Lecture 11
Models 3 – GOMS and State Transition Models

with reference to sections 7.3 and 7.5 of
The Resonant Interface
HCI Foundations for Interaction Design
First Edition

by Steven Heim

Adapted by Prof Jim Warren and Dr Gerald Weber
Chapter 7 Interaction Design Models

- Model Human Processor (MHP)
- Keyboard Level Model (KLM)
- GOMS
- Modeling Structure
- Modeling Dynamics
- Physical Models
Goal/task models can be used to explore the methods people use to accomplish their goals

- Card et al. suggested that user interaction could be described by defining the sequential actions a person undertakes to accomplish a task.

- The GOMS model has four components:
 - goals
 - operators
 - methods
 - selection rules
GOMS

• **Goals** - Tasks are deconstructed as a set of goals and subgoals.

• **Operators** - Tasks can only be carried out by undertaking specific actions.

• **Methods** - Represent ways of achieving a goal
 – Comprised of operators that facilitate method completion

• **Selection Rules** - The method that the user chooses is determined by selection rules
CMN-GOMS can predict behavior and assess memory requirements

- CMN-GOMS (named after Card, Moran, and Newell) - a detailed expansion of the general GOMS model
 - Includes specific analysis procedures and notation descriptions

- Can judge memory requirements (the depth of the nested goal structures)

- Provides insight into user performance measures
CNM-GOMS example

GOAL: CLOSE-WINDOW
. [select GOAL: USE-MENU-METHOD
. . MOVE-MOUSE-TO-FILE-MENU
. . PULL-DOWN-FILE-MENU
. . CLICK-OVER-CLOSE-OPTION
. GOAL: USE-CTRL-W-METHOD
. . PRESS-CONTROL-W-KEYS]

For a particular user, U1:

Rule 1: Select USE-MENU-METHOD unless another rule applies
Rule 2: If the application is GAME, select CTRL-W-METHOD

So here we have one Goal with either of two Methods, one of which requires a sequence of three Operators, the other requires just one Operator; for U1 we have 2 Selection rules
GOMS – *Other GOMS Models*

- **CPM-GOMS** represents
 - Cognitive
 - Perceptual
 - Motor operators

- **CPM-GOMS** uses Program Evaluation Review Technique (PERT) charts
 - Maps task durations using the critical path method (CPM).

- **CPM-GOMS** is based directly on the Model Human Processor
 - Assumes that perceptual, cognitive, and motor processors function in parallel
GOMS – Other GOMS Models

- Program Evaluation Review Technique (PERT) chart Resource Flows
Understanding the temporal aspects of interaction design is essential to the design of usable and useful systems

- Interaction designs involve dynamic feedback loops between the user and the system
 - User actions alter the state of the system, which in turn influences the user’s subsequent actions
- Interaction designers need tools to explore how a system undergoes transitions from one state to the next
Modeling Dynamics – *State Transition Networks*

- **State Transition Networks** can be used to explore:
 - Menus
 - Icons
 - Tools

- **State Transition Networks** can show the operation of peripheral devices
Modeling Dynamics – *State Transition Networks*

- State Transition Network

- STNs are appropriate for showing sequential operations that may involve choice on the part of the user, as well as for expressing iteration.
State transition networks (STN) – example

- circles - states
- arcs - actions/events

```
<table>
<thead>
<tr>
<th>Start</th>
<th>Menu</th>
<th>Circle 1</th>
<th>Circle 2</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>select 'circle'</td>
<td>click on centre</td>
<td>rubber band</td>
</tr>
<tr>
<td>Line 1</td>
<td></td>
<td>select 'line'</td>
<td>click on first point</td>
<td>rubber band</td>
</tr>
<tr>
<td>Line 2</td>
<td></td>
<td></td>
<td>click on point</td>
<td>draw line</td>
</tr>
</tbody>
</table>
```
The Three-State Model can help designers to determine appropriate I/O devices for specific interaction designs.

- The TSM can reveal intrinsic device states and their subsequent transitions.
 - The interaction designer can use these to make determinations about the correlation between task and device.
 - Certain devices can be ruled out early in the design process if they do not possess the appropriate states for the specified task.
Modeling Dynamics – *Three-State Model*

- **The Three-State Model (TSM)** is capable of describing three different types of pointer movements
 - **Tracking**: A mouse device is tracked by the system and represented by the cursor position
 - **Dragging**: A mouse also can be used to manipulate screen elements using drag-and-drop operations
 - **Disengaged movement**: Some pointing devices can be moved without being tracked by the system, such as light pens or fingers on a touchscreen, and then reengage the system at random screen locations
Uses of State-Transition Networks

• Not well-suited to complete models of modern GUIs
 – Too many options (transitions) from any given state – combinatorial explosion (in fact, that’s just the flexibility a good GUI is supposed to give)

• Better for limited/embedded user interfaces
 – Automated teller machine
 – Digital watch
 – Car key/alarm device

• Excellent for checking completeness of design
 – Be sure that all transitions are represented (and hence will get coded and tested in implementation)