification method is nothing less than a high-level

programming language. In fact, some decades ago, the concept of such languages for data-

centric applications appeared so natural that the terminology ‘fourth generation languages’

was coined for these types of languages. This term ‘fourth generation language’ can now

be said to be tied to the even more specialized look-and-feel of such a language, such as

ABAP-4 in the SAP system. Fourth generation languages are typically tightly integrated

into single-vendor platforms. The modelling method presented here can nevertheless be

seen as an integration of practical experiences from fourth generation languages into a

state-of-the-art modelling style. In principle it is therefore conceivable that in future a

business platform running as a virtual machine on common platforms could interpret the

business logic directly.
References

Benyon, D., Macaulay, C., 2002. Scenarios and the HCI-SE design problem, Interacting with Computers, vol. 14.

Elsevier pp. 397–405.

Borck, J.R., March 2003. WebSphere Studio Application Developer 4.0., JavaWorld.

Ceri, S., Fraternali, P., Paraboschi, S., 2000a. Web Modeling Language(WebML): a modeling language

for designing web sites, Proceedings of the Ninth International World Wide Web Conference. Elsevier

pp. 137–157.



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228 227
Ceri, S., Fraternali, P., Bongio, A., Maurino, A., 2000. Modeling data entry and operations in WebML,

Proceedings of WebDB 2000, Dallas 2000.

Chikofsky, E.J., Cross, J.H., 1990. Reverse engineering and design recovery: a taxonomy. IEEE Software 1990,

13–17.

Cockburn, A., 2001. Agile Software Development. Addison-Wesley, Reading, MA.

Conallen, J., 1999. Modeling web application architectures with UML. Communications of the ACM 42 (10), 63–

70.

Cunha, J.F.E., Nunes, N.J., 2000. Towards a UML profile for interaction design: the wisdom approach, Lecture

Notes in Computer Science 1939, Proceedings of UML’2000, York 2000.

da Silva, P.P., 2000. User interface declarative models and development environments: a survey, Proceedings of

Seventh International Workshop on Design, Specification and Verification of Interactive Systems, LNCS, vol.

1946. Springer, Berlin.

da Silva, P.P., Paton, N.W., 2000. UMLi: the unified modeling language for interactive applications, Lecture

Notes in Computer Science 1939, Proceedings of UML’2000, York 2000.

Davis, M., February 2001. Struts—an Open-source MVC Implementation. IBM developerWorks.

Draheim, D., Weber, G., 2002. Strongly typed server pages, Proceedings of the 5th Workshop on Next Generation

Information Technologies and Systems, LNCS 2382. Springer, Berlin.

Draheim, D., Weber, G., 2003a. Storyboarding form-based interfaces, Proceedings of INTERACT 2003-Ninth

IFIP TC13 International Conference on Human–Computer Interaction. IOS Press.

Draheim, D., Weber, G., 2003b. Modeling submit/response style systems with form charts and dialogue

constraints, Proceedings of the Workshop on Human Computer Interface for Semantic Web and Web

Applications, LNCS 2889. Springer, Berlin.

Draheim, D., Weber, G., 2004a. Specification and generation of model 2 web interfaces, Proceedings of APCHI

2004-6th Asia-Pacific Conference on Computer–Human Interaction. LNCS. Springer, Berlin.

Draheim, D., Weber, G., 2004b. Form-Oriented Analysis—A New Methodology to Model Form-Based

Applications. Springer, Berlin.

Draheim, D., Fehr, E., Weber, G., 2003. JSPick-A server pages design recovery tool, Proceedings of the Seventh

European Conference on Software Maintenance and Reengineering. IEEE Press.

Elwert, T., Schlungbaum, E., 1995. Modelling and generation of graphical user interfaces in the TADEUS

approach, in: Palanque, P., Bastide, R. (Eds.), Designing, Specification, and Verification of Interactive

Systems. Springer, Wien, pp. 193–208.

Elwert, T., Schlungbaum, E., 1996. Dialogue graphs—a formal and visual specification technique for dialogue

modelling, Proceedings of the BCS-FACS Workshop on Formal Aspects of the Human Computer Interface.

The British Computer Society, Springer.

Green, M., 1987. A survey of three dialogue models. ACM Transactions on Graphics 5 (3), 244–275.

Halasz, F., Schwartz, M., 1994. The Dexter hypertext reference model. Communications of the ACM 37 (2), 30–

39.

Harel, D., 1987. Statecharts: A Visual Formalism for Complex Systems, Science of Computer Programming.

Elsevier, Amsterdam pp. 231–274.

Hayes, P.J., 1985. Executable interface definitions using form-based interface abstractions. Advances in Human–

Computer Interaction 1.

Horrocks, I., 1999. Constructing the User Interface with Statecharts. Addison-Wesley, Reading, MA.

IEEE Std 830-1993, 1993. Recommended Practice for Software Requirements Specifications. Software

Engineering Standards Committee of the IEEE Computer Society, New York.

Isakowitz, T., Stohr, E.A., Balasubramanian, P., 1995. RMM: a methodology for structured hypermedia design.

Communications of the ACM 38 (8), 34–44.

Jacob, R.J.K., 1983. Using formal specifications in the design of a human–computer interface. Communications

of the ACM 26 (4), 259–264.

Jacobson, I., 1992. Object-Oriented Software Engineering: A Use Case Driven Approach. Addison-Wesley,

Reading, MA.

Jacobson, I., Booch, G., Rumbaugh, J., 1999. The Unified Software Development Process. Addison-Wesley,

Reading, MA.



D. Draheim, G. Weber / Interacting with Computers 17 (2005) 207–228228
Landay, J.A., Myers, B.A., 1995. Interactive sketching for the early stages of user interface design, Proceedings of

Human Factors in Computing Systems. ACM Press pp. 43–50.

Mohan, R., Cohen, M.A., Schiefer, J., 2002. A State Machine Based Approach for a Process Driven Development

of Web-Applications, CAiSE 2002, Toronto, Springer LNCS 2348 2002 pp. 52 ff.

Müller, A., Forbrig, P., Cap, C.H., 2001. Model-based user interface design using markup concepts, Proceedings

of DVS-IS-Conference on Design, Specification, and Verification of Interactive Systems, LNCS 2220.

Springer, Berlin.

Newman, M.W., Lin, J., Hong, J.I., Landay, J.A., 2003. DENIM: an informal web site design tool inspired by

observations of practice. Human–Computer Interaction 18 (3), 259–324.

Nguyen, T., Srinivasan, V., 1996. Accessing relational databases from the World Wide Web, Proceedings of the

1996 ACM SIGMOD 1996.

Nielsen, J., 1990. The art of navigating through hypertext. Communications of the ACM 33 (3), 296–310.

Oliveira, M.C.F., Turine, M.A.S.T., Masiero, P.C., 2001. A statechart-based model for hypermedia applications.

ACM Transactions on Information Systems 19 (1).

Parnas, D., 1969. On the use of transition diagrams in the design of a user interface for an interactive computer

system, Proceedings of the 24th National Conference. ACM Press pp. 379–385.

Pfaff, E., Günther, 1985. User Interface Management Systems. Springer, Berlin.

Rettig, M., 1994. Prototyping for tiny fingers. Communications of the ACM 37, 21–27.

Stotts, P.D., Furuta, R., 1989. Petri-net-based hypertext: document structure with browsing semantics. ACM

Transactions on Information Systems 7 (1).

Vilain, P., Schwabe, D., Souza, C.S., 2000a. Modeling interactions and navigation in web applications,

Proceedings of Seventh International Workshop on Design, Specification and Verification of Interactive

Systems, LNCS, vol. 1921. Springer, Salt Lake City, UT pp. 115–127.

Vilain, P., Schwabe, D., Souza, C.S., 2000b. A diagrammatic tool for representing user interaction in UML,

Lecture Notes in Computer Science 1939, Proc. UML’2000, York 2000.

Wasserman, A.I., 1979. A specification method for interactive information systems, Proceedings SRS—

Specification of Reliable Software, IEEE Catalog No. 79 CHI1401-9C. IEEE pp. 68–79.

Wasserman, A.I., 1985. Extending state transition diagrams for the specification of human–computer interaction.

IEEE Transaction on Software Engineering SE-11 (8), 699–713.

Winckler, M., Palanque, P., 2003. StateWebCharts: a formal description technique dedicated to navigation

modelling of web applications, Proceedings of DSV-IS 2003: Design, Specification, and Verification of

Interactive Systems, LNCS 2844. Springer, Berlin.

Winckler, M., Farenc, C., Palanque, P., Bastide, R., 2001. Designing navigation for web interfaces. Joint AFIHM-

BCS Conference on Human–Computer Interaction (IHM-HCI’2001), Lille, France.

Weber, G., 2002. Semantics of Form-Oriented Analysis. Freie Universität Berlin. PhD-Thesis.

Zheng, Y., Pong, M.-C., 1992. Using statecharts to model hypertext, Proceedings of the ACM Conference on

Hypertext. ACM Press pp. 242–250.

Ziegler, J., 1997. ViewNet—conceptual design and modelling of navigation, Proceedings of INTERACT 97

1997.


	Modelling form-based interfaces with bipartite state machines
	Introduction
	Two-staged interaction
	Modelling HCI with bipartite state transition diagrams
	Screen diagrams
	Form storyboards
	Typed calls to the system
	Patterns for submit/response style systems
	Communicating form storyboards

	Model composition
	Formcharts and dialogue constraints
	The forward engineering tool Angie
	Related work
	Further directions
	References


